

GCE

Chemistry A

Unit H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2018

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
~	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question		ion	Answer				Marks	Guidance
1	(a)		A solution of known concentration ✓		1	ALLOW description of concentration		
1	(b)		Releases OH ⁻ (ions in aqueous solution) ✓		1	ALLOW containing OH ⁻ ions IGNORE mention of pH		
1	(c)	(i)					4	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Final reading/cm ³	27.30	27.00	27.75		ETC
			Initial reading/cm ³	0.45	0.60	1.25		
			Titre/cm ³	26.85	26.4 0	26.5 0		ALLOW missing zeroes for burette readings
			Initial and fina All burette Titres recorded either 0 or 5 Correct so Mean titre cald Correct m Mean titre reco Final ansy last figure	<i>I readings</i> e readings (×6 d to two decir ubtractions to culated from nean titre = 26 orded to accu wer recorded e either 0 or 5	5) correct ✓ nal places wit obtain final titu concordant re 5.45 (cm ³) ✓ uracy of buret to two decima ✓	h the last figure re values ✓ esults te al places with the		i.e. 0.6 for 0.60 27 OR 27.0 for 27.00 ALLOW ECF from incorrect burette readings IF MEAN IS CALCULATED FROM ECF, IT MUST BE FROM CLOSEST TITRES ALLOW ecf from incorrect mean DO NOT ALLOW 26.5 cm ³ Question asks for nearest 0.05 cm ³
1	(c)	(ii)	$\frac{2 \times 0.05}{26.85} \times 100 =$	= 0.37(2) (%)	✓		1	ALLOW 0.4 up to full calculation display of 0.372439478 ALLOW ECF FOR CORRECT CALCULATION FROM 1 (c) (i) OR USE OF ANY TITRE

G	Question		Answer	Marks	Guidance
1	(c)	(iii)	Use a (250 cm ³) volumetric flask (instead of a beaker) \checkmark	1	IGNORE graduated flask
1	(d)	(i)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 118 (g mol ⁻¹) award 4 marks If answer = 108 (g mol ⁻¹) award 3 marks n(NaOH) = 0.112 × $\frac{25.0}{1000}$ = 0.00280 (mol) \checkmark n(A) in 25.0 cm ³ = $\frac{0.00280}{2}$ = 0.00140 (mol) \checkmark n(A) in 250 cm ³ = 0.00140 × $\frac{250.0}{27.30}$ = 0.0128 (mol) \checkmark Molar mass, $M(\text{A})$ to nearest whole number. = $\frac{1.513}{0.0128}$ = 118 (g mol ⁻¹) \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Throughout: IGNORE trailing zeroes in intermediate working, e.g. For $n(NaOH)$ ALLOW 0.0028 for 0.00280 ALLOW ECF from incorrect $n(NaOH)$ ALLOW ECF from incorrect $n(NaOH)$ ALLOW 3 sig fig up to full calculator display correctly rounded (0.012820512) ALLOW ECF from incorrect $n(NaOH)$
					• Molar mass $A = 114 \text{ (g mol^{-1})}$ Using 27.3 × 0.112 in M1 and then 25.0 in M3 • Molar mass $A = 99 \text{ (g mol^{-1})}$

	Question		Answer	Marks	Guidance
1	(d)	(ii)	Structure of dicarboxylic acid HOOCCH ₂ CH ₂ COOH OR HOOCCH(CH ₃)COOH ✓ STRUCTURE MUST MATCH <i>M</i> _r from answer to 1 d) i) (within 10 AMU)	1	ALLOW correct structural OR skeletal OR displayed formulae OR a combination ALLOW incorrect connectivity e.g –HO ALLOW ECF from incorrect molar mass in (d)(i) but only if $2 \times COOH$ possible and M_r is a close match to (d) (i) within 10 AMU
			Total	13	

Question		Answer		Marks	Guidance
2	(a)	Answer $\begin{bmatrix} Na \\ Na \end{bmatrix}^{+} \begin{bmatrix} \swarrow & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}^{2-}$ Na shown with either 0 or 8 electrons AND S shown with 8 electrons with 6 dots and 2 crosses (or vice versa) \checkmark Correct charges \checkmark			ALLOW 2[Na] ⁺ ALLOW [Na] ⁺ ₂ Brackets not required For first mark, if eight electrons are shown around Na, the 'extra' electrons around S must match the symbol chosen for the electrons for Na. IGNORE inner shells Circles not required
2	(b)	Na2SNMelting point / °C11809Type of structuregiantgiaConductivity of solidpoorgoConductivity of liquidgoodgoOne mark for each correct column	ant simple od poor	3	Mark by COLUMN

