

Tuesday 5 October 2021 – Afternoon

A Level Chemistry A

H432/01 Periodic table, elements and physical chemistry

Time allowed: 2 hours 15 minutes

You must have:

· the Data Sheet for Chemistry A

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clea	arly in bla	ck ink.	Do no	ot writ	te in the barcodes.	·	
Centre number					Candidate number		
First name(s)							
Last name							

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is **100**.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 32 pages.

ADVICE

Read each question carefully before you start your answer.

© OCR 2021 [601/5255/2] DC (LK/FC) 301072/3

OCR is an exempt Charity

Turn over

SECTION A

You should spend a maximum of 20 minutes on this section Write your answer to each question in the box provided.

Answer **all** the questions.

1	Wh	ich statement describes electronegativity?	
	Α	A measure of the reactivity of an element.	
	В	The ability of an atom to attract an electron to become a 1– ion.	
	С	The attraction of a bonded atom for the electrons in a covalent bond.	
	D	The attraction of an atom for a lone pair of electrons.	
	You	ur answer	[1]
2	Αc	hlorate(VII) ion has a 1– charge.	
	Wh	at is the formula for sodium chlorate(VII)?	
	Α	$NaClO_3$	
	В	$NaClO_4$	
	С	NaClO ₇	
	D	NaClO ₈	
	Υοι	ur answer	[1]

3 The unbalanced equation for the reaction of silver with concentrated nitric acid is shown below.

$$.....\,\mathsf{Ag(s)} +\,\mathsf{NO_3}^-(\mathsf{aq)} +\,\mathsf{H^+(aq)} \,\longrightarrow\,\mathsf{Ag^+(aq)} +\,\mathsf{NO(g)} +\,\mathsf{H_2O(I)}$$

Which numbers for Ag and ${\rm H_2O}$ will balance the equation?

	Ag(s)	H ₂ O(I)
Α	1	2
В	2	3
С	3	1
D	3	2

Your answer		[1
-------------	--	----

- 4 Which sample contains the greatest number of molecules?
 - **A** $140.0 \text{ g C}_2 \text{H}_2$
 - **B** $180.0 \text{ g C}_2 \text{H}_6$
 - **C** 240.0 g C₄H₁₀
 - **D** $400.0 \,\mathrm{g} \,\mathrm{C}_6 \mathrm{H}_6$

Your answer	[1]
	1

 ${\bf 5} \qquad {\bf Chromium(III) \ oxide, \ Cr_2O_3, \ is \ reduced \ to \ chromium \ by \ heating \ with \ magnesium. }$

What is the minimum mass of Mg required to reduce 11.4 g of chromium(III) oxide?

- **A** 0.61 g
- **B** 0.91g
- **C** 3.65 g
- **D** 5.47 g

Your answer [1]

6	A student is supplied with	100.0 cm ³	of a solution	of 0.400 mol dm	n ^{−3} magnesium	i iodide, MgI_2
---	----------------------------	-----------------------	---------------	-----------------	---------------------------	----------------------------

A student plans to dilute this solution so that the iodide concentration is $0.250\,\mathrm{mol\,dm^{-3}}$.

What volume of water, in cm³, does the student need to add?

- **A** 60.0
- **B** 160.0
- **C** 220.0
- **D** 320.0

Your answer		[1]
-------------	--	-----

- 7 Which row shows elements in order of increasing first ionisation energy?
 - **A** Ca < Si < P < N
 - **B** N < P < Si < Ca
 - **C** Ca < N < P < Si
 - **D** C < Si < P < Ca

Your answer	[1]
Your answer	[1]

8 Bond enthalpies are given in the table.

Bond	H-S	0=0	S=O	O–H
Bond enthalpy /kJ mol ⁻¹	+346	+498	+531	+464

What is the enthalpy change, in kJ mol⁻¹, for the reaction below?

$$2\mathsf{H}_2\mathsf{S}(\mathsf{g}) + 3\mathsf{O}_2(\mathsf{g}) \longrightarrow 2\mathsf{SO}_2(\mathsf{g}) + 2\mathsf{H}_2\mathsf{O}(\mathsf{g})$$

- **A** -174
- **B** -1102
- **C** -1794
- **D** -2098

Your answer			[1]
© OCR 2021			

9 An equilibrium system is shown below.

$$CO(g) + NO_2(g) \rightleftharpoons CO_2(g) + NO(g)$$

Different amounts of CO, NO_2 , CO_2 and NO are added to four containers, as shown below.

