AQA

Please write clearly in block cap	S.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

AS **CHEMISTRY**

Paper 2 Organic and Physical Chemistry

Time allowed: 1 hour 30 minutes Friday 25 May 2018 Morning Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all guestions.
- · You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- · Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

找名校导师 , 用小草线上辅导 (微信小程序同名

找名校导师,用小草线上辅导(微信小程序同名)

Section A

Answer **all** questions in this section.

0 1

Hydrogen peroxide solution decomposes slowly to form water and oxygen. The reaction is much faster in the presence of a manganese(IV) oxide catalyst.

 $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

Three experiments, shown in **Table 1**, were carried out to investigate how the volume of oxygen produced varied over time under different conditions. The same mass of catalyst was used in each experiment.

Experiment	Concentration of H ₂ O ₂ (aq) / mol dm ⁻³	Volume of H ₂ O ₂ (aq) / cm ³	Temperature /°C	Catalyst
1	1.0	50	20	lumps
2	1.0	50	20	powder
3	0.5	50	20	lumps

Figure 1 shows how the volume of oxygen collected varied with time in Experiment 1.

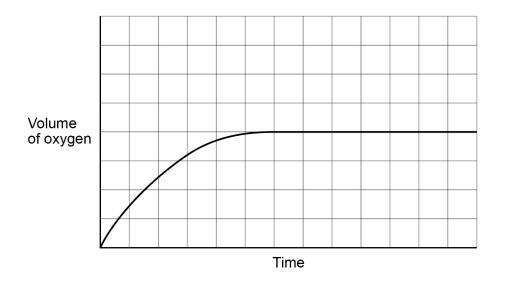


Figure 1

Та	ble	1

找名校导师,用小草线上辅导(微信小程序同名)

6

Explain, in general terms, how a catalyst increases the rate of a reaction. [2 marks	s]
	_
	_
	_
Draw two lines on Figure 1 to show how the volume of oxygen collected varied with time in Experiments 2 and 3 . Label each line with the experiment number. [2 marks]	s]
Explain, in terms of collision theory, the effect of increasing the concentration of hydrogen peroxide on the rate of reaction. [2 marks]	s]
	_
	_
	_
	[2 marks]

solution	dent dissolved 784 mg of in a volumetric flask. dent titrated 25.0 cm ³ sar hydroxide solution using	nples of this	s solution	with 0.050)0 mol dm	
C	C₃H₅O(COOH)₃(aq) + 3Na	aOH(aq) →	C₃H₅O(C	COO)₃Na₃(aq) + 3H ₂	O(I)
The stud	ent rinsed the burette bef	fore filling it	with the s	sodium hyd	droxide sc	olution.
	y the student should use	sodium hyd	lroxide so	lution rath	er than wa	ater for the
tinal rinse	e of the burette.					[1 mark]
	ent carried out several tit e Table 2 to show the titre			are shown	in Table :	
			ration.	are shown	in Table :	2. [1 mark]
		e in each tit	ration.	are shown	in Table :	
	e Table 2 to show the titro	e in each tit Table	ration. 2	_		
	Titration	e in each tit Table Rough	ration. 2 1	2	3	
	Titration Final reading / cm ³	e in each tit Table Rough 25.2	ration. 2 1 23.95	2 47.65	3 24.10	

Mean titre

0 2

0 2

0 2 . 2

2. 0

3

1

_cm³

02.4	The total uncertainty when using the burette is ± 0.15 cm ³ . This is the combination of uncertainties in the start reading, final reading and the determination of the end point.
	Use your answer to Question 02.3 to calculate the percentage uncertainty for the use of the burette in this experiment. [1 mark]
	Percentage uncertainty%
02.5	Use your answer to Question 02.3 to find the mass, in mg, of citric acid dissolved in 250 cm ³ of the solution. The relative molecular mass (M_r) of citric acid is 192.0 [3 marks]
	Massmg
02.6	Calculate the percentage purity of this sample of citric acid. [1 mark]
	Percentage purity%

9

This question is about enthalpy changes.

03.1

When ethanoic acid reacts with sodium hydroxide, the enthalpy change, ΔH , is $-56.1 \text{ kJ mol}^{-1}$

6

 $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(I)$

Calculate the temperature rise when 25 cm³ of 2.0 mol dm⁻³ aqueous ethanoic acid react with 25 cm³ of 2.0 mol dm⁻³ aqueous sodium hydroxide.

