

GCSE

Chemistry B (Twenty First Century)

Unit J258/03: Higher Tier – Breadth in chemistry

General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

J258/03

Annotations available in RM Assessor

Annotation	Meaning
√	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
√	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

J258/03

Q	uestion	Answer	Marks	AO element	Guidance
1	(a)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.08 ± 1 (cm ³ /s) award 2 marks	2	2.2 × 2	
		Change in volume = 8 \pm 1 (cm ³) \checkmark			ALLOW use of any number 7- 9 anywhere in calculation (1)
		rate = 8 / 100 = 0.08 (cm ³ /s) \checkmark			ALLOW ECF for 2 nd mark: rate = change in volume / 100 ALLOW 0.07 – 0.09 (2)
	(b)	"Particle size" of carbonate / AW ✓ Temperature ✓	2	3.3a × 2	ALLOW take readings every 200s or less/ same time interval IGNORE 'the same time'
	(c)	Particles closer/have less space / more particles in same volume / more (densely) packed ✓ Collide more frequently / higher rate of collisions / more collisions per unit time/per second ✓	2	2.1 × 2	ALLOW molecules for particles ALLOW more chance of collisions IGNORE more particles / more collisions / faster collisions / energy arguments / more successful collisions /
	(d)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 17 (cm ³) award 3 marks	3		
		$0.07 / 0.10 \text{ or } 0.10 / 0.07 \checkmark$		2.2 × 2	
		(uses 24)= 16.8 \checkmark = 17 (cm ³) \checkmark		1.2	IGNORE 17.0 ALLOW MP3 for (incorrect) answer with working rounded to 2sf

Q	Question		Answer	Marks	ks AO element	Guidance	
2	(a)		 No overall loss (in mass) idea / No elements/mass/atoms/chemicals/particles/compounds lost / law states that matter is neither (created nor) destroyed in a chemical reaction / AW ✓ Carbon dioxide is a gas / Carbon dioxide leaves the test tube / a gas is given off / idea that all products are not in the test tube / AW ✓ 		3.1b × 2	ALLOW It is an open system	
	(b)		FIRST CHECK ANSWER ON ANSWER LINE If answer = 52.2 /52.4 / 52.3 (%) award 4 marks (formula mass of reactants or MgCO ₃) = $84.3/84 \checkmark$ (formula mass of product or CO ₂) = $44 \checkmark$ Correct substitution = $44/84.3 \times 100 / 44/84 \times 100 \checkmark$ Ans+dec pl= 52.2 / 52.4 / 52.3 (%) (1 decimal place) \checkmark	4	2.2 × 3 1.2	If no marks awarded for MP3 and MP4 ALLOW correct working towards formula masses for max (2) 24(.3) + 12 + (3x16) / 12 + (2 x 16) ALLOW ecf ALLOW 52.1(%) (Rounding assessed in previous question)	
	(c)	(i)	2.2 (g) ✓	1	2.2	ALLOW 2 or more sf	
		(ii)	82(%) ✓	1	2.2	ALLOW 2 or more sf	
	(d)		$\left[\underbrace{Mg}_{Q} \right]^{2+} \left[\underbrace{0}_{Q} \right]^{2-}$ lons with correct electrons \checkmark Charges \checkmark	2	1.2 × 2	ALLOW (1) for one correct ion ALLOW eight electrons in outer shell of Mg ALLOW all oxygen electrons with same symbol IGNORE correct inner shells DO NOT ALLOW incorrect inner shells	

J258/03

Q	uestion	Answer		AO element	Guidance
3	(a)	 A high breaking strength is good / is strong(er) / won't break / cup would not hold its shape / can hold boiling water / softens above 100/at higher temperature than B or C ✓ B low breaking strength is not good / weak(er) / breaks / would not hold its shape / could not hold boiling water /softens below 100/at lower temperature than A or C ✓ C low breaking strength is not good / weak(er) / breaks / would hold its shape / could hold boiling water / softens above 100/at lower temperature than A or C ✓ B low breaking strength A or C ✓ 	3	3 × 3.1a	IGNORE list of properties repeated from the table e.g. 'A has high breaking strength, is fairly flexible but softens at 250' = 0 Answer must show some processing of information e.g. links properties to 'good' and 'bad' or interprets properties For (3) marks answer must discuss at least two properties
	(b)	B ✓ Lowest softening temperature ✓	2	2 × 3.2a	IGNORE references to flexibility/strength
	(c)	F F F F	1	2.1	ALLOW f