Container	CO/mol	NO ₂ /mol	CO ₂ /mol	NO/mol
Α	1	1	0	0
В	1	0	1	1
С	1	1	1	0
D	0	1	1	1

Which container would have the largest concentration of CO(g) at equilibrium?

Your answer		[1]
-------------	--	-----

10 An aqueous solution of ethanoic acid, CH_3COOH , has a concentration of 0.50 mol dm⁻³. pK_a for $CH_3COOH = 4.76$ at 25 °C.

What is the pH of the ethanoic acid solution at 25°C?

- **A** 2.53
- **B** 2.68
- **C** 4.91
- **D** 5.06

Your answer [1]

11 The feasibility of a chemical reaction depends on the temperature and the signs of ΔH and ΔS .

Which row has signs for ΔH and ΔS for a reaction that is feasible at high temperatures but is **not** feasible at low temperatures?

	ΔΗ	ΔS
Α	+	+
В	+	_
С	_	+
D	_	_

Your answer	[1]
-------------	-----

12 Two redox systems are shown below.

$$Fe^{2+}(aq) + 2e^{-} \Longrightarrow Fe(s)$$
 $E^{\theta} = -0.44 \text{ V}$

$$E^{\Theta} = -0.44 \, \text{V}$$

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$

$$E^{\Theta} = +0.34 \,\text{V}$$

Which species in the two redox systems is the strongest oxidising agent?

- Fe²⁺(aq)
- Fe(s)
- Cu²⁺(aq)
- Cu(s)

Your answer	[1]

13	Whi	ich statement(s) explain(s) the trend in boiling points down the halogens group?	
	1:	The induced dipole–dipole interactions (London forces) become stronger.	
	2:	The covalent bonds become stronger.	
	3:	The permanent dipole–dipole interactions become stronger.	
	Α	1, 2 and 3	
	В	Only 1 and 2	
	С	Only 2 and 3	
	D	Only 1	
	You	r answer	[1]
14	Whi	ich statement(s) about a molecule of C <i>l</i> –N=O is/are correct?	
	1:	It is a polar molecule.	
	2:	It contains 6 lone pairs of electrons.	
	3:	It has a bond angle of 180°.	
	A	1, 2 and 3	
	В	Only 1 and 2	
	С	Only 2 and 3	
	D	Only 1	
	You	r answer	[1]

15 $NH_4Fe(SO_4)_2 \cdot 12H_2O$ is a hydrated 'double salt'.

A student analyses this double salt using test tube tests.

Which row(s) gives/give correct result(s) for the stated test?

	Test	Results
1	Reaction with cold NaOH(aq)	Green precipitate
2	Reaction with Ba(NO ₃) ₂ (aq)	White precipitate
3	Reaction with warm NaOH(aq)	Red-brown precipitate and an alkaline gas

Α	1, 2 and	3
R	Only 1 a	n

С	Only	2	and	3
C	Only	2	and	J

~ .	
Only	1
	Only

Your answer		[1]
-------------	--	-----

9

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Turn over © OCR 2021

10 SECTION B

Answer **all** the questions.

- **16** This question is about magnesium and magnesium halides.
 - (a) Magnesium has metallic bonding and is a good conductor of electricity.

Describe, with the aid of a labelled diagram, the metallic bonding in magnesium and explain why magnesium conducts electricity.