Assume that both solutions have the same initial temperature, have a density of 1.0 g cm⁻³ and a specific heat capacity of 4.18 J K⁻¹ g⁻¹

[4 marks]

Temperature rise

找名校导师,用小草线上辅导(微信小程序同

6

3.2 A student recorded the temperature of aqueous ethanoic acid in a polystyrene cup for three minutes.

At the fourth minute, the student added sodium hydrogencarbonate.

The student stirred the mixture and carried on recording the temperature every minute for several minutes.

The student's measurements are shown in Figure 2.

A best-fit line showing the temperature before mixing has been drawn.

Draw an appropriate best-fit line on **Figure 2** and use it to find the temperature change at the time of mixing.

[2 marks]

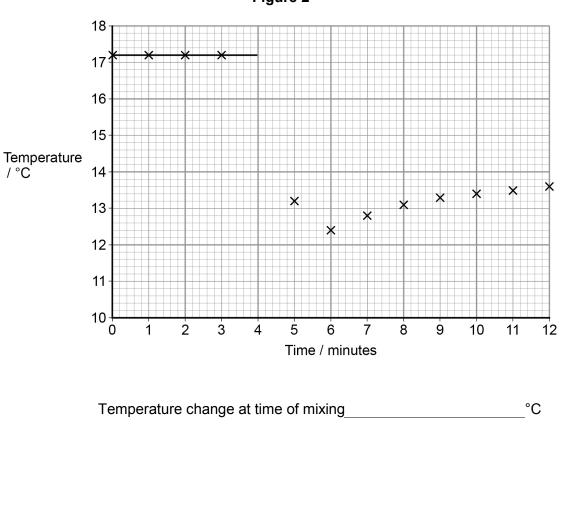
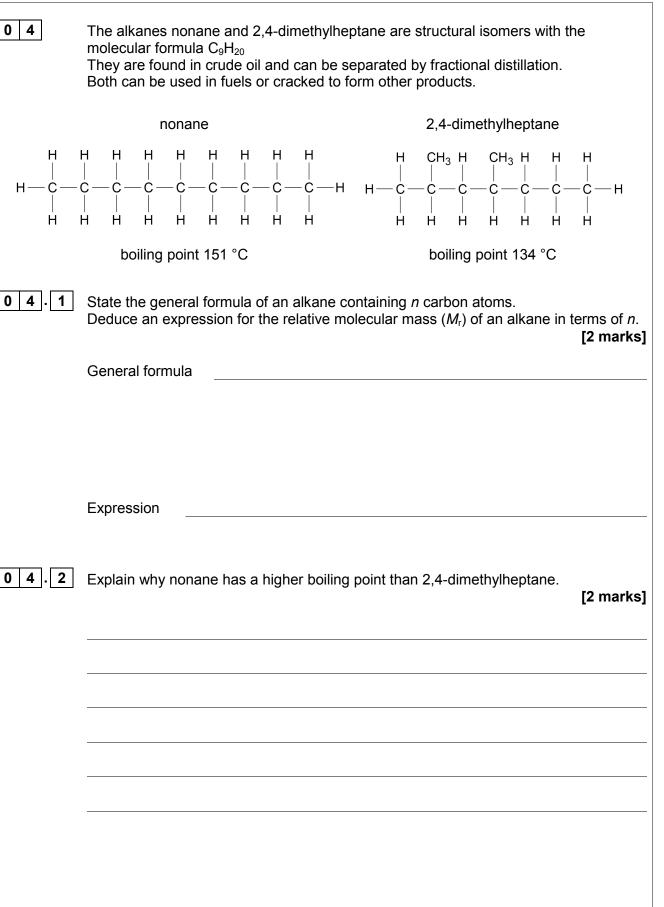