Q	Question		Answer		AO element	Guidance	
4	(a)	(i)	No/very little/<1% oxygen until 2.5 billion years ago/for about (first) 1.5 billion years AW ✓ Fluctuations but overall increase / up and down but overall rise ✓	2	2 × 3.1a	 ALLOW any number in range 2.8 – 2.5 for 'about 2.5 / 1.2-1.5 for 'about 1.5' IGNORE 'increases and decreases' or 'up and down' alone 	
		(ii)	1.7 – 2(.0)	1	3.1a		
		(iii)	Plants/bacteria evolved / photosynthesis√ plants/bacteria established / number of plants or bacteria stayed the same / animals evolved / animals use up oxygen / respiration AW √	2	2 × 1.1		
	(b)		$2\text{FeS}_2 + 7\text{O}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{SO}_2$	1	1.2		

Q	Question		Answer		AO element	Guidance	
5	(a)		Bromine/Br₂ identified ✓ displaced (by the chlorine) / chlorine is more reactive than bromine ✓	3	3 × 1.1	ALLOW from equation IGNORE 'replace' DO NOT ALLOW ' <u>chloride</u> displaces bromide ALLOW 'chlorine displaces bromide' for MP2	
			Cl_2 + $2Br^- \rightarrow Br_2$ + $2Ct \checkmark$			IGNORE K⁺ ions	
	(b)		Astatine reacts with sodium to form NaAt \checkmark Astatine is less reactive than iodine \checkmark	1	2.1		

Q	uestion	Answer		AO element	Guidance
6	(a)	large surface area to volume ratio / (very) small but have a large surface area \checkmark	1	1.1	
	(b)	For: (More complete combustion hence) less pollutants / less harmful gases / less incomplete combustion /less named pollutant: (carbon) particulates / carbon monoxide / CO, unburnt fuel/hydrocarbons AW ✓	3	3.1b	IGNORE 'more complete combustion' alone (repeats Q) IGNORE 'less pollution'
		Carbon monoxide is toxic//blocks haemoglobin / CO or particulates or unburnt HCs cause breathing or respiratory difficulties / particulates cause asthma/breathing difficulties / may cause cancer etc </td <td></td> <td>1.1</td> <td></td>		1.1	
		Against: CeO₂/nanoparticles (may be) harmful / toxic / risks not known ✓		3.1b	ALLOW idea of nanoparticles may harm humans, plants, animals or the environment IGNORE 'nanoparticles may be pollutants /cause pollution' (too vague)
	(c)	Charges balance/neutral/cancel / oxygen gives an overall charge of 4- / there are two O ²⁻ ions AW \checkmark	1	1.2	IGNORE charges are equal
	(d)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 3 × 10 ⁻²¹ (mol) award 3 marks	3		ALLOW full credit (3) marks for any answer which starts by cubing volumes
		Molecules in one nanoparticle = 8 x 10 ⁻²⁷ / 4 x 10 ⁻³⁰ / = 2000 \checkmark		2.2	ALLOW correct working shown OR 2000 for (1)
		Recall Avogadro constant = 6(.0) x 10^{23}		1.2	
		Moles = $2 \times 10^3 / 6 \times 10^{23} = 3.3 \times 10^{-21}$ (mol) \checkmark		2.2	ALLOW ECF

