

GCE

Mathematics A

H240/01: Pure Mathematics

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2022

Text Instructions

1. Annotations and abbreviations

Annotation in RM assessor	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

2. Subject-specific Marking Instructions for A Level Mathematics A

a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.

3

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
 - When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.

Mark Scheme

• When a value **is not given** in the paper accept any answer that agrees with the correct value to **3 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.

NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

(Question		Answer	Mark s	AO	Guidance	
1	(a)		$0.5 \times 0.5 \left\{ 0 + 2\sqrt{2} + 2\left(\frac{\sqrt{5}}{2} + \sqrt{3} + \frac{\sqrt{21}}{2}\right) \right\}$	B1	1.1a	State the 4 correct non-zero y- values and no others	Exact values (including unsimplified) or decimal equivs (0, 1.12, 1.73, 2.29, 2.83) – 3sf or better B0 if other ordinates seen unless clearly not intended to be used
				M1*	1.1a	Attempt to find area between $x = 1$ and $x = 3$, using $k\{y_0 + y_n + 2(y_1 + + y_{n-1})\}$	Big brackets need to be seen or implied y-values must be correctly placed Must be using attempts for at least 4 y- values (but no need to see $y = 0$ explicitly) Condone using other than 4 intervals as long as values equally spaced between x =1 and $x = 3$
				M1d*	1.1a	Use $k = 0.5 \times 0.5$ soi	Dep on previous M1 Or using $k = 0.5h$, h consistent with their different number of intervals
			= 3.28	A1 [4]	1.1	Obtain 3.28, or better	Allow answers to > 3sf, as long as they round to 3.28
1	(b)		Under-estimate, as the tops of the trapezia are below the curve	B1 [1]	3.2b	Under-estimate, with any valid explanation	Condone just 'trapezia under curve' Or curve is concave / decreasing gradient (not decreasing function) Accept explanation on diagrams Allow comparing to true value (3.36) B0 if any additional incorrect or contradictory statements

	Questi	on	Answer	Mark s	AO	Guidance	
1	(c)		Use more trapezia, of a lesser width, between the same limits	B1 [1]	3.2b	Convincing reason	Condone just 'more trapezia' or 'narrower trapezia' Could refer to strips or intervals
2	(a)		eg $1 > -2$, but $1^2 < (-2)^2$ as $1 < 4$	[1]	2.1	Any correct counterexample, and contradiction identified	Initial inequality soi and then contradiction eg $-3 > -4$ but $9 < 16$ (or $9 \ge 16$)
2	(b)	(i)	eg sin150° = 0.5 as well	B1 [1]	2.3	Any correct statement	Identifies that $\sin x = 0.5$ could give values of x other than 30° Either specific example or general statement eg 'many to one' function
2	(b)	(ii)	$\sin x^{\circ} = 0.5 \Leftarrow x^{\circ} = 30^{\circ}$	B1 [1]	2.5	Any correct relationship	If attempting to write general solution then must be fully correct eg $x = 30^{\circ} + 360n^{\circ}$, $x = 150^{\circ} + 360n^{\circ}$ Condone \leftarrow instead of \Leftarrow
2	(c)		(4n) + (4n + 4) + (4n + 8) + (4n + 12), where <i>n</i> is an integer	B1*	2.1	Four consecutive multiples of 4 written correctly in terms of <i>n</i> , or any other variable	Allow BOD if <i>n</i> not explicitly stated to be an integer Sufficient to just list the 4 terms, rather than as a sum Not necessarily starting on $4n$ Could also define <i>k</i> as a multiple of 4 and then have <i>k</i> , <i>k</i> + 4 etc
			= 16n + 24 = 8(2n + 3)	M1 dep*	2.1	Correctly sum terms, and correctly take out common factor of 8	Or sum and then consider each term separately Could be a different factor if using <i>k</i>

	Question	Answer	Mark	AO		Juidance
	Zucstion		S			Juluance
		2n+3 is an integer, so $8(2n+3)$ is a multiple	A1	2.4	Conclude appropriately	Allow BOD if $2n + 3$ not explicitly
		of 8				stated to be an integer
						If using k expect $8(0.5k + 3)$ then
						justify 0.5k as an integer, or $4(k+6)$
						then justify $k + 6$ is a multiple of 2
			[3]			
3	(a)	DR				
		$2x^2 - 8x + 6 = 0$	M1	1.1	Equate, and rearrange to three	Attempt to gather like terms, but not
		$x^2 - 4x + 3 = 0$			term quadratic	necessarily on same side of equation
						Condone no '= 0'
		(x-1)(x-3) = 0	M1	1.1	Attempt to solve quadratic	If factorising then expansion should
						give x^2 and one other term correct
						Quadratic formula should be correct –
						allow one slip when substituting as long
						as general formula already seen as
						correct
						Completing the square needs to go as
						far as $x - p = \pm \sqrt{q}$
		x = 1, x = 3	A1	1.1	Obtain both correct <i>x</i> values	Or one correct (x, y) coordinate
						following a correct factorisation oe
		(1, 0) and $(3, 4)$	A1	1.1	Obtain both correct pairs of	Allow as eg $x = 1$, $y = 0$ as long as
					coordinates	pairings are clear