Include the correct charges on the particles in your diagram.

ra

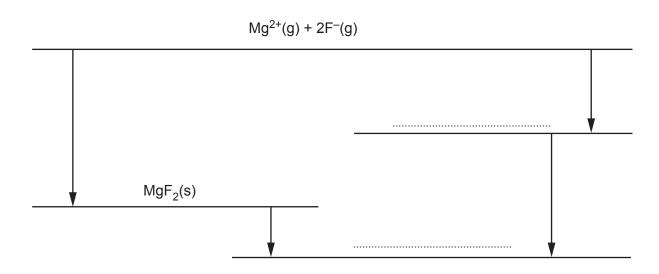
(b) The 12 successive ionisation energies of magnesium are shown in Table 16.1.

lonisation number	lonisation energy/kJ mol⁻¹
1	738
2	1451
3	7733
4	10541
5	13629
6	17995
7	21704
8	25657
9	31644
10	35463
11	169 996
12	189371

Table 16.1

(i)	Write an equation to represent the fourth ionisation energy of magnesium.													
	Include state symbols.													
	[. [1]				
(ii)	(ii) Explain how the successive ionisation energies provide evidence that magnesis Group 2 of the periodic table.							esium	is in					
	(iii) Electrons occupy orbitals.								. [1]					
(iii)														
	In Table 16.2 below, add a tick (\checkmark) below the ionisation numbers that are responsible for removing an electron from a full orbital in a magnesium atom.													
lonisat numb	-	1	2	3	4	5	6	7	8	9	10	11	12	

Table 16.2 [1]


(c) The enthalpy change of solution for magnesium fluoride, MgF₂, can be determined indirectly using an energy cycle based on the enthalpy changes below.

Enthalpy change	Energy/kJ mol ⁻¹
Lattice enthalpy of magnesium fluoride	-2926
Hydration of magnesium ions	-1920
Hydration of fluoride ions	-506

/i\	Explain what is m	noant by a	nthalny c	hange of	colution
(1)	Explain what is if	icani by c	nimalpy c	nange or	Solution.

	[1]

(ii) On the dotted lines, add the species present, including state symbols.

(iii) Calculate the enthalpy change of solution of MgF₂.

enthalpy change of solution =kJ mol⁻¹ [1]

[2]

© OCR 2021

(iv)	The enthalpy changes of solution of the magnesium halides show a trend from ${\rm MgF}_2$ to ${\rm MgI}_2.$
	Explain why it is difficult to predict whether the enthalpy change of solution becomes more exothermic or less exothermic down the group from MgF_2 to MgI_2 .
	INI

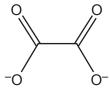
17	This	question	is	about	d-block	elements
11	11113	uucsiioii	13	about	u-DIOCK	CICITICITIS

(0)	Most d blook	alamanta a	ara alaa	alacaifiad	00 1	transition	alamanta
(a)	Most d-block	elements	are aiso	ciassilled	สร เ	แลกรแบบ	elements.

Explain why scandium and zinc are classified as d-block elements but are **not** also transition elements.

our explanations should include full electron configurations.					
[4					

(b) Compound **A** is a hydrated chromium(III) salt with a molar mass of 608.3 g mol⁻¹ and the following percentage composition by mass:


Cr, 17.10%; H, 3.94%; O, 63.13%; S, 15.83%.

A student dissolves compound **A** in water.

The resulting solution contains the complex ion $[Cr(H_2O)_6]^{3+}$.

The student mixes this solution with aqueous sodium ethanedioate, $Na_2C_2O_4$. A ligand substitution reaction takes place forming a solution containing three stereoisomers of a complex ion $\bf B$ of chromium(III).

Complex ion **B** is six-coordinate and contains two ethanedioate ligands and two water ligands. The ethanedioate ion is the bidentate ligand shown below.

Ethanedioate ligand

i)	What is meant by a bidentate ligand ?
	[1

Additiona	l answer space	if required.		

18 A student carries out an experiment to determine the percentage by mass of copper in an ore containing copper in its +2 oxidation state.

The student is provided with a sample of the copper ore, 1 mol dm⁻³ potassium iodide, KI(aq), and 0.0200 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃.

The student's method is outlined below.

- Add an excess of warm nitric acid to 2.50 g of the ore. The copper(II) compounds in the ore react, forming aqueous copper(II) nitrate.
- Step 2 Filter the mixture to remove the unreacted rock. Neutralise the filtrate.
- Add an excess of aqueous potassium iodide, KI(aq). Step 3 A precipitate of copper(I) iodide and a solution of iodine, $I_2(aq)$, forms.
- Titrate the mixture from ${\bf Step~3}$ using $\rm 0.0200\,mol\,dm^{-3}$ sodium thiosulfate, $\rm Na_2S_2O_3$ in Step 4 the burette.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

 $26.55 \, \text{cm}^3$ of $0.0200 \, \text{mol dm}^{-3} \, \text{Na}_2 \text{S}_2 \text{O}_3$ are required to reach the end point.