Q	Question		Answer	Marks	AO element	Guidance
7	(a)	(i)	Equilibrium sign / \rightleftharpoons / arrows point both ways \checkmark	1	1.1	ALLOW answers referring to the sign/arrow IGNORE it is reversible
		(ii)	forward and back(ward) reactions / both directions / reactants(N_2 and O_2) forming products (NO) and products forming reactants \checkmark	2	2 × 1.1	ALLOW equations for the correct reactions
			rates are equal ✓			
	(b)	(i)	Fertilisers / explosives	1	1.1	ALLOW for growth of/nitrates for plants but IGNORE plants alone/ammonia/Haber process
		(ii)	No change ✓	2	2 × 1.1	Mark separately
			Equal moles/molecules/particles on each side (of the equation) \checkmark			
	(c)		Any two FOR: 100% atom economy / all reactants used up idea \checkmark	3	3 × 2.1	ALLOW 'high atom economy'
			No by-products / no waste ✓			
			raw materials come from the air \checkmark			IGNORE 'readily available'
			sustainable ✓			IGNORE 'renewable'
			works at low pressure / AW \checkmark			
			Any one AGAINST: (very) high temperature (needed) / needs a lot of energy/fuel / doesn't give 100% yield / low yield ✓			

Q	Question		Answer		AO element	Guidance	
8	(a)	(i)	$MnO_2(s) + 2C(s) \rightarrow 2CO(g) + Mn(s)$ correct formulae and balancing \checkmark state symbols \checkmark	2	2 × 1.2	ALLOW state symbol mark for any version of manganese oxide + carbon → carbon oxide + manganese	
		(ii)	Manganese is less reactive than carbon ORA ✓ carbon reduces / removes oxygen from / donates electrons to manganese (oxide) ✓	2	2 × 2.1		
	(b)		strong forces/bonds/attraction / electrostatic attractions between ✓ (free/delocalised/sea of) electrons ✓ and positive ions (from metal) ✓	3	3 × 1.1	DO NOT ALLOW intermolecular forces IGNORE metal atoms DO NOT ALLOW protons/nuclei	

Q	Question		Answer		AO element	Guidance
9	(a)		(contains) potassium / K ✓	1	1.2	
	(b)	(i)	lines √	2	2 × 1.1	
			(lines are) coloured / (lines are) on a dark/black background \checkmark			ALLOW 'series/range of colours' IGNORE 'on a white background'
		(ii)	Compare/match the spectrum with the known spectrum (of potassium/(ECF answer to (a)) / AW \checkmark	1	1.2	
	(c)	(i)	White precipitate	1	1.2	IGNORE cream
		(ii)	$BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2NaCl$	2	2 × 1.2	
			correct formula for one product BaSO ₄ /NaC $l \checkmark$ fully correct equation with balancing \checkmark			

Q	uestion	Answer	Marks	AO element	Guidance
10	(a)	Hydrogen is produced at the cathode Water contains H ⁺ and OH ⁻ ions	1	1.1	Both needed
	(b)	FIRST CHECK ANSWER ON ANSWER LINE If answer = (+)490 (kJ/mol) award 3 marks(bonds broken): (= 4(O-H)) OR 1856 (kJ/mol) \checkmark (bonds made): (= 2(H-H) + O=O) OR 1366 (kJ/mol) \checkmark energy change (= 1856 - 1366) / (bonds broken - bonds made) = (+) 490 (kJ/mol) \checkmark	3	3 × 2.2	 For MP1 and MP2 ALLOW either correct working or correct value DO NOT ALLOW -490 (if sign is shown, must be correct) ALLOW ECF for maximum (2) If answer should be negative (by ecf), then negative sign must be shown for third mark to be scored. Plus sign is not necessary.
	(c)	Activation energy hydrogen and oxygen water	3	2 × 2.2 1.1	 Water on LHS lower than hydrogen and oxygen higher on RHS ✓ ALLOW ECF for exothermic diagram from a negative answer to (b) DO NOT PENALISE correct diagram if answer to (b) is incorrect Curve with hump ✓ Activation energy labelled with arrow starting at reactants and ending at peak of hump ✓ ALLOW double arrow / line with end stops DO NOT ALLOW downwards arrow

