

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

November 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
	$12x^3 + 20x^2$	B1			
1		Additional C	Guidance		
	10 ⁶	B1			
2		Additional C	Guidance		
	2	B1			
3	2/3	ВІ			
		Additional (Guidance		
	$y = \frac{1}{x}$	B1			
4	л	Additional C	Guidance		
-					

Question	Answer	Mark	Comme	nts
	720	B2	B1 at least 3 multiples of 120 (> 120) and at least 3 multiples of 144 (> 144) eg 240 360 480 and 288 432 576 or (120 =) 2 × 2 × 2 × 3 × 5 or (144 =) 2 × 2 × 2 × 2 × 3 × 3 or (Answer =) 2 × 2 × 2 × 2 × 3 × 3 or (Answer =) 24 × 32 × 5 or (Answer =) any multiple of 720 (> 720) eg 1440 or 17280	
	Additional Guidance			
5	Prime factor responses for B1 may be in index form eg $(120 =) 3 \times 5 \times 2^3$			B1
	Prime factor responses for B1 may be seen on a factor tree or a Venn diagram or in repeated division eg1 2 2 2 3 5 on a factor tree for 120 eg2 2 2 2 3 3 inside one circle on a Venn diagram			B1 B1
	For B1 allow some incorrect multiples if 3 correct of each eg1 240 380 480 720 900 (3 correct)			B1
	and 288 432 576 868 (3 correct) eg2 Answer 1440 but some incorrect multiples seen			B1
	Any multiple of 720 (> 720) given in unsimplified form			
	eg1 $2^7 \times 3^3 \times 5$ eg2 $2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 3 \times 3$			B1 B1
	B1 can still be awarded even if subsequently works out HCF			
	Answer 720 with some incorrect mult			B2
	For products of prime factors, ignore inclusion of × 1			

Question	Answer	Mark	Comme	nts	
	Positive	B1	accept +ve or +		
	Additional Guidance				
6(a)	Ignore any reference to the strength of the correlation				
	As one jump increases so does the other so positive			B1	
	As one jump increases so does the other				

	Straight line of best fit passing through (150, [504, 512]) and (180, [550, 558])	B1	accept if clear intention to line ignore anything either signals.	•
6(b)	Correct reading $\pm \frac{1}{2}$ square for their straight line of best fit	B1ft	ft straight line with positive gradient accept if clear intention to draw a straig line ignore any working lines on their graph	
	Additional Guidance			
	No line of best fit			B0B0ft
	Short straight line with positive gradient and correct reading $\pm \frac{1}{2}$ square for their line			B0B1ft
	Two lines of best fit, mark the line that leads to their answer			
	Two lines of best fit, no answer, apply the usual rules of choice			

Question	Answer	Mark	Comme	nts
	Valid reason	B1	eg 195 cm is outside the	e range of values
	Add	ditional G	Guidance	
	Allow '195' or 'his jump' or 'it'	to repre	esent 195 cm	
	B1 responses - do not allow points/da graph or line	ata/plots/r	results to be replaced by	
	195 exceeds the data			B1
	It is beyond/outside the data			B1
	195 is higher than 185			B1
	Nobody else jumped that high			B1
	His jump is more than the others		B1	
	The correlation stops at 560			B1
	All the other points/data/plots/results are less than 195			B1
6(c)	The points/data/plots/results don't reach 195			B1
	The points/data/plots/results don't reach that far			B1
	The points/data/plots/results stop at 1	85		B1
	The pattern/trend/correlation may chapoints/data/plots/results	ange after	the	B1
	The pattern/trend/correlation may cha	ange		В0
	It doesn't fit the pattern/trend/correlation	ion		В0
	Line is not long enough			В0
	No points at/near/around/close to 195	5		В0
	195 is anomalous or 195 is an outl	ier		В0
	Not enough data			В0
	This data is not on the graph			В0
	It is too different to the other points			В0
	Ignore extra statements that do not co	ontradict a	a valid reason	

