

GCE

Mathematics B MEI

H640/01: Pure Mathematics and Mechanics

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2022

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

2. Subject-specific Marking Instructions for AS Level Mathematics B (MEI)

a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. If you are in any doubt whatsoever you should contact your Team Leader.

3

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case, please escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Mark Scheme

f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

- When a value is **given** in the paper only accept an answer correct to at least as many significant figures as the given value.
- When a value is **not given** in the paper accept any answer that agrees with the correct value to **2 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range. NB for Specification A the rubric specifies 3 s.f. as standard, so this statement reads "3 s.f"

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. E marks are lost unless, by chance, the given results are established by equivalent working. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" and "Determine. Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

(Question		Answer	Marks	AO	Guidance
1	(a)		Distance $2 + 5 + 4$	M1	1.1a	adding distances in two or three sections
			= 11 m	A1	1.1b	cao
				[2]		
1	(b)		$velocity = \frac{5-1}{10-15}$	M1	1.1a	Allow sign errors but not wrong way up. Soi
			$v = -0.8 \text{ m s}^{-1}$	A1	1.1b	Oe. Mark final answer`
				[2]		

Question	Answer	Marks	AO	Guidance
2	$\frac{13-x}{(x-3)(x+2)} = \frac{A}{(x-3)} + \frac{B}{(x+2)}$			
	13 - x = A(x+2) + B(x-3) A = 2, B = -3	M1	1.1 a	Clearing the denominators oe
	So $\frac{2}{(x-3)} - \frac{3}{(x+2)}$	A1 A1	1.1b 1.1b	For one correct coefficient Correct partial fractions seen Accept just values for A and B if defined
		[3]		

	Question		Answer	Marks	AO	Guidance		
3	(a)		л/2 ^у	B1	1.1b	General shape with horizontal asymptot	es	
						Allow if asymptote not drawn provided	the intention is clear	
			× ×			Must be a one-to-one function		
				B1	1.1b	v-values $\pm \frac{\pi}{2}$ seen		
			-#/2			2		
				[2]				
3	(b)		DR					
			Graphs intersect when $3\sin x \cos x = \cos^2 x$	M1	1.1a	soi		
			Either $\cos x = 0$	M1	1.1b	Attempt to solve $\cos x = 0$		
			$\pi \pi$	A1	2.1	Both values in radians needed		
			giving $x = -\frac{1}{2}, \frac{1}{2}$					
			or $3\sin x = \cos x$ giving $\tan x = \frac{1}{3}$	M1	2.1		Allow for $x = \tan^{-1} \frac{1}{3}$	
			x = 0.322, $x = -2.82$ to 3s.f.	A1	2.1	Both values in radians to at least 2 s.f.	SC1 award for 18.4° and	
						needed. Do not award if additional values inside the interval $[-\pi, \pi]$	-161.6° if 90° already seen	
						Ignora additional values outside the		
						interval $[-\pi,\pi]$.		
			When $x = 0.322$ or $x = -2.82$ $y = 0.9$	A1	2.1	Allow awrt 0.90	Notice 0.9 is exact.	
			[So the points of intersection are					
			$(0.322, 0.9)(-2.82, 0.9)(-\pi, 0)(\pi, 0)1$					
			$(0.022, 0.0), (2.02, 0.0), (-\frac{1}{2}, 0), (-\frac{1}{2}, 0)$					
				[6]				

	Alternative method				
	Graphs intersect when $3\sin x \cos x = \cos^2 x$	M1		soi	
	Either $\cos x = 0$	M1	1.1b	Attempt to solve $\cos x = 0$	
	giving $x = -\frac{\pi}{2}, \frac{\pi}{2}$	A1	2.1	Both values in radians needed	
	Or $3\sin x = \cos x$				
	Squaring gives				
	$9\sin^2 x = \cos^2 x = 1 - \sin^2 x$				
	$10\sin^2 x = 1$				
	$\sin x = \pm \sqrt{0.1}$	M1		Complete method for finding at least	
	x = -2.820, -0.322, 0.322, 2.820			one value for $\sin x$	
	Select genuine roots 0.322, -2.820	A1		Both correct roots and no others in the	
			• •	range	
	When $x = 0.322$ or $x = -2.82$ $y = 0.9$	Al	2.1	Allow awrt 0.90	Notice 0.9 is exact.
	[So the points of intersection are				
	$\left(-\frac{\pi}{2},0\right),\left(\frac{\pi}{2},0\right),(0.322,0.9),(-2.820,0.9)\right]$				
		[6]			