H24	0/01
-----	------

(Questio	on	Answer	Mark s	AO	G	uidance
				[4]			SC If no method shown for solving quadratic then allow M1 for obtaining 3 term quadratic A1 for $x = 1, x = 3$ A1 for (1, 0) and (3, 4) SC If no method at all shown then allow B1 for both (1, 0) and (3, 4)
3	(b)			M1	1.1	Attempt graph of $y = 2x - 2$, with positive gradient and negative intercept	No need for line to actually intersect with negative <i>y</i> -axis as long as it goes beneath positive <i>x</i> -axis
				A1	1.1	Graph of $y = 2x - 2$ passing through both points of intersection of the two quadratic graphs	Must pass through both points
				[2]			

Find Personal Tutor from www.wisesprout.co.uk	找名校导师,用小草线上辅导(微信小程序同名)
---	------------------------

(Question		Answer	Mark s	AO	Guidance		
3	(c)		R	B1FT	2.2a	Correct region labelled with R, or otherwise clearly identified	FT any straight line that splits the overlap area into two finite regions, with the lower region identified Allow for straight line with negative gradient as well, but not $x = k$	
				[1]				

4	(a)	$2(x+1.5)^2+2.5$	B1	1.1a	p = 2	Could be implied by $2(x+q)^2 + r$
			B1	1.1a	q = 1.5	Could be implied by $p(x + 1.5)^2 + r$
			B1FT	1.1a	r = 2.5	FT on their p and q ie $7 - pq^2$
			[3]			
4	(b)	(-1.5, 2.5)	B1FT	1.1	Correct <i>x</i> -coordinate	FT on their (a)
						Could come from differentiation
			B1FT	1.1	Correct y-coordinate	FT on their (a)
						No FT on incorrect <i>x</i> -value from
						differentiation
			[2]			
4	(c)	minimum value of the function $= 2.5$	B1FT	3.1 a	FT on their minimum value	Allow BOD if different answers in (a)
						and (b)
						2.5 must be stated as, or clearly
						intended to be, the minimum value
						Just (, 2.5) is insufficient

	Questic	on	Answer	Mark s	AO	G	uidance
			$\tan\theta = -1.5$	M1	3.1 a	Attempt to solve $\tan\theta = \text{their}(-$	To obtain numerical value for θ
			$\theta = -56.3^{\circ}$			1.5)	Allow an angle in radians (expect -0.983 rad) Allow BOD if different answers in (a) and (b)
			$\theta = 124^{\circ}$	A1 [3]	1.1	Obtain 124°, or better	A0 if additional solutions Condone approaches other than 'hence' eg B1 – attempt to solve $\tan \theta = -1.5$, from correct derivative (expect $4\tan\theta\sec^2\theta + 6\sec^2\theta = 0$)
							B1 – obtain θ = 124° B1 – obtain min value of 2.5 (no FT)
5	(a)	(i)	4 units in the negative <i>x</i> -direction	M1	1.1	Indicate horizontal translation (in either direction) in some way with magnitude of 4 ('units' not required)	B1 for $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ Condone informal language as long as intent is clear eg 'left' (or even 'right', as either direction allowed) M0 if ambiguous eg 'in' or 'on' the <i>x</i> - axis
				A1	2.5	or 4 in negative <i>x</i> -direction Correct language needed	B2 for $\begin{pmatrix} -4\\ 0 \end{pmatrix}$ Must now be correct language so A0 for eg 'along' the <i>x</i> -axis or 'left' Allow 'parallel to the <i>x</i> -axis' or 'horizontal'
				[2]			

	Question		Answer	Mark s	AO	AO Guidance	
5	(a)	(ii)	in the <i>y</i> -direction with sf 16	B1 B1	3.1a 1.1	Identify direction - correct language needed or 2 ⁴	 Allow 'x-axis invariant', 'parallel to the y-axis' or 'vertical' Condone 'positive' y-direction (as given function > 0) 'scale factor' or 'factor' needed (condone 'stretch' factor) Not dep on previous B1, but must have indicated vertical stretch in some way, including informal language such as 'upwards'
				[2]			Cannot be ambiguous language, such as 'in', 'on', 'across' the y-axis