Question	Answer	Mark	Comments	
	Alternative method 1			
	110 ÷ 2 or 55 or 2 ÷ 110 or 0.018(1) or 0.0182 or 44 ÷ 110 or 0.4	M1	oe	
	or 110 ÷ 44 or 2.5			
7	$44 \div (110 \div 2)$ or 0.8 or $\frac{4}{5}$	M1dep	oe eg 2880 or calculation that would evaluate to 0.8 eg $2 \div 110 \times 44$ or $44 \div 110 \times 2$ or $2 \div (110 \div 44)$ or $\frac{110 + 44}{110 \div 2} - 2$ or $2.8 - 2$	
<u>-</u>	48	A1		
-	Alternative method 2			
	110 ÷ 2 ÷ 60 or 0.916 or 0.917 or 0.92 or 2 × 60 ÷ 110 or 1.09(0) or 1.091	M1	oe	
	44 ÷ (110 ÷ 2 ÷ 60)	M1dep	oe calculation that would evaluate to 48 eg 44 × 2 × 60 ÷ 110	
	48	A1		

Additional Guidance is on the next page

Question Answer	Mark	Comments
-----------------	------	----------

	Additional Guidance				
	Ignore units for M marks eg 55 miles Do not award A1 if premature approximation for 48 seen				
	eg				
	(Alt 1) 0.018 × 44 = 0.8 Answer 48	M2A1			
	(Alt 1) 0.018 × 44 = 0.792 and 0.792 × 60 = 47.52 Answer 48	M2A0			
	(Alt 2) $44 \div 0.917 = 48$				
7 cont	(Alt 2) 44 ÷ 0.917 = 47.9 Answer 48	M2A0			
	(Alt 2) $44 \times 1.09 = 48$	M2A1			
	(Alt 2) 44 × 1.09 = 47.96 Answer 48				
	48 followed by answer 2 h 48 min	M2A0			
	48 followed by answer 168 min	M2A0			
	Allow M1 even if not subsequently used				
	Alt 1 Working in seconds leading to 2880	M2			

Question	Answer	Mark	Comme	nts
	<i>a</i> = 7	B2	B1 $3ax - 10a$ or $3ax = 21x$ or $3ax - 20$ or $3a = 21$ or $3a - 21 = 0$ or $21 \div 3$ oe or $-10a = 2b$ oe	
	b = -35	B1ft	ft $-5 \times \text{their } a \text{ where } a \neq 0$	
	Ad	ditional G	Guidance	
8	Ignore collection error if correct expa eg $3ax - 10a - 21x + 2b = 0$ (should	l be – 2 <i>b</i>)		B1
	Ignore incorrect simplification if correct expansion seen eg $3ax - 10a = -7ax$			B1
	Allow eg $a \times 3x$ for $3ax$			
	Allow eg a3x for 3ax			
	Embedded 7 with $a = 7$ not stated eg 7(3 x – 10) or 7 × 3 x = 21 x or 21 ÷ 7 = 3			B1
	Allow B1 even if not subsequently used			
	$\frac{180-56}{2}$ or 62	M1	oe may be on diagram	
	180 + their 62 or 360 – 56 – their 62	M1dep	oe eg 62 + 62 + 118	
	242	A1		
9	Additional Guidance			
	62 seen even if not subsequently used			M1
	Answer (0)62			M1M0A0
	56 only			M0
	242 seen but answer given as 62			M1M0A0
	242 seen but then further work eg 360 – 242 and answer 118			M1M0A0

Question	Answer	Mark	Comments
	Alternative method 1		
	21 – 17 or 17 – 21 or 17 + 4 or 21 – 4 or (difference is) 4 or (7th term =) 21 + 4 or 25 or (4th term =) 17 – 4 or 13	M1	may be seen as 17 21 4 allow (difference is) –4
	17 + (100 – 5) × 4 or 17 + 95 × 4 or 17 + 380		must be using 4 oe calculation that would evaluate to 397 5th term + 95 × 4
	or $21 + (100 - 6) \times 4$ or $21 + 94 \times 4$ or $21 + 376$		6th term + 94 × 4
10	or 17 – 4 × 4 + 99 × 4 or 1 + 99 × 4 or 1 + 396	M1dep	1st term + 99 × 4
	or $17 - 5 \times 4 + 100 \times 4$ or $-3 + 100 \times 4$ or $-3 + 400$		0th term + 100 × 4
	397	A1	
	Alternative method 2	1	
	4 <i>n</i>	M1	oe eg $n \times 4$
	4 <i>n</i> – 3	A1	oe
Ţ	397	A1	

Additional Guidance is on the next page

Question Answer	Mark	Comments
-----------------	------	----------

	Additional Guidance				
	Term to term rule described eg Add on 4 each time	M1			
	a + 5d = 21, $a + 4d = 17$ only	MO			
	Difference shown as 4 then eg $n + 4$	M1			
	Only eg $n + 4$ or $3n + 4$	MO			
	4n-3 seen even if not subsequently used	M1A1			
10 cont	4n seen eg $4n + 13$ even if not subsequently used	M1			
	Correct list going up in 4s stopping at 397	M1M1A1			
	List going up in 4s with an error or not reaching 397	M1M0A0			
	No subtraction seen and incorrect difference eg 17 21 +3	МО			
	Alt 2 allow n4	M1			
	4n - 3 = 100	M1A1A0			
	Allow M1 even if not subsequently used				