(a) In Step 1, the student observed that bubbles of gas were produced.

Suggest the formula of the copper(II) compound which reacted with \mbox{HNO}_3 to form the gas, and write a full equation for the reaction.

	Formula:	
	Equation:	[2]
(b)	Write an ionic equation, including state symbols, for the reaction in Step 3 .	

.....[1]

(c) Suggest a suitable indicator for this titration and state the colour change at the end point in Step 4.

Indicator:

Colour from to [1]

(d)	Determine the percentage, by mass, of copper in the copper ore. Give your answer to an appropriate number of significant figures.
	percentage = % [4]
(e)	Explain whether the calculated percentage by mass of copper would be higher, lower or the same if the following changes were made to the method.
	(i) The potassium iodide was not in excess, in Step 3.
	[1]
	(ii) The burette readings were read from the top of the meniscus, in Step 4 .
	[1]
(f)	The student then modifies the method in order to obtain a more accurate value for the percentage by mass of copper in the ore. The student decides to use 25.00 g of the copper ore in Step 1 .
	What further modifications should the student make to produce a more accurate value for the percentage by mass of copper in the ore?
	[2]
© OCR 20	Turn over

19 Storage cells and fuels cells are types of electrochemical cell.

The electrode potentials for five redox systems are shown in Table 19.1.

Redox system	Half-eq	E-⊖-/V		
1	Cr ³⁺ (aq) + 3e ⁻	\rightleftharpoons	Cr(s)	-0.74
2	O ₂ (g) + 2H ₂ O(l) + 4e ⁻	\rightleftharpoons	4OH ⁻ (aq)	+0.40
3	MnO ₄ ⁻ (aq) + e ⁻	\rightleftharpoons	MnO ₄ ^{2–} (aq)	+0.56
4	MnO ₄ ⁻ (aq) + 8H ⁺ (aq) + 5e ⁻	\rightleftharpoons	$Mn^{2+}(aq) + 4H_2O(I)$	+1.51
5	MnO ₄ ²⁻ (aq) + 4H ⁺ (aq) + 2e ⁻	$\overline{}$	$MnO_2(s) + 2H_2O(l)$	+1.70

Table 19.1

(2)	A student sets up an	alectrochemical	cell based on red	lov evetome 1 a	nd I in Table 10 1
(a)	A student sets up an	i electrochemicai	i celi based on red	iox systems i a	ing 4 in Table 19.1

1	í۱)	Draw a labelle	d diagram to	show how	this cell could	d he set un in	the laboratory
1		Diaw a labelle	i ulaylalli k	SHOW HOW	tilis cell could	u ne set up iii	i tile labbiatory.

(ii)	Construct the equation for the overall cell reaction.	[3]
		. [1]

© OCR 2021

(b)	In acid conditions, $MnO_4^{\ 2-}(aq)$ disproportionates to form $MnO_2(s)$ and $MnO_4^{\ -}(aq)$.							
	(i)	Explain, in terms of oxidation numbers, why disproportionation has taken place.						
	(ii)	Explain, in terms of electrode potentials and equilibrium shifts why ${\rm MnO_4}^{2-}({\rm aq})$ disproportionates in acid conditions. Use the information in Table 19.1 .						
		[2]						
(c)	An	alkaline hydrogen-oxygen fuel cell is set up.						
	The	e overall equation for the cell reaction is shown below.						
	2H ₂	$O_2(g) + O_2(g) \longrightarrow 2H_2O(I)$						
	_	dox system 2 in Table 19.1 is the positive electrode of this cell.						
	(i)	Write the half-equation at the negative electrode.						
		[1]						
	(ii)	The cell potential is 1.23 V.						
		Calculate the electrode potential of the negative electrode.						
		electrode potential =V [1]						
	(iii)	State one important feature of a fuel cell that is different from a conventional storage						
	\ <i>)</i>	cell.						
		[1]						
OCR 20:	21	Turn over						

20 This question is about chemical equilibrium
--

Nitrogen monoxide, NO, and oxygen, O_2 , react to form nitrogen dioxide, NO_2 , in the reversible reaction shown in **Equilibrium 20.1**.