Que	stion	Answer	Marks	AO	Guidance	
4		\mathbf{AG}	B1	2.1	Dealing correctly with the 2. Need not	Note there is mathematically nothing
		$\left \frac{1}{(2+x)^2} = \frac{1}{4(1+x)^2} = \left \frac{1}{4} \left(1 + \frac{x}{2} \right) \right $			use negative powers for this mark	wrong with the direct
		$4\left(1+\frac{1}{2}\right)$				expansion
						$(2+x)^{-2} =$
						$2^{-2} - 2 \times 2^{-3} x + 3 \times 2^{-4} x^2$
						Award B1M1 if seen
		$=\frac{1}{4}\left(1+(-2)\left(\frac{x}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{x}{2}\right)^{2}+\right)$	M1	2.1	Allow for expanding $(1+kx)^{-2}$ even	
		4((2) 2! (2))			where the B mark is not awarded	
		$\frac{1-x}{1-x} \approx \frac{(1-x)}{(1-x+\frac{3}{2}x^2)}$	M1	2.1	Attempt to multiply their expansion	
		$(2+x)^2$ 4 (2 4 4)			by the numerator	
		$\approx \frac{1}{4} - \frac{1}{2}x + \frac{7}{16}x^2$	A1	2.1	Convincing argument	
		Alternative method				
		$\frac{1}{3} = \frac{3}{3} = \frac{1}{3}$	M1		Using partial fractions – allow an	
		$(2+x)^2 (2+x)^2 2+x$			arithmetic slip	
		$\frac{3}{(2+x)^2} = \frac{3}{4} \left(1 + (-2)\left(\frac{x}{2}\right) + \frac{(-2)(-3)}{2!}\left(\frac{x}{2}\right)^2 + \dots \right)$	B1		Dealing correctly with the 2. Need not use negative powers for this mark	
		1 1 $\begin{pmatrix} 1 & x & x^2 \end{pmatrix}$	M1		Allow for expanding both $(1+kx)^{-2}$	
		$-\frac{1}{2+x} = -\frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{4} \cdots \right)$			and $(1+kr)^{-1}$ even where the B mark	
					and $(1 + \lambda \lambda)$ even where the B mark	
		1 1 7 2	A 1		Adding terms to complete a	
		$\approx \frac{1}{4} - \frac{1}{2}x + \frac{1}{16}x^{-1}$			convincing argument	
			[4]			

(Question		Answer	Marks	AO	Guidance
5	(a)		Either of these is acceptable			
			FN	B1	1.1b	Arrows making a closed loop in roughly the right directions
			Tension / 25°	B1	1.1b	Tension, weight and F labelled on their triangle and 25° (or 65°)
			Weight Weight			correctly labelled. May be given as a suitable angle outside the
			25° Tension			triangle.
			▼ FN			
				[2]		
5	(b)		Using the triangle of forces			
			$F = 3g \tan 25^\circ \text{ or Tension} = \frac{3g}{\cos 25^\circ}$	M1	1.1 a	Allow sin/cos or $25^{\circ}/65^{\circ}$ interchange to find <i>F</i> or <i>T</i>
			<i>F</i> =13.7	A1	1.1b	cao
			Tension $= 32.4$ N	A1	1.1b	cao
			Alternative method			
			Resolve vertically $T \cos 25^\circ = 3g$	M1		Allow sin/cos interchange or 25°/65° interchange
			T = 32.4 N	A1		cao
			Resolve horizontally $F = T \sin 25^\circ = 13.7$	A1		сао
				[3]		