Figure 2

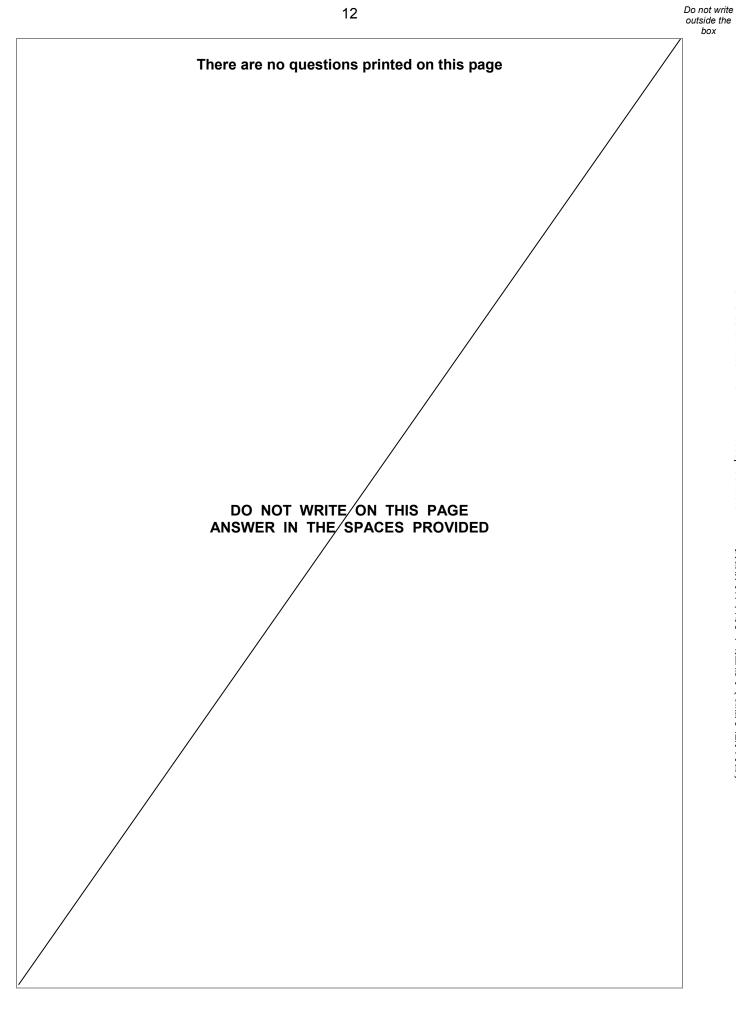
0

找名校导师,用小草线上辅导(微信小程序同名)

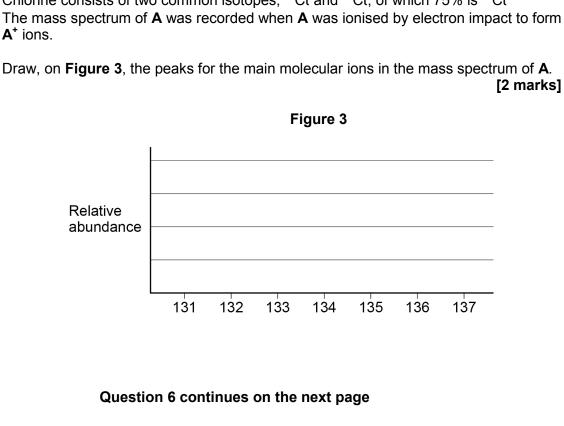
	Turn over for the next question	
	Draw the repeating unit of poly(propene).	[1 mark]
04.6	The main use of propene, formed from cracking, is to make poly(propene).	
	Name the type of cracking used.	[1 mark]
04.5	Nonane can be cracked to form large quantities of propene.	
	Explain how this nitrogen monoxide is formed.	[2 marks]
04.4	Nonane is often found in fuel for jet engines. Combustion in jet engines pro pollutants including nitrogen monoxide (NO).	oduces
		[1 mark]
0 4 . 3	Give an equation for the complete combustion of nonane.	

9

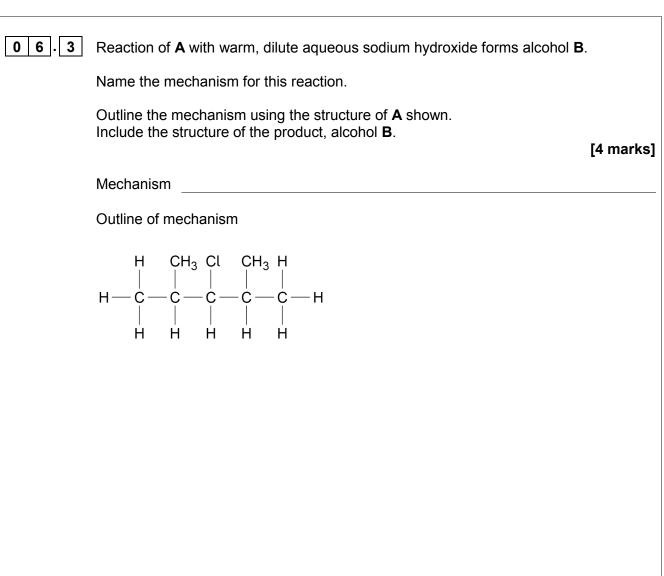
找名校导师,用小草线上辅导(微信小程序同名)