Equilibrium 20.1
$$2NO(g) + O_2(g) \Longrightarrow 2NO_2(g)$$
 $\Delta H = -114 \text{ kJ mol}^{-1}$ $\Delta S = -147 \text{ J mol}^{-1} \text{ K}^{-1}$

A dynamic equilibrium exists in a closed system.
State one other feature of a dynamic equilibrium.
[1

(b)	(i)	Show that the formation of NO ₂ in Equilibrium 20.1 is feasible at 25 °C
-----	-----	--

[2]

(ii) Determine the maximum temperature, in K, for feasibility.

Give your answer to an appropriate number of significant figures.

maximum temperature = K [1]

(c) A chemist investigates the equilibrium shown in Equilibrium 20.1.

The chemist mixes together 1.60 mol of NO(g) and 1.50 mol of $O_2(g)$ in a container and the mixture is allowed to reach equilibrium.

At equilibrium:

- 75% of the NO(g) has been converted to NO₂(g)
- the total pressure is 1.21 MPa.
- (i) Calculate K_p , in MPa⁻¹, for **Equilibrium 20.1**.

Give your answer to 3 significant figures.

$$K_{\rm p} = \dots MPa^{-1}$$
 [4]

(ii) The chemist then repeats the experiment three times. In each experiment, the chemist makes **one** change but uses the same initial amounts of NO and O_2 .

Complete the table to show the predicted effect of each change compared with the original experiment.

Only use the words greater, smaller or same.

Change	K_{p}	Equilibrium amount of NO ₂ (g)	Initial rate
Temperature increase			
Pressure increase			
Catalyst added			

[3]

22 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© OCR 2021

21 This question is about how the rate of reaction is affected by changes in conditions.

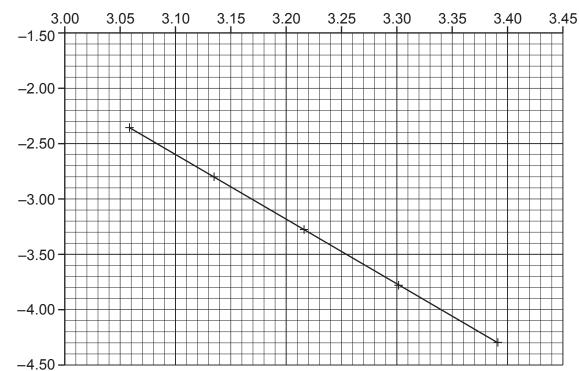
A student carries out two investigations using the reaction between aqueous thiosulfate ions, $S_2O_3^{2-}(aq)$, and aqueous hydrogen ions, $H^+(aq)$.

Reaction 21.1
$$S_2O_3^{2-}(aq) + 2H^+(aq) \longrightarrow S(s) + SO_2(g) + H_2O(l)$$

(a) In Investigation 1, the student determines how the rate of Reaction 21.1 is affected by changes in concentration.

The results are shown in the table.

Experiment	[S ₂ O ₃ ²⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	initial rate /moldm ⁻³ s ⁻¹	
1	0.16	1.00	0.0120	
2	0.08	1.00	0.0060	
3	0.02	0.50	0.0015	


From the results, the student concludes that the rate equation is $rate = k [S_2O_3^{2-}(aq)]$

(i)	Explain how the student's results support this rate equation.	
		[2]
		. [4]
ii)	Predict a possible two-step mechanism for Reaction 21.1 . The first step is the rate-determining step.	
	Step 1	
	Step 2	. [2]

(b) In Investigation 2 the student determines the rate constant k of Reaction 21.1 at different temperatures, T.

From the results, the student plots a graph of $\ln k$ against 1/T as shown below.

Graph 21.2

(i) Calculate the activation energy, E_a , for **Reaction 21.1**, in kJ mol⁻¹.