(Question		Answer	Marks	AO	Guidance		
6	(a)		• the bricks have negligible size so contact	B1	3.3	Allow "no size" or "size doesn't	Allow "weight of bricks	
			force with the plank acts at a point			matter" or "shape is not relevant" etc	acts on the plank at point"	
			• The mass of plank is evenly spread	B1	3.3	Allow for either statement	Do not allow "mass acts"	
			across its length			Allow the plank is the same	at the centre	
			• the weight of plank acts at centre of			throughout or centre of mass at centre		
			plank.					
				[2]				
6	(b)		when placed at the centre tensions are equal					
			$2 \times 75 = 2.3ng + 5g$	M1	3.1b	Using symmetry to establish equation	Trial and improvement	
						for <i>n</i> soi. Allow if the weight of the	may be used	
						plank or one of the tensions is missing		
				A1	1.1b	Final answer must be the integer		
			$n = \left\lfloor \frac{1}{2.3g} \right\rfloor = 4.48 \text{ so 4 bricks}$			Allow if 4 seen www		
			Alternative using moments					
			$5g \times 0.4 + 2.3gn \times 0.4 = 75 \times 0.8$	M1		Allow for missing moment of weight	Every term must be a	
						or one of the tensions	moment	
			$n = \left[\frac{40.4}{1-4.48}\right] = 4.48$ so 4 bricks	A1		Final answer must be the integer		
			<i>n</i> _ [9.016] _ 4.40 <i>be</i> 1 bitelis			Allow if 4 seen www		
				[2]				
6	(c)		2.3gnx	B1	1.1b	Allow positive or negative 22.54nx	Allow in an equation.	
			Nm	B1	1.2			
				[2]				
6	(d)		4 bricks on the point of breaking <i>x</i> m from A					
			Taking moments about A	M1	3.1b	Taking moments about any point to for	m an equation. FT their n	
			$5g \times 0.4 + 4 \times 2.3gx = 75 \times 0.8$			All forces used in a moment. Allow sign	n errors. Allow an incorrect	
						distance used. Could be an inequality		
			9.2gx = 60 - 2g	A1	1.1b	Fully correct equation FT their <i>n</i> . Allow	corresponding inequality	
						Need not be simplified	1	
			x = 0.448 [so 44.8 cm from A]	A1	1.1b	cao		

Question	Answer	Marks	AO	Guidance
		[3]		

C	Question		Answer	Marks	AO	Guidance	
7	(a)		x = 14t	B1	1.1b	must be $x = \dots$ or seen as the	
						first component of the vector.	
						Do not award for an expression	
						that adds a vector to a scalar	SC1 for $\begin{vmatrix} 7t - 4.9t^2 + 5 \end{vmatrix}$ or
							$\begin{pmatrix} 14t \end{pmatrix}$
			$y = 7t - \frac{1}{2}gt^2 + 5$	M1	1.1b	allow without +5, or if -5 seen	$(14t - 4.9t^2 + 5)$
			2			Do not award for an expression	$\left(7t\right)$
						that adds a vector to a scalar	
			So the position vector is $\begin{pmatrix} 14t \end{pmatrix}$	Al	2.5	Must be a single vector.	
			So the position vector is $\left(7t - 4.9t^2 + 5\right)$			Accept $\frac{1}{2}g$ in final answer	
						Accept $14t \mathbf{i} + (7t - 4.9t^2 + 5) \mathbf{j}$	
`				[3]			I
7	(b)		Lands when $y = 0$				
			$7t - 4.9t^2 + 5 = 0$	M1	3.1b	Award for correct quadratic or an	attempt to find value of t when
						their quadratic $y = 0$	
			t = 1.95	A1	1.1b	cao	
			gives $x = 14t = 27.3$ m	B1	1.1b	FT their <i>t</i> and their linear expression	on for <i>x</i>
						ISW where candidates find the dis	tance from the point of projection
				[3]			

oth parametric equations
e method for finding $\frac{dy}{dx}$ in terms of t using
the curve
to find ^{dy} Do not allow for mainmost
$\frac{dx}{dx}$ bo not anow for reciprocal
value of t at (8, 4). Allow for ± 2 or 2 stated
$\frac{dy}{dx} = \frac{2\sqrt{y}}{3y-8}$ for the M mark only
e clearly established from correct working
vative to find the value of <i>t</i> at P.
4
to $t = \frac{1}{3}$
C C C C C C C C C C C C C C C C C C C
and rearranging to form quadratic equation
f seen must be rejected