5	(b)	\mathbf{DR} $\log_2(8x(1-x)) = 1$	M1	1.1 a	Correctly combine two correct log terms	Or $\log_2(8x) = \log_2 \frac{2}{1-x}$ Or $3 + \log_2(x(1-x)) = 1$
						Or $\log_2(4x(1-x)) = 0$ OR use indices base 2 on both sides (ie $8x = 2^{1-\log_2(1-x)}$) and use rules of indices to split eg $8x = 2 \times 2^{-\log_2(1-x)}$

Question		Answer		AO	G	Guidance		
		8x(1-x) = 2	M1	1.1 a	Correct method to remove logs	Correctly used on equation of form $\log_2 f(x) = \log_2 g(x)$ or $\log_2 f(x) = k$		
						OR correct method to deal with log term – expect $8x = \frac{2}{1-x}$		
		eg $8x^2 - 8x + 2 = 0$ or $8x(1-x) = 2$ or $8x = \frac{2}{1-x}$	A1	1.1	Any correct equation not involving logarithms	Could still contain brackets and / or fractions		
		<i>x</i> = 0.5	A1	1.1	Obtain $x = 0.5$	A0 if additional solutions		
			[4]			DR so no credit for answer only		

6	(a)	$3^5 + 5 \times 3^4 \times (2x) = 243 + 810x$	B1	1.1	Obtain 243 + 810 <i>x</i>	Condone $3^5 + 810x$
						Allow terms not written as a sum eg
						written separately, or linked with a
						comma
		$10 \times 3^3 \times (2x)^2$ or $10 \times 3^2 \times (2x)^3$	M1	1.1a	Attempt at least one further term	Binomial coeff must be numerical; ⁵ C ₂
					- product of correct binomial	is not yet enough
					coeff, power of 3 and attempted	Allow BOD if brackets missing when
					power of $2x$, with powers	index is applied to $2x$, even if never
					totalling 5	recovered eg $540x^2$ or $180x^3$
		$+ 1080x^2$	A1	1.1	Obtain correct third term	Coefficient simplified
						Terms separate, listed or summed

	Question	n Answer	Mark s	AO	G	Guidance	
		$+720x^{3}$	A1	1.1	Obtain correct fourth term	Coefficient simplified Could be separate term, part of a list or part of a sum If expanding brackets then mark as above, but all 5 sets of brackets must be considered (allow irrelevant terms to be discarded)	
		Alternative method			Expanding $\left[3\left(1+\frac{2}{3}x\right)\right]^5$		
		$243 + 810x$ or $243(1 + \frac{10}{3}x)$	B1		First two terms correct	Allow with 243 still outside the bracket	
		$243(\frac{40}{9}x^2)$ or $243(\frac{80}{27}x^3)$	M1		Attempt one further term	Condone just 3 not 3 ⁵ being used, but must be the correct binomial coeff and an attempt at the correct power of $\frac{2}{3}x$,	
			A1		Either 3 rd or 4 th term correct	but allow BOD if no brackets Allow with 243 still outside the bracket	
		$243 + 810x + 1080x^2 + 720x^3$	A1		Fully correct expansion	With the 243 now multiplied into the expansion	
			[4]				
6	(b)	$x = y + 2y^2$	B1	3.1 a	Identify correct substitution	Could be stated, or implied by use in their binomial expansion	
		$1080(y + 2y^2)^2 + 720(y + 2y^2)^3$	M1	1.1a	Attempt to use binomial from (a) with their 2 term substitution	Must substitute into at least the x^2 and x^3 terms from their (a) Allow M1 if using $2y + 4y^2$ as their substitution	
		$4320y^3 + 720y^3$	M1	1.1a	Attempt expansion to obtain the two relevant terms in y^3	M0 if any other y^3 terms Expect 4(their 1080) and (their 720) Allow M1 if using $2y + 4y^2$ as their substitution - expect 16(their 1080) and 8(their 720)	

Mark Scheme

Question	Answer	Mark	AO	G	uidance
Quitoni		S			
	coeff of y^3 is 5040	A1	1.1	Allow $5040y^3$	Ignore any other non-cubic terms
	Alternative method 1			Attempting binomial	
				expansion of $(3 + (2y + 4y^2))^5$ or	
				$((3+2y)+4y^2)^5$	
	eg $((3+2y)+(4y^2))$	B1		Group into two expressions, and	
				attempt to use them	
	eg $(3 + 2y)^5 + 5(3 + 2y)^4(4y^2)$	M1		Use their groups to obtain the	
				appropriate two elements of their	
				binomial expansion (ie those that	
				would give y^3 terms)	
	eg (+ 720 y^3 +) + 5(4.3 ³ .2 y)(4 y^2)	M1		Expand to attempt the two y^3	
	$= 720y^3 + 4320y^3$			terms, and no others	
	coeff of y^3 is 5040	A1		Obtain 5040	