Question	Answer	Mark	Comme	nts
	120 000 × 1.05 or 126 000	M1	oe eg 120 000 + 0.05 × may be implied by eg 14	
	120000×1.05^4 or $\frac{583443}{4}$	M1dep	oe eg their 126 000 × 1. and their 132 300 × 1.05 or and their 138 915 × 1.05	
	145860(.75) or 145860.8(0) or 145861 or 145900 or 146000	A1	if no value given implied by M2 so	
	150 000	B1ft ft any answer seen with > 2 condone 150 000.00		
	Additional Guidance			
11	126 000 × 1.05 ³	M1M1		
	Answer only 145860(.75) or 145860.8(0) or 1458	M1M1A1B0		
	Answer only 150 000	Zero		
	For year on year working allow round up to M2A0B1ft	ling/trunca	ation if method shown for	
	eg 126 000 × 1.05 = 132 000			M1
	and 132 000 × 1.05 = 138 000 and 138 000 × 1.05 = 144 900 Answe	er 140 000		M1A0B1ft
	120 000, 126 000, 132 000, 138 000, 144 000 with no method shown does not imply truncation, this is just adding on 6 000 each year			M1M0A0
	120 000 + 4 × 0.05 × 120 000 or 120	M1M0A0		
	Misreads can score up to M2A0B1ft			
	Treat calculating 5 years as a misrea of years eg 120 000 × 1.05 ² will score			

Question	Answer	Mark	Comments	
	Alternative method 1			
	15 2 or 225 and $(16 \div 2)^2$ or 8^2 or 64	M1	oe	
	$\sqrt{15^2 + (16 \div 2)^2}$ or $\sqrt{\text{their } 225 + \text{their } 64}$ or $\sqrt{289}$ or 17	M1dep	oe full trigonometric method leading to 17 scores M2 eg $\frac{15}{\sin\left(\tan^{-1}\frac{15}{8}\right)}$	
	6 × their 17 + 3 × 16 or 102 + 48	M1dep	oe	
	150	A1	SC2 $48 + 6\sqrt{161}$ or [124.08, 124.2]	
	Alternative method 2			
12	$(48 \div 2)^2$ or 24^2 or 576 and $(15 \times 3)^2$ or 45^2 or 2025	M1	oe eg $(16 \times 1.5)^2$ and $(3 \times 15)^2$	
	$\sqrt{(48 \div 2)^2 + (3 \times 15)^2}$ or $\sqrt{\text{their } 576 + \text{their } 2025}$ or $\sqrt{2601}$ or 51	M1dep	oe full trigonometric method leading to 51 scores M2 eg $\frac{45}{\sin\left(\tan^{-1}\frac{15}{8}\right)}$ or $\frac{45}{\sin\left(\tan^{-1}\frac{45}{24}\right)}$	
	2 × their 51 + 3 × 16 or 102 + 48	M1dep	oe	
	150	A1	SC2 $48 + 6\sqrt{161}$ or [124.08, 124.2]	
	Additional Guidance			
	15 ² – 8 ² or 45 ² – 24 ²		M1M0M0A0 (unless SC2 scored)	
	Allow 61.9(2) or 61.93 or 62 for premature approximation seen	but do not award A1 if		

Question	Answer	Mark	Commer	nts	
	15 × 24 or 360 and 40 × 76 or 3040 and 55 × 52 or 2860 and 75 × 48 or 3600 or 9860	M1	allow one incorrect midp	oint	
13(a)	(their 360 + their 3040 + their 2860 + their 3600) ÷ 200 or 9860 ÷ 200	M1dep	condone bracket error se eg 360 + 3040 + 2860 +		
	49.3	A1	accept 49 if full working s correct midpoints	shown using	
	Additional Guidance				
	Four values or products with three co 3600 implies the first mark and could				
	Correct products seen in the table or shown in the working lines eg 200 ÷ 4	ut a different method	МО		
	Ignore attempts to convert to minutes eg 49 min 18 s or 49 min 30 s				
_	49.3 in working with answer $30 \leqslant t < 10^{-1}$	50		M2A0	