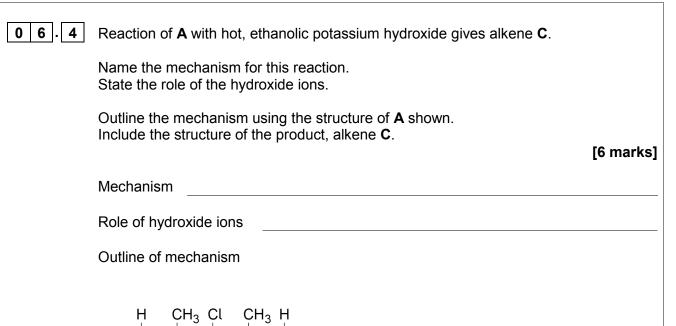
_		_
	6	

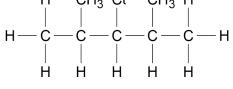


找名校导师,用小草线上辅导(微信小程序同名)

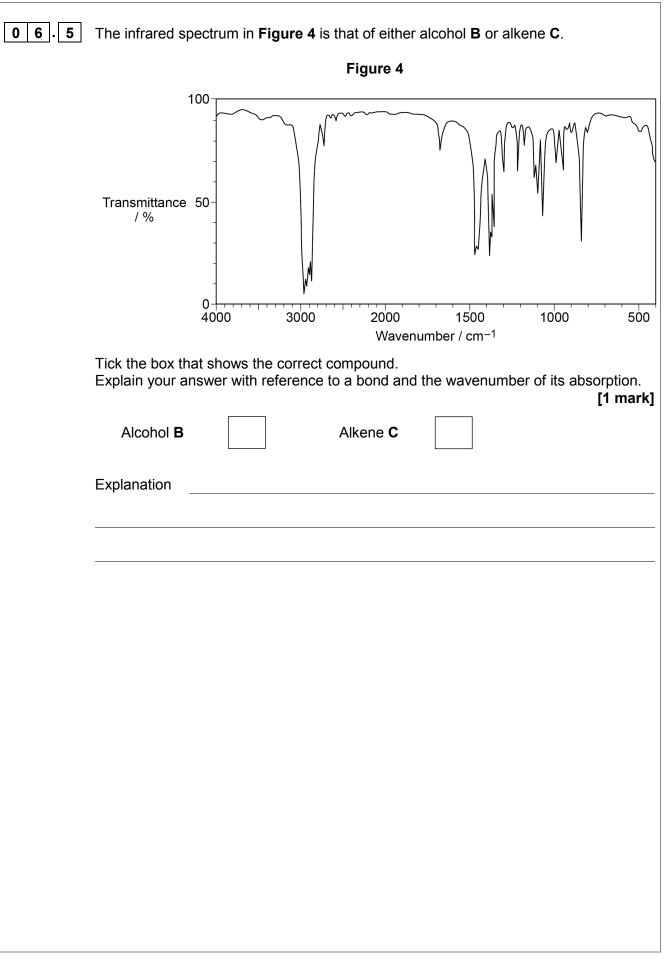

0 6

0 6.


0 6 .


1

2



找名校导师,用小草线上辅导(微信小程序同名)

找名校导师,用小草线上辅导(微信小程序同名)

15

0 6 . 6 Compound D reacts with dilute aqueous sodium hydroxide in a similar way to A to form alcohol **B**. Compound A **Compound D** CH₃ ⊢ CH_3 Br CH₃ Cl CH₃ H Н н H-- C C-С - C -- C -— H Η-- C -С С С С - H Ĥ Ĥ Н Ĥ Ĥ Н Н Н Н Н Explain why D reacts more quickly than A with dilute aqueous sodium hydroxide at the same temperature. [1 mark] Turn over for the next question

- butan-2-ol
- butanal
- butanone
- 2-methylpropan-2-ol

Two of these compounds can be identified using different test-tube reactions.