Question		on	Answer	Marks	Guidance
2	(c)	(i)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4 \checkmark$	1	ALLOW subscripts
			Look carefully at (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake		 ALLOW in any order i.e. 3d¹⁰ after 4s² or after 4p⁴ ALLOW upper case D, etc and subscripts, e.g3S₂3P⁶ DO NOT ALLOW [Ar] as shorthand for
2	(c)	(ii)	Gas B H ₂ Se / Hydrogen selenide / Selenium hydride ✓ Equation Na ₂ Se + 2HCl → 2NaCl + H ₂ Se All formulae and balancing ✓	2	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ALLOW SeH ₂ ALLOW correct multiples IGNORE STATE SYMBOLS DO NOT ALLOW H ₂ S for gas B BUT ALLOW ECF from H ₂ S for equation: Na ₂ S +2HCl → 2NaCl + H ₂ S
			Tota	8	

Question		on	Answer	Marks	Guidance
3	(a)	(i)	$Br_2 + 2I^- \rightarrow I_2 + 2Br^- \checkmark$	1	ALLOW multiples
					IGNORE state symbols
		(ii)		3	ORA
			lodine has a larger atomic radius \checkmark		ALLOW iodine is larger / bromine is smaller
					ALLOW electron added to a shell further from the nucleus
			lodine has greater shielding / more shells \checkmark		
			lodine has weaker / less nuclear attraction (on electron		ALLOW bromine has greater nuclear attraction
		gained than bromine) 🗸	gained than bromine, *		IGNORE 'gained less easily' for 'weaker attraction'
					IGNORE references to ionisation energy
					DO NOT ALLOW mention of losing electrons for M3
					ALLOW 'pull' for 'attraction'
					IGNORE just 'greater attraction' OR greater force

	Question		Answer	Marks	Guidance
3	(b)	(i)	 Disproportionation Oxidation AND reduction of same element/iodine OR Iodine has been oxidised and Iodine has been reduced ✓ Oxidation from 0 to +1 in HIO ✓ Reduction from 0 to -1 in HI ✓ 	3	ALLOW I or I_2 for iodine IGNORE numbers around equation for oxidation states ALLOW 1– for –1 AND 1+ for +1 NOTE (for iodine/ I_2) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: 0 in I_2 AND –1 in HI AND +1 in HIO ALLOW 1 mark for species missing: lodine oxidised (from 0) to +1 AND iodine reduced (from 0) to –1
3		(ii)	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR forms carcinogens/toxic compounds ✓	1	 ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE chlorine causes cancer harmful/dangerous chlorine causes breathing problems
3	(c)		FIRST CHECK ON ANSWER LINE If answer = (+) 431.5 (kJ mol ⁻¹) award 2 marks If answer = -431.5 (kJ mol ⁻¹) award 1 mark (wrong sign) $2 \times H-Cl$ bond enthalpy correctly calculated = +436 +243 +184 = +863 (kJ mol ⁻¹) \checkmark H-Cl bond enthalpy correctly calculated	2	ALLOW to 3 SF i.e. 432

H0	32	/02
----	----	-----

Question		on	Answer	Marks	Guidance
			+863/2 = (+)431.5 (kJ mol ^{−1}) ✓		ALLOW 1 mark for (+)247.5 / 248 (wrong expression) i.e. (436+243–184)/2
	(d)	(i)	$Br_2(I) \rightarrow Br_2(g) \checkmark$	1	
		(ii)	Endothermic AND Energy required to overcome induced dipole–dipole forces/London forces ✓	1	Mark independently of 3 (d) (i) ALLOW endo to break intermolecular forces/bonds ALLOW bonds between molecules DO NOT ALLOW van der Waals' forces
			То	otal 12	

Question	Answer	Marks	Guidance
4 (a) (i)	Ea 4NH ₃ (g) + 5O ₂ (g) ΔH	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE state symbols ALLOW 1 mark for a correctly labelled endothermic diagram
	Activation energy correctly labelled / $E_a \checkmark$ AH labelled with product below reactant AND Arrow downwards \checkmark		E_a ALLOW no arrowhead or arrowheads at both end of E_a line. E_a line must reach maximum (or near to maximum) on curveFor E_a , ALLOW AE OR AE ΔH DO NOT ALLOW $-\Delta H$ DO NOT ALLOW double headed arrow on ΔH ALLOW ΔH arrow even with small gap at the top and bottom, i.e. line does not quite reach reactant or product line.ALLOW -905 for ΔH