Alternative method 2		Attempting to expand all 5	
		brackets	
$eg (3 + 2y + 4y^2)^5 =$	M1	Attempt to use all 5 brackets	An attempt to use all 5 is sufficient
$(81 + 216y + 648y^2 + 960y^3 \dots)(3 + 2y +$			
$(4y^2)$			
$(216y \times 4y^2) + (648y^2 \times 2y) + (960y^3 \times 3)$	M1	Attempt all products that would	Condone additional terms, even those
		give a y-cubed term	that would give another y^3 term
			Irrelevant terms (ie powers greater than
			3) may never be seen

Question	Answer	Mark s	AO	Guidance	
	864y ³ + 1296y ³ + 2880y ³ coeff of y ³ is 5040	A1 A1		Obtain correct terms or coefficients, with no more than one incorrect Obtain 5040	They must have attempted all of the expected y^3 terms, and no more, with no more than one coefficient error If $(3 + 2y + 4y^2)^4 \times (3 + 2y + 4y^2)$ then expect 2880 + 1296 + 864, If $(3 + 2y + 4y^2)^3 \times (3 + 2y + 4y^2)^2$ then expect 1368 + 1728 + 1512 + 432 If they have not yet combined like terms then this A mark can only be implied by a later correct answer or relevant correct combination of terms
		[4]			

7		$6x^2 + 6y + 6x\frac{dy}{dx} - 6y\frac{dy}{dx} = 0$	M1	1.1a	Attempt implicit differentiation	Either of the two $\frac{dy}{dx}$ terms correct,
						allowing sign errors
						Condone $6x^2dx + 6ydx + 6xdy - 6ydy$
			B1	1.1a	Use product rule correctly on	Both terms correct
					middle term	Must now be $6y + 6x \frac{dy}{dx}$, or implied in a
						correct expression for $\frac{dy}{dx}$

Question	Answer	Mark s	AO	Guidance		
		A1	1.1	Obtain correct derivative on LHS	Condone missing or incorrect RHS	
					Must now have $\frac{dy}{dx}$ and not just dy or dx	
					in terms	
	$6x^2 + 6y + 6x - 6y = 0$	M1	3.1a	Use $\frac{dy}{dx} = 1$ in their equation	Must now be equation, but RHS could	
	$x^2 + x = 0$	B1	1.1a	Solve correct quadratic in x to	be incorrect (eg '= 2') B0 if <i>x</i> 'cancelled' in quadratic to give <i>x</i>	
		DI	1.1a	*	· · · ·	
	x = 0, x = -1			obtain two correct roots (possibly BC)	= -1 as only root, but M1A1 still available	
				Quadratic must come from	avanable	
				correct implicit differentiation		
	$x = 0$ gives $3y^2 = -2$, but y^2 has to be ≥ 0 , so	B1	2.3	Explicitly reject $x = 0$, with	eg negative numbers cannot be square	
	x = 0 gives by $y = 2$, but y has to $bc = 0$, so no solutions		2.0	reasoning	rooted or $y^2 \neq -\frac{2}{3}$ 2 as y is real	
				$x = 0$ must come from $x^2 + x = 0$	5	
					(just $y^2 \neq -\frac{2}{3}$ is insufficient)	
					Must be sensible reason and not just	
					'math error' or 'not possible'	
					Could say that there are only imaginary	
					(or not real) roots – condone 'complex'	
					roots	
	$x = -1$ gives $3y^2 + 6y + 4 = 0$	M1	2.1	Attempt to determine the number	From substituting their <i>x</i> value into the	
	$b^2 - 4ac = 36 - 48 = -12$			of real roots of their 3 term	equation of the curve	
				quadratic in y	Consider discriminant, or use quadratic	
					formula, or attempt minimum value of	
					function	
	-12 < 0 hence no (real) roots	A1	2.4	Obtain correct discriminant from	If using quadratic formula then it must	
				correct quadratic and conclude	be fully correct and attention drawn to	
				appropriately	why there are no real roots	
		Г 01		$x = -1$ must come from $x^2 + x = 0$		
		[8]				