Describe these **two** test-tube reactions by giving reagents and observations in each case.

Suggest how the results of a spectroscopic technique could be used to distinguish between the **other** two compounds.

[6 marks]

6 Turn over ►

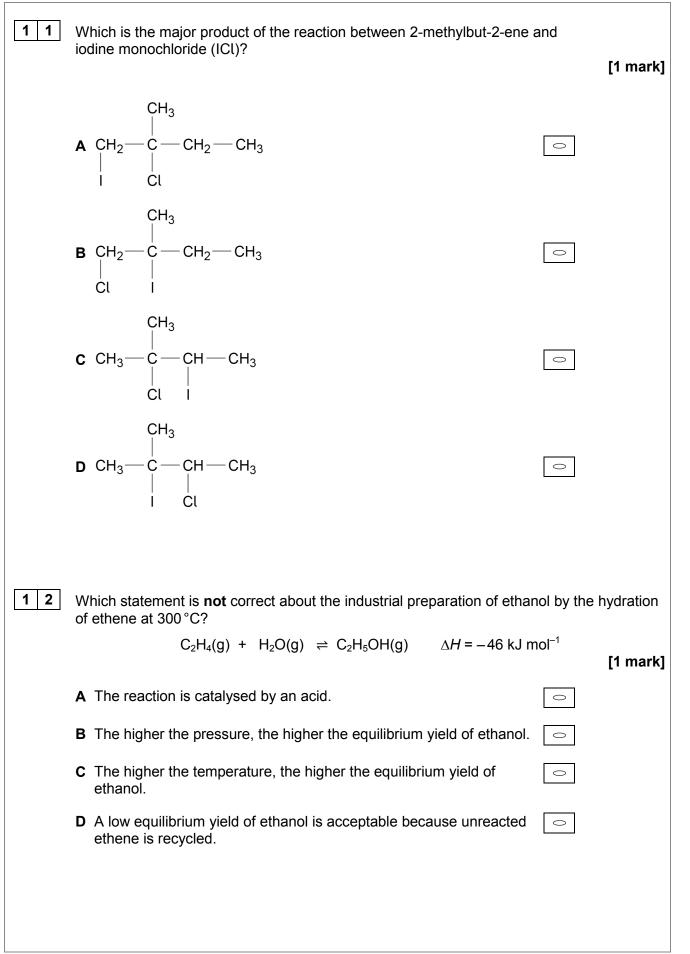
0 8	Methanol can be manufactured in a reversible reaction as shown by the equation.
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
08.1	State and explain the effect of using a catalyst on the yield of methanol in this equilibrium. [2 marks]
08.2	Give an expression for the equilibrium constant (K_c) for this reaction. [1 mark]

20

al Tutor from www.wisesprout.co.uk 找名
找名校导师,用小草线上辅导(微信小程序同名
『序同名)

8

Find Persor


A mixture of carbon monoxide and hydrogen was allowed to reach equilibrium in a container of volume 250 cm³ at temperature T. 0 8 . 3 At equilibrium, the mixture contained 0.340 mol of carbon monoxide, 0.190 mol of hydrogen and 0.0610 mol of methanol. Calculate the value of the equilibrium constant (K_c) for this reaction at temperature T. [3 marks] K_c mol⁻² dm⁶ 0 8 4 Methanol decomposes on heating in a reaction that is the reverse of that used in its manufacture. $CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$ Use your answer from Question **08.3** to determine the value of K_c for this equilibrium at temperature T. State the units for this value of K_c (If you were unable to complete the calculation in Question 08.3, assume a value of $K_c = 0.825 \text{ mol}^{-2} \text{ dm}^6$. This is **not** the correct value.) [2 marks] Value of K_c_____ Units of K_{c_____}

找名校导师,用小草线上辅导(微信小程序同名)