Question	Answer	Marks	Guidance
(ii)	FIRST CHECK ON ANSWER LINE If answer = 6.79×10^7 (kJ) award 4 marks If answer = 2.72×10^8 (kJ) award 3 marks (no $\div 4$)	4	IGNORE (-) SIGN Throughout: IGNORE trailing zeroes in intermediate working,
	$n(NH_3) = \frac{5.1 \times 10^6}{17} = 3.00 \times 10^5 \text{ (mol) } \checkmark$		
	Stoichiometry and ΔH 1 mol NH ₃ releases 905 OR 226.25 (kJ) \checkmark 4		
	Energy released (3.00×10^5) $\times \frac{905}{4}$ OR 67875000 (kJ) \checkmark		
			ALLOW ECF from incorrect <i>n</i> (NH ₃) OR 905/4
			ALLOW 3 SF up to calc value correctly rounded. Value will depend on intermediate rounding
	Final answer to 3SF AND standard form = 6.79×10^7 (kJ) \checkmark standard form AND 3 SF required		Common Errors 1.09×10^9 (x 4 instead of \div 4) 3 marks 2.72×10^8 (no \div 4) 3 marks 6.79×10^1 (no tonnes \rightarrow g) 3 marks
(b)	$(K_{c} =) \frac{[NO(g)]^{4} [H_{2}O(g)]^{6}}{[NH_{3}(g)]^{4} [O_{2}(g)]^{5}} \checkmark$	1	Square brackets required IGNORE state symbols
	Question (ii)	QuestionAnswer(ii)FIRST CHECK ON ANSWER LINE If answer = 6.79×10^7 (kJ) award 4 marks If answer = 2.72×10^8 (kJ) award 3 marks (no $\div 4$) $$	QuestionAnswerMarks(ii)FIRST CHECK ON ANSWER LINE If answer = 6.79×10^7 (kJ) award 4 marks If answer = 2.72×10^8 (kJ) award 3 marks (no $\div 4$) $-\frac{1}{n(NH_3)}$ $= \frac{5.1 \times 10^6}{17} = 3.00 \times 10^5$ (mol) \checkmark 4Stoichiometry and ΔH 1 mol NH ₃ releases $\frac{905}{4}$ OR 226.25 (kJ) \checkmark 4Energy released (3.00×10^5) $\times \frac{905}{4}$ OR 67875000 (kJ) \checkmark 4Final answer to 3SF AND standard form $= 6.79 \times 10^7$ (kJ) \checkmark standard form AND 3 SF required1(b) $(K_c =) \frac{[NO(g)]^4 [H_2O(g)]^6}{[NH_3(g)]^4 [O_2(g)]^5} \checkmark$ 1

Question		Answer	Marks	Guidance
4	(c)	EQUILIBRIUM CONDITIONSTemperature: 1 mark(Forward) reaction is exothermic/ ΔH is negativeOR (Forward) reaction gives out heat \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
		 Pressure: 1 mark Left-hand side has fewer (gaseous) moles OR 9 (gaseous) moles form 10 (gaseous) moles ✓ OPTIMUM EQUILIBRIUM CONDITIONS: 1 mark (for maximum yield of NO) Low temperature AND low pressure ✓ 		ALLOW reverse arguments
		RATE: 1 mark Low temperature/pressure gives a slow rate/slower reaction so high temperatures / higher pressure needed to increase rate OR frequency of collisions ✓		Answer MUST relate temp/pressure to rate / frequency of collisions
		INDUSTRIAL CONDITIONS / OPERATIONAL FACTORS: 1 mark High pressure provides a safety risk OR Higher temperatures increase energy costs / reduce yield / shift equilibrium to left OR (High) pressure is expensive (to generate) / uses a lot of energy ✓		ALLOW Temperature / pressure not too high because yield reduced IGNORE stated temperatures and pressures IGNORE catalyst
		Total	12	

Question	Answer	Marks	Guidance
5 (a) (i)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Correctly labelled diagram of reflux apparatus that works, with no safety problems AND An appreciation of most of the purification steps required to gain a pure sample There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND Some details of further purification steps There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Diagram of apparatus (reflux OR separation OR distillation) drawn with no labelling OR labelled diagram with significant safety/procedural AND / OR Few or imprecise details about further purification stages There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks 	6	 Indicative scientific points may include: Apparatus set up for reflux: round-bottom/pear shaped flask heat source condenser Detail: water flow in condenser bottom to top; open system. Purification Use of a separating funnel to separate organic and aqueous layers Detail: Collect lower organic layer density greater Drying with an anhydrous salt, Detail: e.g. MgSO4, CaCl2, etc. Redistillation Detail: Collect fraction distilling at 102°C.