Question	Answer	Mark	Comments
	24 ÷ 30 or 0.8 or 76 ÷ 20 or 3.8 or 52 ÷ 10 or 5.2 or 48 ÷ 30 or 1.6 or	M1	implied by a correct bar
	four frequency densities in correct proportion At least three of	M1dep	eg 8 and 38 and 52 and 16 implied by at least three bars in correct
13(b)	O.8 and 3.8 and 5.2 and 1.6 At least 3 bars in correct proportion with matching scale on vertical axis	д	proportion
	or at least 3 bars in correct proportion with a matching key	M1dep	
	Fully correct histogram with scale on vertical axis or a key	A1	$\pm \frac{1}{2}$ small square ignore frequency polygon if included
-	Additional Guidance		
	Allow up to M2 even if not subsequently used		
	Correct bars must have correct widths		

Question	Answer	Mark	Comments
	$\frac{1}{2}(13 + 10) \times 12 \text{ or } 138$ or $\frac{1}{2} \times 10 \times 8 \text{ or } 40$ $\frac{1}{2}(13 + 10) \times 12 \text{ or } 138$	M1	oe oe
14(a)	and $\frac{1}{2} \times 10 \times 8 \text{ or } 40$ or 178	M1dep	
	25 ÷ (their 138 + their 40)	M1dep	oe
	0.14(0)	A1	
		Additional G	Guidance

Question	Answer	Mark	Comme	nts
	less than and valid reason	B2	eg less than and you sh by a bigger number or less than and the (actua B1 less than	
	Additional Guidance			
	If no box is ticked, condone if less that	y stated in working lines		
14(b)	Wrong box or > 1 box ticked			В0
14(5)	less than and he has not included all the base			B2
	less than and it doesn't cover 100% of the base			B2
	less than and it doesn't include the pa	arts outsid	e the areas	B2
	less than and the area is an underest	B2		
	less than and it is an underestimate			B1
	less than and it is only an estimate			B1
	less than and the answer to (a) is not	the exact	area	B1

	$w = \sqrt[3]{y^2}$	B1		
15	Add	ditional G	Guidance	

Question	Answer	Mark	Comme	nts
	$\frac{a}{100} \times b = \frac{b}{100} \times a$	В1	oe eg both are equal to	<i>ab</i> 100
16(a)	Ado	ditional G	uidance	
	ab = ba			В0
	Only numerical example(s)			В0

	No and valid reason	B1	eg No and it should be 40% of 160 or No and it should be 60% (= 140% of 60) or No and $160 \neq 60$ or No and $40 \neq 140$ or No and 64 and 84	,
	Additional Guidance			
16(b)	If neither box is ticked condone if No			
	Yes or both boxes ticked			В0
	No and the <i>a</i> s aren't the same	B1		
	No and the b s aren't the same			B1
	No and 160 ≠ 140			В0
	No and 40 ≠ 60			В0
	No and a values change from 160 to 140			В0
	No and b values change from 40 to 60			В0
	No and 96 and 84			В0
	No and they give different answers			В0

Question	Answer	Mark	Comme	nts
	12	B2	B1 (1 – 0.85) × 80 or 0.15 × 80 or 0.85 × 80 or 68	
17(a)	Additional Guidance			
	For B1 allow oe calculations eg 17 × 4		B1	

17(b)	25	B2	B1 0.71 × 80 or 56.8 or 56 or (1 – 0.71) × 80 or 0 or 23.2 or 24 or (0.71 – 0.3875) × 80 or 0.3225 × 80 or 25.8	.29 × 80
	Additional Guidance			
	For B1 allow oe calculations $\operatorname{eg}\left(0.71 - \frac{31}{80}\right) \times 80$		B1	
	Answer only 26			В0

Question	Answer	Mark	Comments				
	Alternative method 1 large rectangle – 4 squares						
	x(x + 5)	M1					
	$x^2 + 5x - 400 = 1000$ or $x^2 + 5x - 400 - 1000 = 0$ or $x^2 + 5x = 1000 + 400$ with M1 seen	M1dep	400 may be seen as 4 × 10 ² or 4 × 100 oe equation with brackets expanded and 400 and 1000 seen				
40(-)	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0				
18(a)	Alternative method 2 three vertical rectangles						
	$(x + 5)(x - 20)$ or $(2 \times)10(x - 15)$	M1	(x - 20) may be seen as $(x - 10 - 10)(x - 15)$ may be seen as $(x + 5 - 10 - 10)$				
	$x^2 - 20x + 5x - 100 + 20x - 300$ = 1000 or $x^2 - 15x - 100 + 20x - 300 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded and 100 and 300 and 1000 seen allow 150 seen twice for 300				
	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0				