Give your answer to 3 significant figures.

$$E_{\rm a} =$$
kJ mol⁻¹ [3]

In k

(ii)	From the graph the student estimates the value of ln A as -2.00. (A is the pre-exponential factor.)
	Explain what mistake the student has made.
	[1]
(iii)	The student calculates the value of k in Investigation 1 as $0.075 \mathrm{s}^{-1}$.
	Using Graph 21.2 , determine the temperature, in °C, at which Investigation 1 was carried out.
	temperature = °C [2]

22	This	question	is	about	acids.	bases	and	buffers.
	11113	question	10	about	acias,	Dascs	ana	Duncis

(a) Sodium hydroxide, NaOH, is a strong base.

Calculate the pH of 0.140 mol dm⁻³ NaOH(aq) at 298 K.

Give your answer to 2 decimal places.

(b) Sulfuric acid reacts with sodium hydroxide as shown in Equation 22.1.

Equation 22.1
$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$$
 ΔH_1

This is a neutralisation reaction.

A student carries out an experiment to determine the enthalpy change $\Delta \emph{\textbf{H}}_{1}$ and uses this value to deduce the enthalpy change of neutralisation, $\Delta_{neut}H$.

The student measures out two solutions:

- $25.0\,\mathrm{cm^3}$ of $1.60\,\mathrm{mol\,dm^{-3}}$ $\mathrm{H_2SO_4(aq)}$ $55.0\,\mathrm{cm^3}$ of $1.50\,\mathrm{mol\,dm^{-3}}$ NaOH(aq) (an excess).

The temperature of each solution is the same.

The student mixes the two solutions. The temperature increases by 13.0 °C.

(i) Show that NaOH is in excess.

[2]

(ii) Calculate the enthalpy change, ΔH_1 , for Equation 22.1 , and deduce the value fo enthalpy change of neutralisation, $\Delta_{\text{neut}}H$, in kJ mol ⁻¹ .			
Assume that the densities of all solutions and the specific heat capacity, c , of the reaction mixture are the same as for water.			
enthalpy change, $\Delta H_1 = \dots kJ \text{ mol}^{-1}$			
enthalpy change of neutralisation, $\Delta_{\text{neut}}H$ =kJ mol ⁻¹ [4]			
neut'			
The student repeats the experiment using $50.0\mathrm{cm^3}$ of $1.60\mathrm{moldm^{-3}}$ H ₂ SO ₄ and			
The student repeats the experiment using $50.0\mathrm{cm^3}$ of $1.60\mathrm{moldm^{-3}}$ $\mathrm{H_2SO_4}$ and $110.0\mathrm{cm^3}$ of $1.50\mathrm{moldm^{-3}}$ NaOH.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH. Predict the increase in temperature.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH. Predict the increase in temperature.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH. Predict the increase in temperature.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH. Predict the increase in temperature.			
110.0 cm ³ of 1.50 mol dm ⁻³ NaOH. Predict the increase in temperature.			

(c)*	Nitrous acid temperature	I, HNO_2 , is a weak Brønsted–Lowry acid with a $p K_a$ value of 3.34 at room .			
	$\mathrm{HNO_2}$ can be prepared by reacting $\mathrm{N_2O_3}$ with water. $\mathrm{HNO_2}$ is the only product.				
	A chemist makes up a buffer solution by the following method.				
	Step 1	The chemist weighs a sample of $\rm N_2O_3$. Water is then added to form 100 cm 3 of 0.500 mol dm $^{-3}$ HNO $_2$ (aq).			
	Step 2	The chemist adds $100\mathrm{cm^3}$ of $0.150\mathrm{moldm^{-3}}$ NaOH(aq) to the $100\mathrm{cm^3}$ solution of $0.500\mathrm{moldm^{-3}}$ solution of $\mathrm{HNO_2(aq)}$. The resulting solution is made up to $1.00\mathrm{dm^3}$.			
	Explain why a buffer solution forms in Step 2 . Determine the pH of this buffer solution and the mass of N_2O_3 that was used in Step 1 .				

	[6]
Additional answer space if required.	

END OF QUESTION PAPER

30

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).						

© OCR 2021

 .1	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2021