Section B				
	Answer all questions in this section.			
	ne answer per question is allowed. The answer completely fill in the circle alongside the appropriate answer.			
CORRECT	METHOD WRONG METHODS 🐼 💿 🚓 🗹			
If you want to change your answer you must cross out your original answer as shown.				
If you w as show	vish to return to an answer previously crossed out, ring the answer you n	now wish to select		
	ay do your working in the blank space around each question but this will use additional sheets for this working.	not be marked.		
0 9 A student has a 10 cm ³ sample of 1.00×10^{-2} mol dm ⁻³ methanoic acid solution. The student is asked to dilute the methanoic acid solution to a concentration of 2.00×10^{-4} mol dm ⁻³ by adding distilled water.				
	Which volume of water should be added?	[1 mark]		
	A 200 cm ³	0		
	B 490 cm ³	0		
	C 500 cm ³	0		
	D 510 cm ³	0		
10	Which molecule does not have a permanent dipole?	[1 mark]		
	A CH ₃ Br	0		
	B CH ₂ Br ₂	0		
	C CHBr ₃	0		
	D CBr ₄	0		

	box
[1 mark]	

 $^{\circ}$

 \bigcirc

 \bigcirc

 \bigcirc

Do not write

W	hich statement is correct about the fractional distillation of crude oil?		[1 mark]
A	A zeolite catalyst is used.	0	
в	Each fraction contains a mixture of hydrocarbons.	0	
С	Gaseous fractions are formed by breaking covalent bonds.	0	
D	The fractionating column is hottest at the top.	0	

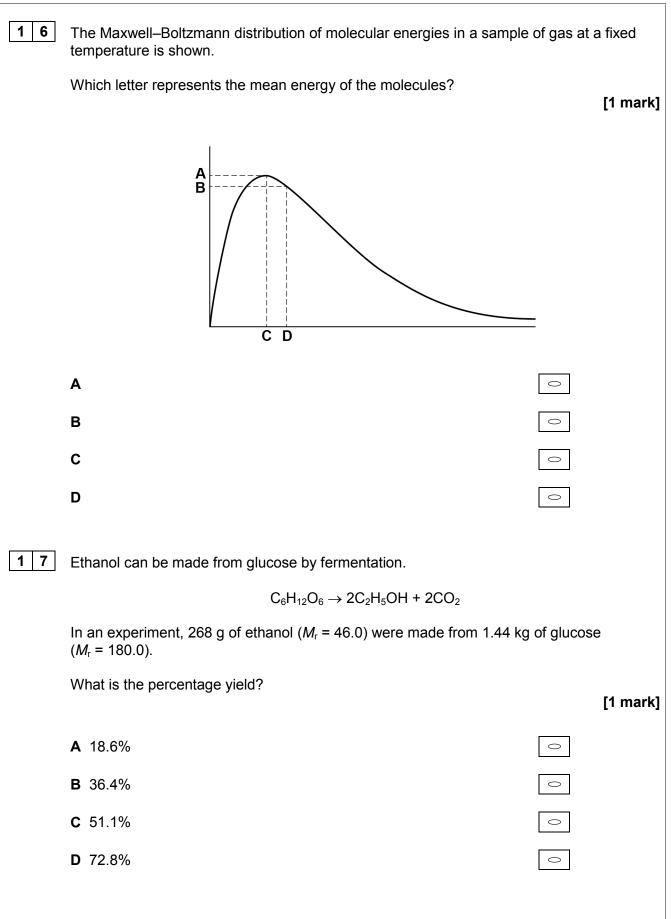
How many structural isomers with an unbranched carbon chain have	the molecular
formula C ₄ H ₈ Br ₂ ?	