QuestionAnswerMark sAO	Guidance
---------------------------	----------

Mark Scheme

June 2022

8	(a)		20 (minutes)	B1	3.3	Obtain $t = 20$	Allow [19.9, 20.1] from setting up and
			97.2 (grams)	B 1	3.4	Obtain $m = 97.2$	using exponential model Allow [97.1, 97.3] from setting up and using exponential model
				[2]			
8	(b)	(i)	$160e^{-0.055t} = 80$	B1	3.4	Equate given model to 80	soi, so could be $e^{-0.055t} = 0.5$

(Juestic	on	Answer	Mark s	AO	(Guidance
			$e^{-0.055t} = 0.5$ $-0.055t = \ln 0.5$	M1	3.4	Attempt correct process to find value of <i>t</i> , as far as dealing with exponential term	Rearrange to $e^{-0.055t} = k$, and hence obtain $-0.055t = \ln k$ If introducing logs straight away then need to get as far as
			<i>t</i> = 12.6 (minutes)	A1 [3]	1.1	Obtain $t = 12.6$, or better	ln160 - 0.055t = ln(their 80) If more sig fig given, then allow answers which round to 12.60 (the more accurate answer is 12.602676)
8	(b)	(ii)	$\frac{\mathrm{d}m}{\mathrm{d}t} = -8.8\mathrm{e}^{-0.055t}$	B1	3.4	Correct derivative soi	Allow unsimplified
			d <i>i</i>				No need to see $\frac{dm}{dt} =$
			$-8.8e^{-0.055 \times 15}$	M1	3.4	Substitute $t = 15$ into their derivative	Must be of the form $ke^{-0.055t}$, with $k \neq 160$ Possibly still with <i>k</i> unsimplified Substitution sufficient, no need to evaluate for M1
			= -3.86, hence rate of decay is 3.86 grams/minute	A1	1.1	Units required, and positive answer	Must follow correct derivative ie negative coefficient
			Stanto, minuto				No need to see –3.86 first, but A0 if
							clear error
							Accept 3.9 grams/minute
				[3]			Accept g/m for grams/minute

г

Question	Answer	Mark s	AO		Guidance
8 (c)	For <i>A</i> , $\frac{dm}{dt} = -63.9e^{-0.0511t}$ Rate of decrease at <i>t</i> = 15 is 29.7 g/min hence <i>A</i> decaying at a faster rate	B1	3.4	State <i>A</i> , with clear comparison	Insufficient to just say that <i>A</i> has a greater initial mass – needs to consider decay factor as well Allow solutions that identify that <i>B</i> is decaying faster, with supporting evidence eg after 10 minutes, <i>B</i> 's mass is 92.3g which is 58% of initial mass whereas <i>A</i> is 60% of initial mass so <i>B</i> decaying faster eg <i>A</i> 's half-life is 13.6 so <i>B</i> is decaying faster eg change initial mass in model <i>B</i> to 1250 then when $t = 10$ <i>B</i> 's mass would be 721g which is less than 750 hence decaying faster eg compare coefficients of <i>t</i> (for <i>A</i> , coeff is – 0.0511); <i>B</i> 's is of a greater magnitude hence decaying faster

	Question Answer		Mark	AO	Guidance				
	Zuestio		S						
9		1 2 010	[1]	11-					
9		$dx = 2\cos\theta d\theta$ $\int \sqrt{4 - x^2} dx = \int \sqrt{4 - 4\sin^2\theta} \cdot 2\cos\theta d\theta$	M1 M1	1.1a 3.1a	Attempt to link dx and d θ Attempt to write integrand in terms of θ	Allow sign error only Must substitute for both function and dx Can follow M0 but do not allow just dx = $d\theta$			
		$= \int \sqrt{4\cos^2 \theta} . 2\cos \theta d\theta$ $= \int 4\cos^2 \theta d\theta$	A1	1.1	Obtain correct integrand in terms of $\cos\theta$ only	Condone no $d\theta$, as long as previously seen			
		$= \int 4\cos^2\theta d\theta$ $= \int (2\cos 2\theta + 2)d\theta$	M1	2.1	Attempt use of double angle formula	Using $\cos 2\theta = \pm 2\cos^2 \theta \pm 1$ Integrand must be of form $k \cos^2 \theta$, which must have come from correct method with coefficient errors only			
		$= \sin 2\theta + 2\theta$ $\left[\sin 2\theta + 2\theta\right]_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} = \left(\sin \frac{2}{3}\pi + \frac{2}{3}\pi\right) - \left(\sin \frac{2}{6}\pi + \frac{2}{6}\pi\right)$ $= \left(\frac{1}{2}\sqrt{3} + \frac{2}{3}\pi\right) - \left(\frac{1}{2}\sqrt{3} + \frac{1}{3}\pi\right)$	A1FT M1	1.1 2.1	Integrate to obtain $\sin 2\theta + 2\theta$ Attempt use of limits	FT on $a\cos 2\theta + b$ only Must be correct limits (either x or θ , as long as consistent with their integral), correct order and subtraction Allow M1 for use of limits in any integration attempt in terms of θ Allow M1 for either expressions that still involve sin, or exact equivs M0 for decimal values, even if then stated to be the same as $\frac{1}{3}\pi$			
		$=\frac{1}{3}\pi$ A.G.	A1 [7]	2.1	Obtain given answer of $\frac{1}{3}\pi$	Condone eg $\frac{1}{2}\sqrt{3}$ from sin120°, but M0 if degrees used in linear term Must see both surd values, or an explanation as to why sin $\frac{2}{3}\pi = \sin \frac{2}{6}\pi$			