8	(d)	Substitute $t^2 = y$ $x = t^3 - 8t \Rightarrow x^2 = t^6 - 16t^4 + 64t^2$	M1 A1	1.1a 1.1b 2 1	Allow for $x^2 = t^2 (t^2 - 8)^2$
		$\Rightarrow x^2 = y^3 - 16y^2 + 64y$ Alternative method	AI	2.1	
		Substitute $t = \pm y^{\frac{1}{2}}$	M1		Substituting for <i>t</i> in their equation for <i>x</i> ; allow without $\frac{1}{2}$
		$x = \pm \left(y^{\frac{3}{2}} - 8y^{\frac{1}{2}} \right)$	A1		Soi Allow without $\frac{1}{2}$
		$x^{2} = y(y-8)^{2} = [y^{3}-16y^{2}+64y]$	A1		must be in the form $x^2 =$ from fully correct working Need not be simplified. Do not award if \pm not seen at all
			[3]		

9	(a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = 2kt\mathbf{i} + 6\mathbf{j}$	M1	3.1a	differentiating the v vector
		When $t = 2$, $\mathbf{a} = 2 \times 2k\mathbf{i} + 6\mathbf{j}$	M1	1.1b	substituting $t = 2$ into their a vector
		$ \mathbf{a} = \sqrt{(4k)^2 + 6^2} = 10$	M1	3.1a	Equate the magnitude of their a vector to 10
		giving $16k^2 + 36 = 100$			
		So $k=2$	A1	3.2a	must choose the positive value if two values seen
			[4]		
9	(b)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t = \frac{kt^3}{3}\mathbf{i} + 3t^2\mathbf{j} + \mathbf{c}$	M1	1.1a	integrating with their <i>k</i> or general <i>k</i> . Allow for a vector or for both components separately integrated.
		particle at the origin when $t = 0$ so $c = 0$			
		So $\mathbf{r} = \frac{kt^3}{3}\mathbf{i} + 3t^2\mathbf{j} = \left[\frac{2t^3}{3}\mathbf{i} + 3t^2\mathbf{j}\right]$	A1	1.1b	Condone missing $+\mathbf{c}$ or $+\mathbf{c}$ still in their answer FT their k if positive or general k used Must be in vector form
			[2]		
9	(c)	Northeast when the i component $=$ j component			
		$\frac{2t^3}{3} = 3t^2$	M1	3.1b	FT their r
		giving $t = 4.5$ s	A1	1.1b	www
		[t = 0 rejected as the particle is at the origin]			
			[2]		

Question	Answer	Marks	AO	Guidance	
10	Length BC: $l^2 = 30^2 + 15^2 - 2 \times 30 \times 15 \cos \theta$	M1	3.1a		If M0 awarded here allow
					SC1 for
					$BC = \sqrt{675} = 15\sqrt{3}$ found
					using $\theta = \frac{\pi}{3}$
	$l^2 = 1125 - 900\cos\theta$	A1	1.1b	Soi Allow equivalent in metres	If working in metres
	$l = (1125 - 900\cos\theta)^{\frac{1}{2}}$				$l^2 = 0.1125 - 0.0900\cos\theta$
	$dl = \frac{1}{1}(1125 - 000 \text{ mm} \text{ c})^{-\frac{1}{2}} = 000 \text{ mm} \text{ c}$	M1	3.1a	Attempt to use the chain rule	
	$\frac{1}{d\theta} = \frac{1}{2} (1125 - 900\cos\theta)^{-2} \times 900\sin\theta$	A1	1.1b	Any form	
	$\frac{\mathrm{d}\theta}{\mathrm{d}\theta} = 0.1$	B1	1.2	Soi eg from $\theta = 0.1t$	
	$\frac{1}{dt} = 0.1$				
	$\frac{\mathrm{d}l}{\mathrm{d}t} = \frac{\mathrm{d}l}{\mathrm{d}\theta} \times \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{450\sin\theta}{\left(1125 - 900\cos\theta\right)^{\frac{1}{2}}} \times 0.1$	M1	1.1a	Using the chain rule to find $\frac{dl}{dt}$	
	When $\theta = \frac{\pi}{3}$	MI	11.	Substitute $\theta = \frac{\pi}{2}$ into their $\frac{dl}{dt}$	
	$\left \frac{\mathrm{d}l}{\mathrm{d}t} = \frac{45\sin\frac{\pi}{3}}{\left(1125 - 900\cos\frac{\pi}{3}\right)^{\frac{1}{2}}} = \left\lfloor \frac{45\sqrt{3}}{2 \times 15\sqrt{3}} = \frac{3}{2} \right\rfloor$	1411	1.13	$3 \mathrm{d}\theta$	
	1.5 cm s^{-1}	A1	3.2a	Must have correct unit for the value	0.015 m s^{-1}
				Allow written as cm per second oe	
		[8]			