Question	Answer	Marks	Guidance
5 (a) (ii)	 FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 12.6 (g) award 2 marks n(1-bromobutane) = 0.150 × 61.4/100 = 0.0921 (mol) ✓ Mass 1-bromobutane = 0.0921 × 136.9 = 12.6 (g) ✓ 3 SF required 	2	Common errors: 33.4 (0.150 x 100/61.4 = 0.244 x 136.9) 1 mark ALLOW ECF for incorrect moles or incorrect M_r of 1-bromobutane (provided answer is to 3 SF) DO NOT ALLOW 6.82 (using M_r of butan-1-ol) ALLOW calculation using masses, e.g. • Theoretical = 0.150 × 136.9 = 20.535 (g) \checkmark (ALLOW 20.535 rounded back to 20.5) • Actual mass = 20.535 × $\frac{61.4}{100}$ = 12.6 (g) \checkmark (20.5 also gives 12.6)
(b)	Tangent on graph drawn at approximately $t = 30 \text{ min } (\pm 10 \text{ mins}) \checkmark$ Calculation of rate = Gradient (y/x) of tangent drawn e.g. $\frac{0.19}{72} = 2.64 \times 10^{-3} / 0.00264 \text{ (mol dm}^{-3}\text{min}^{-1}) \checkmark$ 0.00000000000000000000000000000000000	2	 DO NOT ALLOW interpolation (taking a direct reading from graph), answer must be derived from taking a gradient ALLOW ecf from incorrectly drawn tangent Tolerance: Readings from y axis should be ± 0.01 mol dm⁻³ (i.e. within 1 square) Readings from x axis should be ± 5 minutes (i.e. within 0.5 of a square) IGNORE units IGNORE sign
	Total	10	

Question		ion	Answer	Marks	
6	(a)		steam AND Acid/H⁺ (catalyst) ✓	1	
	(b)	(i)	1,2-dibromo-1,1-dichloroethane ✓	1	

(Quest	ion	Answer	Marks	Guidance
6	(c)	(i)	$ \begin{array}{c} H \\ n \\ H \\ H \end{array} Cl \\ Cl \\ Cl \\ Cl \\ H \\ Cl \\ H \\ Cl \\ n \\ Cl \\ n \\ Correct polymer with side links and brackets \checkmark $	2	 For repeat unit, displayed formula required 'side bonds' required on either side of repeat unit from C atoms ALLOW section containing more than one repeat unit
			Equation balanced with $n \checkmark$		DO NOT ALLOW ECF from incorrect repeat unit
			TAKE CARE of ' <i>n</i> ' position on both sides of equation.		<i>n</i> on LHS at any height to the left of the formula <i>n</i> on RHS must be subscript
	(c)	(ii)	Advantage (1 mark) Energy production / (energy) used to produce electricity ✓	2	ALLOW reduced use of fossil fuels
			Disadvantage (1 mark) Formation of HCI/products of combustion cause acid rain OR		ALLOW less landfill / less harm to wildlife
			Formation of CO ₂ /gases that cause global warming / greenhouse gases		ALLOW chlorine/Cl OR Cl ₂
			OR Formation of CO✓		ALLOW toxic/poisonous waste products
			Total	9	

Question	Answer	Marks	Guidance
7*	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify	6	LOOK AT THE SPECTRA for labelled peaks Indicative scientific points may include: <u>Empirical formula</u> • empirical formula = C₄H ₆ O
	the correct structure of \mathbf{F} (accept <i>cis</i> or <i>trans</i>). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		element % mass Ar moles ratio C 68.6 12 5.72 4 H 8.6 1 8.60 6 O 22.8 16 1.43 1 IR and spectra and molecular formula Image: Note that the spectra is a spectra in the spectra is a spectra in the spectra is a spectra in the spectra in the spectra in the spectra in the spectra is a spectra in the spectr
	Level 2 (3–4 marks) The candidate attempts all three scientific points, but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions.		 infrared absorption; 1630–1820 cm⁻¹, due to C=O (aldehyde/ketone/carbonyl group) molar mass = 70 g mol⁻¹ (mass spectrum molecular ion peak <i>m</i>/<i>z</i> = 70) molecular formula = C₄H₆O
	AND an attempt at a feasible structure based on deduction from correct molecular formula <i>There is a line of reasoning presented with some structure. The</i> <i>information presented is relevant and supported by some evidence.</i>		 Functional groups, structure and stereochemistry alkene / C=C aldehyde / -CHO (C₃H₅⁺ fragment) mass spectrum; peak at 41 due to C₃H₅⁺ (loss of CHO)
	Level 1 (1–2 marks) The correct empirical formula AND a simple description based on at least one of the main scientific points. OR The candidate explains one scientific point thoroughly with few omissions		• E/Z or <i>cis-trans</i> isomer: E/Z or <i>cis-trans</i> isomer: H = C = C $CH_3 = C = 0$ H = C = C H = C H = C = C H = C = C H = C
	Official structureWith a line of reasoning. The information is in the most part relevant.O marksNo response or no response worthy of credit.		H CH ₃ I' cis trans (correct structure)
	Total	6	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2018