(Questio	on	Answer	Mark s	AO	(Guidance
10	(a)		area $OMB = \frac{1}{2} (\frac{1}{2}r) r \sin \theta$	B1	1.1	Correct (possibly unsimplified) area of <i>OMB</i>	Could use other than <i>r</i> for the radius Could set their variable equal to <i>OM</i> , giving a radius that is double this eg $OM = x$ so area = $x^2 \sin \theta$
			$2\left(\frac{1}{2}r^{2}\theta - \frac{1}{4}r^{2}\sin\theta\right) = 3\left(\frac{1}{4}r^{2}\sin\theta\right)$ OR $2\left(\frac{1}{2}r^{2}\theta\right) = 5\left(\frac{1}{4}r^{2}\sin\theta\right)$	M1	3.1a	Attempt to use ratio on two correct areas	Using two of <i>OMB</i> $(\frac{1}{4}r^2\sin\theta)$, <i>MAB</i> $(\frac{1}{2}r^2\theta - \frac{1}{4}r^2\sin\theta)$ and <i>OAB</i> $(\frac{1}{2}r^2\theta)$ oe with their variable
			OR $3\left(\frac{1}{2}r^{2}\theta\right) = 5\left(\frac{1}{2}r^{2}\theta - \frac{1}{4}r^{2}\sin\theta\right)$				Must be two correct areas Must be using the correct ratio for their two areas ie 2:3 if using <i>OMB</i> and <i>MAB</i> , 2:5 if using <i>OMB</i> and <i>OAB</i> or 3:5 if using <i>MAB</i> and <i>OAB</i> Allow ratio to be used the wrong way around eg 2 <i>OMB</i> = 3 <i>MAB</i>
				A1	2.1	Correct equation, in two variables (ie θ and their r)	Any correct statement linking the two areas Could use other than <i>r</i> for the radius Or $2x^2\theta - x^2\sin\theta$
			$\theta - \frac{1}{2}\sin\theta = \frac{3}{4}\sin\theta$ $\theta = 1.25\sin\theta$ A.G.	A1 [4]	2.1	Simplify to given answer	At least one line of working once ratio used

(Questio	n Answer	Mark s	AO	Guidance			
10	(b)	0.599	B1	1.1a	Obtain correct first iterate	3sf or better – more accurate answer is0.599281923Condone truncating if more sig figgiven		
		0.705, 0.810	M1	1.1 a	Attempt correct iterative process to find at least 2 more values	M1 is for the correct process for finding θ_3 and θ_4 , but these may be incorrect M0 if working in degrees		
		root = 1.13	A1 [3]	1.1	Obtain 1.13	Possibly following B0 if first iterate is wrong but process then self corrects Must follow M1 ie a clear attempt to use the correct iterative process Must be 3sf Once M1 is awarded, allow A1 for 1.13 even if an incorrect iterate seen, as process will recover		
10	(c)	ALALA ALA	B1*	3.1a	Draw $y = \theta$ on diagram	Draw straight line, starting at the origin which intersects the graph Allow point of intersection to be greater than $\theta = \frac{1}{2}\pi$ Ignore incorrect labels, such as $y = x$		

	Question	Answer	Mark AO s		Guidance			
				B1 dep*	2.1	Draw correct iterative process on diagram	Vertically into the curve, then horizontally into the straight line, as far	
				uop			as the root Initial value should be before root Needs point of intersection to be before $\theta = \frac{1}{2}\pi$	
				B1 [3]	1.2	State 'staircase' convergence	Mark independently from other parts of question, including an incorrect diagram, as staircase can be deduced from the iterates in (b)	
10	(d)			B1*	3.1a	Draw graph of $y = \sin^{-1} 0.8\theta$, for $\theta \ge 0$	Just need correct shape for $y = \sin^{-1}k\theta$ graph – a one to one function that starts at the origin (ignore any $\theta < 0$) and has increasing gradient for all θ	
				B1 dep* [2]	3.2a	Draw $y = \theta$, and show staircase divergence from the root found in (b), on at least one side of the root	Straight line from the origin to intersect their graph Diagram is sufficient for $B1 - no$ comment or explanation required	