Question	Answer	Marks	AO	Guidance		
	Alternative method					
	$l^2 = 30^2 + 15^2 - 2 \times 30 \times 15 \cos \theta$	M1				
		A1			If working in metres	
	$l^2 = 1125 - 900\cos\theta$				$= 0.1125 - 0.0900 \cos \theta$	
	$2l \frac{dl}{dl} = 000 \sin \theta$	M1		Attempt to use the implicit		
	$2t \frac{d\theta}{d\theta} = 900 \sin \theta$	A1		differentiation. Any form		
	$d\theta = 0.1$	B 1		soi		
	$\frac{1}{dt} = 0.1$					
	$\frac{dl}{dl} = \frac{dl}{dt} \times \frac{d\theta}{dt} = \frac{450\sin\theta}{450\sin\theta} \times 0.1$	M1		Using the chain rule to find $\frac{dl}{dt}$		
	$dt d\theta dt l$			dt		
	When $\theta = \frac{\pi}{2} dl - \frac{45\sin\frac{\pi}{3}}{2} = 3$	M1		Substitute $\theta = \frac{\pi}{l}$ into their $\frac{dl}{dl}$		
	$\frac{1}{3} \frac{1}{dt} - \frac{1}{15\sqrt{3}} - \frac{1}{2}$			$3 \qquad \text{d}\theta$		
	1.5 cm s^{-1}	A1		Must have correct unit for the value	0.015 m s^{-1}	
				Allow written as cm per second oe		
		[8]				

H640/01

Question	Answer	Marks	AO	Guidance		
11	Let $u = 2x + k$ $2dx = du$	M1	2.1	Substituting $u = 2x + k$	Allow for $\int \frac{a}{du} du$ for any	
				Allow for a different substitution	$\int u^2 du^2$	
				giving an integral in <i>u</i> only	constant seen	
	$\int 2 dr = \int 1 dr$	A1	2.1	Correct integrand in terms of <i>u</i>		
	$\int \frac{1}{\left(2x+k\right)^2} dx = \int \frac{1}{u^2} du$			Ignore limits		
	$=-\frac{1}{c}[+c]$	A1	2.1	correct indefinite integral		
	u u			constant need not be seen		
	$\int_{-2k}^{2k} 2 = \int_{-2k}^{2k} \int_{-2k}^{2k} \frac{1}{2k} du = \frac{1}{2k} + \frac{1}{2k}$	M1	2.1	substituting correct new limits into		
	$\int_{a} \frac{1}{\left(2x+k\right)^2} dx = \int_{3k} \left(\frac{1}{u^2}\right) du = -\frac{1}{5k} + \frac{1}{3k}$			substituting in terms of x and using		
				original limits		
	Alternatively, by inspection					
	$\int \int \frac{2k}{2} = 2 = -7^{2k}$	M1		Integrating by inspection to obtain any		
	$\int_{-\infty}^{\infty} \frac{2}{(2x+k)^2} dx = \left[-(2x+k)^{-1} \right]_{k}^{2k}$			multiple of $(2x+k)^{-1}$		
		Δ2		Fully correct indefinite integral – need		
		A2		not be simplified.		
	$-\frac{1}{-1}+\frac{1}{-1}$	M1		substituting limits into their integrated		
	5k 3k			expression		
	$=\frac{2}{15k}$	A1	2.1	Allow $\left(-\frac{1}{5}+\frac{1}{3}\right)\frac{1}{k}$ seen		
	This is inversely proportional to k	E1	2.2a	FT their definite integral	Allow if a required at	
	[with constant of proportionality $\frac{2}{15}$]			Must use phrase "inversely	Anow if $\frac{1}{k}$ required at	
				proportional" to k or indicates $\propto \frac{1}{k}$	the start of the argument	
		[6]				