J258/03

Q	uestion	Answer	Marks	AO element	Guidance
11	(a)	$Al^{3+} + 3e \rightarrow Al \checkmark$ $2O^{2-} \rightarrow O_2 + 4e \checkmark$	2	2 × 1.2	ALLOW equations with electrons on the right (eg $Al^{3^+} \rightarrow Al - 3e$) ALLOW $O^{2^-} \rightarrow \frac{1}{2}O_2 + 2e$ ALLOW (1) mark if number of electrons are correct for both equations but on incorrect sides of both equations (even if oxygen is shown as O)
	(b)	ions / charged particles√ can't move in solid / held in lattice / do not move / in fixed positions √ can move in liquid/when molten √	3	3 × 1.1	DO NOT ALLOW electrons/'particles' alone
	(c)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 667etc (dm ³) award 4 marks $4 \times 27(g)$ (=108) \checkmark =1000 ÷ 108 ECF (= 9.259) \checkmark 3×24 (dm ³) (=72) \checkmark = (x 72 ECF =) 667 (dm ³) \checkmark OR No moles AI = 1000/27 (=37.04) \checkmark Uses ratio 4:3 in calculation \checkmark No moles O ₂ = ANS x $\frac{3}{4}$ (=27.77) \checkmark (x 24=) 667 (dm ³) \checkmark	4	4 × 2.2	9.259 = (2) for MP1 and MP2 0.667 = (3) for MP1 MP3 and MP4 222 = (3) for MP1 MP2 and MP4 0.222 = (2) for MP1 and MP4 ALLOW 666 (Rounding already assessed in earlier Q) ALLOW any number of sig figs 27.7 = (3) for MP1, MP2 and MP3

 (The arrow shows that) the acid is fully dissociated/ionised / the reaction goes to completion AW / there is no equilibrium sign ✓ i) Volumetric pipette ✓ i) FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.0025 (mol) award 3 marks 	1 1 3	1.1	
i) FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.0025 (mol) award 3 marks	-	1.2	
If answer = 0.0025 (mol) award 3 marks	3		
Unit conversion cm ³ to dm ³ = $25 \times 10^{-3} = 0.025$ dm ³ / divides 25 by 1000 / shows 25 x 0.001 in working \checkmark		1.2	
Shows × 0.1 in working \checkmark		2 × 2.2	
Correct answer = 0.0025 (mol) \checkmark			ALLOW ECF
ii) FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.051 (mol/dm ³) award 3 marks	3	3 × 2.2	ALLOW ECF (including from part (ii))
moles H_2SO_4 = ANS (ii)/2 / 0.0025 / 2 (= 0.00125) \checkmark			
conc $H_2SO_4 = 0.00125$ (ECF) / 0.0245 \checkmark			0.102 = (1) for MP2
conc H ₂ SO ₄ =0.051 (mol / dm ³) \checkmark			ALLOW answer with working to 2 sig figures
	divides 25 by 1000 / shows 25 x 0.001 in working \checkmark Shows x 0.1 in working \checkmark Correct answer = 0.0025 (mol) \checkmark ii) FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.051 (mol/dm ³) award 3 marks moles H ₂ SO ₄ = ANS (ii)/2 / 0.0025 / 2 (= 0.00125) \checkmark conc H ₂ SO ₄ = 0.00125 (ECF) / 0.0245 \checkmark	divides 25 by 1000 / shows 25 x 0.001 in working \checkmark Shows x 0.1 in working \checkmark Correct answer = 0.0025 (mol) \checkmark ii) FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.051 (mol/dm ³) award 3 marks moles H ₂ SO ₄ = ANS (ii)/2 / 0.0025 / 2 (= 0.00125) \checkmark conc H ₂ SO ₄ = 0.00125 (ECF) / 0.0245 \checkmark	Sind Control of Notion for the dim $f = 2.6 \times 10^{\circ} = 0.0026$ dim f divides 25 by 1000 / shows 25 x 0.001 in working \checkmark Shows x 0.1 in working \checkmark Correct answer = 0.0025 (mol) \checkmark ii)FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.051 (mol/dm³) award 3 marks moles H ₂ SO ₄ = ANS (ii)/2 / 0.0025 / 2 (= 0.00125) \checkmark conc H ₂ SO ₄ = 0.00125 (ECF) / 0.0245 \checkmark

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2018