H24	10/0	1
-----	------	---

June 2022

	Question	Answer	Mark s	AO		Guidance
11	(a)	$\int e^{3y} dy = \int 3x^2 \ln x dx$	M1	3.1a	Separate variables and attempt integration of at least one side	Allow ke^{3y} , with $k \neq 1$, as 'attempt' at integration of LHS 'Attempt' at RHS may not be use of integration by parts Allow BOD on missing integral sign / missing dy / missing dx as long as
		$\int e^{3y} dy = \frac{1}{3}e^{3y}$	B1	1.1	Correct LHS	intention clear B0 if still part of an expression also involving x
		$\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx$	M1	3.1a	Attempt integration by parts on RHS – must have correct parts	As far as attempt at $x^{3} \ln x - \int x^{2} dx$, possibly with $\int \frac{1}{x} x^{3} dx$ not yet
		$=x^{3}\ln x - \frac{1}{2}x^{3} + c$	A1	1.1	Correct RHS (condone no $+ c$)	simplified Condone no modulus sign on lnx
		$= x^{3} \ln x - \frac{1}{3}x^{3} + c$ $\frac{1}{3}e^{3} = e^{3} \ln e - \frac{1}{3}e^{3} + c \text{ so } c = -\frac{1}{3}e^{3}$	M1	1.1a	Attempt use of (e, 1) to find <i>c</i>	Used in an equation involving x , y and c , following some integration attempt of both sides As far as finding c , either exact or as a decimal
		$\frac{1}{3}e^{3y} = x^3 \ln x - \frac{1}{3}x^3 - \frac{1}{3}e^3$ $e^{3y} = 3x^3 \ln x - x^3 - e^3$	A1	1.1	Obtain correct equation, in required form	M1 can be implied by sight of $-\frac{1}{3}e^3$ or -6.695 following a correct equation Any equivalent form on the RHS, but must be $e^{3y} =$ A0 if decimal approximation for e^3

(Questio	on	Answer	Mark s	AO	G	uidance
				[6]			
11	(b)		$e^{3y} = 3e^{6}lne^{2} - e^{6} - e^{3}$ = 6e^{6} - e^{6} - e^{3} = 5e^{6} - e^{3}	M1*	2.1	Substitute $x = e^2$, into their integral involving ln <i>x</i> , and attempt to simplify	lnx may be $\ln x^p$ if any coefficient has been taken into the ln term As far as correctly simplifying the ln term to remove ln Must be working exactly, so M0 if decimals seen before ln dealt with
			$3y = \ln(e^{3}(5e^{3} - 1))$ = 3 + ln(5e^{3} - 1)	M1 dep*	2.1	Introduce logs correctly, and attempt to rearrange to given form	Their equation must have two terms, or possibly more, with the terms having a common factor of e^k Attempt must go as far as splitting into the sum of two terms, with lne^k simplified to k
			$y = 1 + \frac{1}{3}\ln(5e^3 - 1)$	A1 [3]	2.1	Obtain $y = 1 + \frac{1}{3}\ln(5e^3 - 1)$	No need to state a, b and c explicitly

(Questic	on	Answer	Mark s	AO	(Guidance
12	(a)		dx - 1 dy	M1	1.1a	Attempt correct process to find	Correctly combine attempts at two
			$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-1}{t^2}, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 2$			gradient in terms of t or p	derivatives
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$				Need $\frac{dx}{dt} = kt^{-2}$ and $\frac{dy}{dt} = 2$
			$dx = \frac{dt}{dt}$				SC B1 for gradient of $-2x^{-2}$ if it is never
							seen in terms of t or p
			$\frac{dy}{dx} = -2t^2$ $y - 2p = -2p^2 \left(x - \frac{1}{p}\right)$	A1	2.1	Obtain correct gradient	In terms of <i>t</i> or <i>p</i>
			$y - 2p = -2p^2 \left(x - \frac{1}{p}\right)$	M1	1.1a	Attempt equation of tangent	Condone still working in terms of t Allow mixture of t and p as long as
							convincingly recovered
							Using their gradient from a
							differentiation attempt, but not
							dependent on first M1
							Substitution into $y - y_1 = m(x - x_1)$ or
							equation involving <i>c</i> from $y = mx + c$
			$y = -2p^2x + 4p$ A.G.	A1	2.1	Obtain given answer	Must now be in terms of <i>p</i>
							Expand brackets and simplify to given
							answer, or find c and substitute back
				[4]			into equation
				[4]			