Question	Answer	Marks	AO	Guidance
12	Assume there is a prime number p which is one	M1*	2.1	Setting up proof by contradiction
	less than a square number			
	$p = n^2 - 1$ for some positive integer $n \ge 2$			
	p = (n-1)(n+1)	M1*	2.1	factorising
	If $n=2$ $p=1\times 3=3$ which is prime	E1	2.1	Considers the possibility that one factor might be 1
	[p = 2 is not 1 less than a square number]			
	If $n > 2$ then p has two [proper] factors			
	so is not prime which is a contradiction. So there	E1	2.1	Condone missing reference to $n = 2$ (or $p = 3$) for this step.
	are no prime numbers other than 3 which are 1	(dep)		Conclusion must be clear.
	less than a square number			
				Allow SC1 where M1M0 or M0M0 has been awarded and
				$3 = 2^2 - 1$ is established
		[4]		

Que	Question		Answer	Marks	AO	Guidance
13	(a)		Newton's second law for the train $5-2 \times 0.8 = (0.5+0.4)a$	M1	3.1b	N2L for whole train with correct mass and all forces present
			Alternative 5-0.8-T=0.5a T-0.8=0.4a			Also allow for 2 equations where both have correct mass and all forces present in each
			giving $a = \frac{34}{9} = 3.78 \text{ m s}^{-2}$.	A1	1.1b	
			Using $v = u + at$ with $u = 0, t = 1.5$	M1	3.1b	using <i>suvat</i> equation(s) with $u = 0$ and their $a \neq g$ leading to a
			$v = \frac{34}{9} \times 1.5 = \frac{17}{2} = 5.67 \text{ m s}^{-1} (3\text{ sf})$	A1	1.1b	value for <i>v</i> FT their <i>a</i> . Any form
			9 5	[4]		
13	(b)					
			N_E Tension N_C R $in string$	B1	1.1b	weights and normal reactions (must be distinct and not vertical) Allow if both components of weight given instead. Allow in addition to weight only if clear they are for working purposes only
				B 1	1.1b	tensions in string and coupling parallel to inclined plane
			$\frac{R}{1000} = 0.4 \text{g N}$	B1	1.1b	<i>R</i> marked for both parts of the train. No additional forces Allow if distinct if it is clear they are equal in later work
12	(a)		Nantan'a ang dian	[3] M1	1 1L	Note to $p^2 = 1$ and $p^2 = 0.0$ Allow for incompart weight terms (a) on D
13	(C)		$P - 2R - 0.9g\sin 20^\circ = 0.9a$	IVI I	1.10	used instead of 2R
				A1	3.3	Fully correct
						Any form
				[2]		

Que	Question		Answer	Marks	AO	Guidance
13	(d)		When $P = 5$ the equation gives			
			$5 - 2R - 0.9g\sin 20^\circ = 0.9a$	M1	3.1b	establishes one equation linking R and a . FT their (c)
			When $P = 5.5$ the equation gives	M1	3.1b	establishes another equation linking R and a . Consistent with their
			$5.5 - 2R - 0.9g\sin 20^\circ = 0.9 \times 2a$			first equation
			Solve simultaneously			method need not be seen BC
			giving $R = 0.742$ $\left[a = \frac{5}{9}\right]$	A1	1.1b	correct value for R (a is not required)
			Alternative method			
			When $P = 5$			
			$a = \frac{5 - 2R - 0.9g\sin 20^\circ}{10^\circ}$	M1		Finds expression for <i>a</i> when $P = 5$ or $P = 5.5$
			0.9			Soi
			When $P = 5.5$			
			$a_1 = \frac{5.5 - 2R - 0.9g\sin 20^\circ}{0.9}$			
			So			
			$\frac{5.5 - 2R - 0.9g\sin 20^{\circ}}{0.9} = 2\left(\frac{5 - 2R - 0.9g\sin 20^{\circ}}{0.9}\right)$	M1		Links corresponding acceleration for the other value of P Do not allow factor of 2 on the wrong side
			giving $R = 0.742 \left[a = \frac{5}{9}\right]$	A1		correct value for R (a is not required)
				[3]		