1 3

1 4

1 5

A butanal


B butan-2-ol

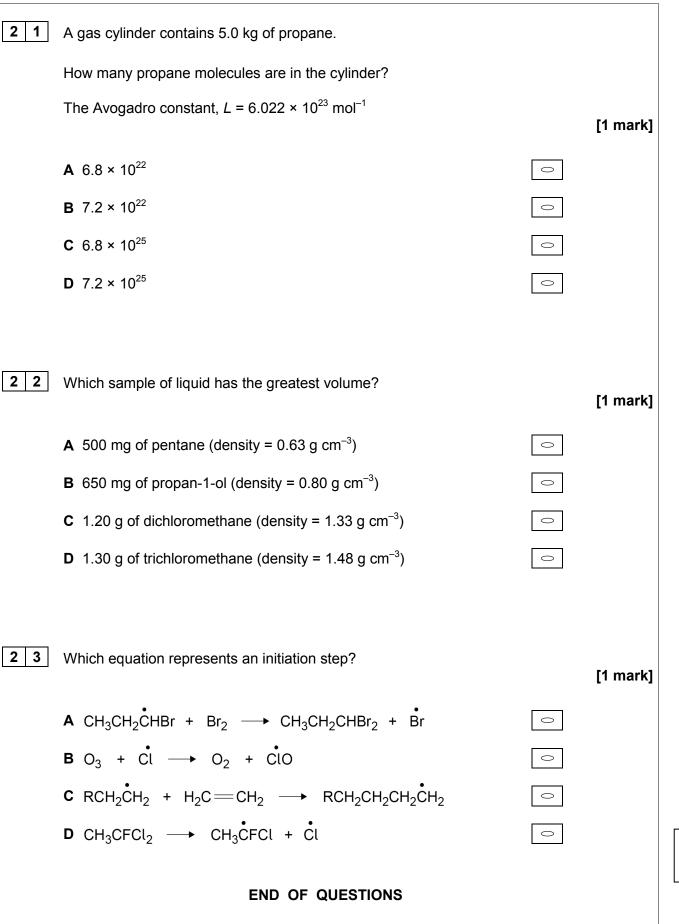
C but-2-ene

D 1-fluorobutane

Which compound has the highest boiling point?

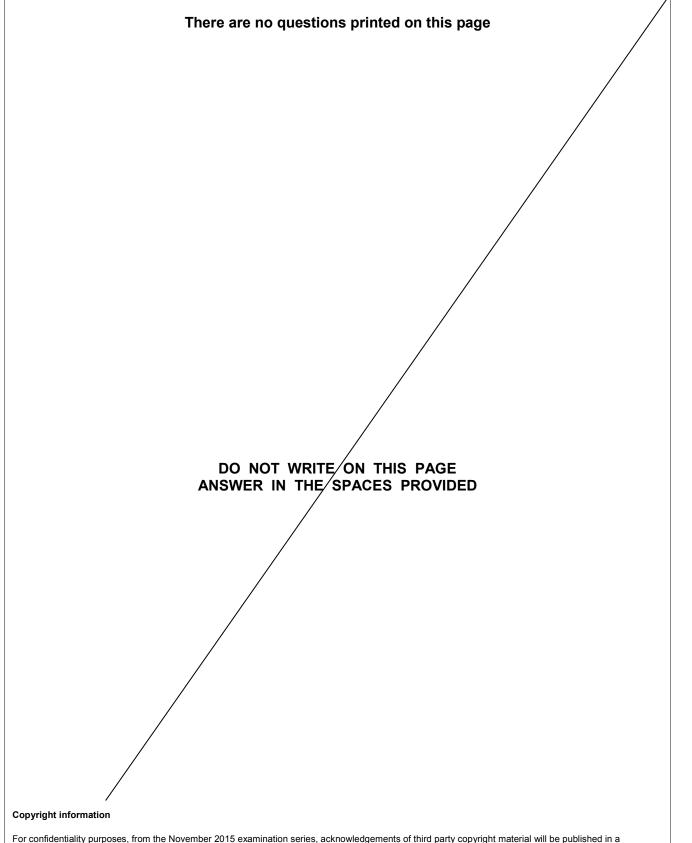
找名校导师,用小草线上辅导(微信小程序同名)

Turn over ►


IB/M/Jun18/7404/2

1 8	Which species co	ould act as a nu	icleophile?		[1 mark]
	A BH ₃			0	
	B NH_4^+			0	
	C PH₃			0	
	D SiH ₄			0	
19	Which statement is correct about poly(chloroethene)?				[1 mark]
	A It has the empirical formula CHCl				
	B It decolourises bromine water.				
	C Its brittleness is reduced by plasticisers.				
	D Its polymer chain contains alternate single and double bonds.				
2 0	What is the entha	alpy of formation	n of buta-1,3-diene, $C_4H_6(g)$?		
		Substance	Enthalpy of combustion / kJ mo	א ^{−1}	
		C ₄ H ₆ (g)	-2546		
		C(s)	-394		
		H ₂ (g)	-286		[1 mark]
					[1.1.0.1.1]
	A +112 kJ mol ⁻¹			0	
	B –112 kJ mol ⁻¹			0	
	C +746 kJ mol ⁻¹			0	
	D –746 kJ mol ⁻¹			0	

找名校导师 , 用小草线上辅导 (微信小程序同名


15

Do not write

outside the box

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