	Questio	on	Answer	Mark s	AO	Guidance				
12	(b)		$m' = \frac{1}{2p^2}$	B1FT	1.1 a	Correct (unsimplified) gradient of normal, following their derivative	Gradient in terms of t or p , but not x Could either FT on their incorrect derivative or deduce the gradient from the equation given in (a)			
			$y - 2p = \frac{1}{2p^2} \left(x - \frac{1}{p} \right)$ $y = \frac{1}{2p^2} x + 2p - \frac{1}{2p^3}$	M1	1.1	Attempt equation of normal	Attempt to use their gradient and <i>P</i> Allow mixture of <i>t</i> and <i>p</i> as long as convincingly recovered Substitution into $y - y_1 = m(x - x_1)$ or equation involving <i>c</i> from $y = mx + c$			
				M1	3.1 a	Use $y = 0$ to attempt <i>x</i> -coordinate of <i>B</i>	Using their attempt at normal equation As far as finding an expression for x			
			at B, y = 0 so $x = 2p^2 \left(\frac{1}{2p^3} - 2p\right) = \frac{1}{p} - 4p^3$	A1	2.1	Correct <i>x</i> -coordinate for <i>B</i>	Any equivalent form			
			at A, $y = 0$ so $x = \frac{4p}{2p^2} = \frac{2}{p}$	B 1	2.1	Correct <i>x</i> -coordinate for <i>A</i>	Any equivalent form			
			$PA = \sqrt{\left(\frac{1}{p}\right)^2 + \left(2p\right)^2}$ $PB = \sqrt{\left(4p^3\right)^2 + \left(2p\right)^2}$	M1	3.1a	Attempt length of <i>PA</i> or <i>PB</i>	Or M1 for attempting one of $(PA)^2$ or $(PB)^2$ Must correct distance formula Using the given <i>P</i> , and their coordinates for <i>A</i> and/or <i>B</i> , which must involve a function of <i>p</i>			
			$PA: PB = \frac{1}{p}\sqrt{4p^4 + 1} : 2p\sqrt{4p^4 + 1}$	A1 A1	2.1 2.1	Correct <i>PA</i> and <i>PB</i> Simplify ratio to obtain given	Or correct $(PA)^2$ and $(PB)^2$ Must show clear method, such as same			
			$PA: PB = \frac{1}{p}\sqrt{4p} + 1: 2p\sqrt{4p} + 1$ = $\frac{1}{p}: 2p$ = $1: 2p^2$ A.G.	[8]		answer	expression in each square root before cancelling Could also consider fraction and then cancel to deduce given ratio Could simplify $(PA)^2 : (PB)^2$, and then square root to obtain ratio			

APPENDIX

Supporting Evidence for Q8(c)

When comparing % remaining or percentage lost in t minutes. Substance B is shown to be decreasing at a faster rate.

			•								
Choose t =	15										
Substance A						Substance B					
time	0	10	20	50	15	time	0	10	20	50	15
mass (exact)	1250	750	450	97.200	580.948	mass (exact)	160.00	92.312	53.259	10.228	70.118
mass (k=-0.0511)	1250	750	450	97.115	580.796						
mass (k=-0.051)	1250	750	450	97.602	581.667						
Percentage decreased at t =	0	10	20	50	15	Percentage decreased at t =	0	10	20	50	15
Exact k value	0%	40%	64%	92.22%	53.52%	Exact k value	0%	42.31%	66.71%	93.61%	56.189
k=-0.0511	0%	40%	64%	92.23%	53.54%						
k=-0.051	0%	40%	64%	92.19%	53.47%						
Percentage remaining at t =	0	10	20	50	15	Percentage remaining at t =	0	10	20	50	15
Exact k value	100%	60%	36%	7.78%	46.48%	Exact k value	100%	57.69%	33.29%	6.39%	43.829
k=-0.0511	100%	60%	36%	7.77%	46.46%						
k=-0.051	100%	60%	36%	7.81%	46.53%						
When comparing RAT	E of decre	ease at t r	ninutes. S	Substance	<mark>e A i</mark> s show	vn to be decreasing at a fas	ter rate.				
Substance A						Substance B					
time	0	10	20	50	15	time	0	10	20	50	15
dm/dt (exact)	-63.853	-38.312	-22.987	-4.965	-29.676	dm/dt (exact)	-8.800	-5.077	-2.929	-0.563	-3.856
dm/dt (k=-0.0511)	-63.875	-38.318	-22.987	-4.963	-29.679						
any active orosing											

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk

Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.