Question		n	Answer	Marks	AO	Guidance
14	(a)		When $t = 0$, $82 = \theta_0 e^0$ so $\theta_0 = 82$	B 1	3.3	
			$t = 5, 27 = \theta_0 e^{-5k}$	M1	3.3	Forming an equation for k and attempt to solve
			giving $k = \left[-\frac{1}{5} \ln \left(\frac{27}{82} \right) \right] = 0.222$ to 3 sf	A1	1.1b	Allow for exact value or evaluated to at least 2 s.f.
				[3]		
14	(b)		The model predicts that temperature tends to			
			zero but if the quantity of water is small the water will warm up so it will not cool the object	E1	3.5b	Must imply to the model tends to zero and this does not match the real situation.
			to zero.			
				[1]		
14	(c)		$\ln\theta = \ln(\theta_0 e^{-x}) = \ln\theta_0 + \ln(e^{-x})$	M1	2.1	Taking logs and attempting to use laws of logs Do not award for values of <i>a</i> and <i>b</i> obtained directly from the data and the natural log form of the model.
			$\ln \theta = \ln 82 - 0.222t = [4.41 - 0.222t]$	A1	2.1	FT their values for θ_0 and k
						Accept as part of equation or a and b clearly stated
				[2]		
14	(d)		When $t = 0$, $\ln \theta = 3.4$			
			giving $\theta = 29.96$ so 30.0° C to 3 sf	B1	3.4	Accept 30° www Must be evaluated
			$\theta = 29.96e^{-0.08t}$			
			$\frac{d\theta}{dt} = 29.96 \times -0.08e^{-0.08t}$	M1	3.4	Attempt to differentiate their exponential expression for θ
				A1	3.4	Any form eg $e^{3.4} \times -0.08e^{-0.08t}$ or $-0.08e^{3.4-0.08t}$
			When $t = 0 \frac{\mathrm{d}\theta}{\mathrm{d}t} = -2.3968$	A1	3.4	Allow for correct negative value for $\frac{d\theta}{dt}$ or a clear statement that
			[object is cooling by 2.4°per minute]	F		the rate of cooling is 2.4° per minute. Accept = $-0.08e^{3.4}$
				[4]		

Mark Scheme

June 2022

		Alternative method				
		When $t = 0$, $\ln \theta = 3.4$	B1	3.4	Accept 30° www	
		giving $\theta = 29.96$ so 30.0° C to 3 sf				
		Differentiate $\ln \theta = 3.4 - 0.08t$ w.r.t t				
		$\frac{1}{\theta}\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.08$	M1		Uses implicit differentiation w.r.t <i>t</i>	
		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.08\theta$	A1		Correct derivative	
		When $t = 0, \theta = 29.96$				
		so $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -2.3968$	A1		Allow for correct negative value for $\frac{d\ell}{dt}$	$\frac{9}{2}$ or a clear statement that
		object is cooling by 2.4° per minute			the rate of cooling is 2.4° per minute	
			[4]			
14	(e)	Solve simultaneously	M1	3.1b	Attempting to find the intersection of	Could be BC
		$\ln\theta = 3.4 - 0.08t$			their (c) and the given line	
		$\ln\theta = \ln 82 - 0.222t$				
		gives $t = 7.089$ $t = 7.1$ [7 minutes and 5	A1	3.4	Accept awrt 7.0, 7.1 or 7.2	
		seconds]				
		$\ln\theta = 2.8328$ gives $\theta = 17^{\circ}$ C	A1	3.4	Must be the value for θ	
		Alternative method				
		$82e^{-0.222t} = 30e^{-0.08t}$				
		$82_{-0.142t}$	M1		Equate their expressions for	
		$\frac{1}{30} = e$			temperature and attempts to solve for t	
		t = 7.08 [7 minutes and 5 seconds]	A1		Accept awrt 7.0, 7.1 or 7.2	
		$\theta = 17 \circ C$	A1		Cao	
			[3]			

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk

Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.