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comme	ents	
	Alternative method 3 three horizo	ntal rectar	ngles		
-	$x(x-15)$ or $(2 \times)10(x-20)$	M1	(x - 20) may be seen as $(x - 15)$ may be seen as		
	$x^2 - 15x + 20x - 400 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded and 400 and 1000 seen allow 200 seen twice for 400		
	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0		
-	Alternative method 4 central recta	ngle + fou	r outer rectangles		
	$(x-15)(x-20)$ or $(2 \times)10(x-15)$ or $(2 \times)10(x-20)$	M1	(x - 20) may be seen as $(x - 15)$ may be seen as	,	
18(a) cont	$x^2 - 20x - 15x + 300 + 20x - 300 +$ $20x - 400 = 1000$ or $x^2 - 35x + 300 + 20x - 300 + 20x$ $- 400 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded and 300 seen twice and 400 and 1000 seen allow 150 seen twice for one of the 300s allow 200 seen twice for 400		
	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0		
-	Additional Guidance				
	If 1st M1 seen award M1 even if expr	ession is	not subsequently used		
	For M1 allow multiplication signs eg	$x \times (x + 5)$)	M1	
	$x(x+5) = x^2 + 5x$ $1000 + 400 = 1400$			M1	
	$x^2 + 5x = 1400$ (previous line shows	d 400)	M1		
	$x^2 + 5x - 1400 = 0$	A1			
	$x(x+5) = x^2 + 5x$			M1	
	$x^2 + 5x = 1400$ (equation does not	have 1000	and 400)	M0	
	$x^2 + 5x - 1400 = 0$			AU	
	Only equation seen is $x^2 + 5x - 1400$	0 = 0 the i	maximum mark is M1		

Question	Answer	Mark	Comme	nts	
	No and valid reason	B1	eg No and <i>x</i> cannot be negative (in to		
	Add	ditional G	Guidance		
	If neither box is ticked condone if No	is clearly	stated in working lines		
	Yes or both boxes ticked			В0	
	Allow 'it' to represent x				
	No and x is (only) 35			B1	
18(b)	No and it cannot be –40			B1	
	No and the width would be negative			B1	
	No and the width should be positive			B1	
	No she put –40			B1	
	No and you can't have two answers			В0	
	No and the answers are too big			В0	
	No and it should be 40 (and –35)	В0			
	periodic	B1			
19	· ·	ditional G	Guidance		
	(7, 30)	B1			
20		ditional G	Guidance		

Question	Answer	Mark	Comme	nts
	Alternative method 1			
	n-1 and n and $n+1$	M1	oe eg $(n-1)n(n+1)$ o	or $n(n-1)(n+1)$
	$n(n^2 + n - n - 1)$ with M1 seen or $n(n^2 - 1)$ with M1 seen or $(n^2 - n)(n + 1)$ with M1 seen or $(n^2 + n)(n - 1)$ with M1 seen	M1dep		
	$n^3 - n^2 + n^2 - n + n$ with M2 seen or $n^3 - n + n$ with M2 seen	M1dep		
	n^3 with M3 seen	A1		
	Alternative method 2			
	x and $x + 1$ and $x + 2$	M1	oe eg $x(x + 1)(x + 2)$ o	(x + 1)x(x + 2)
21	$(x^2 + x)(x + 2)$ with M1 seen or $(x^2 + 2x)(x + 1)$ with M1 seen or $x(x^2 + 2x + x + 2)$ with M1 seen or $x(x^2 + 3x + 2)$ with M1 seen	M1dep		
	$x^3 + 3x^2 + 2x + x + 1$ with M2 seen or $x^3 + x^2 + 2x^2 + 2x + x + 1$ with M2 seen	M1dep		
,	$x^{3} + 3x^{2} + 3x + 1$ and $(x + 1)^{3}$ with M3 seen	A1	allow $x^3 + 3x^2 + 3x + 1$ and n^3 with M3 seen if $n = x$	c + 1 stated
	Additional Guidance			
	Only numerical example(s)			Zero
	Condone use of any letter $\operatorname{eg} N$			

Question	Answer	Mark	Comments
	The gradient of the chord from A to B	B1	
22	Ade	ditional G	uidance

	Valid criticism	B1	eg the scale factor shou	ld be 4
			surface area is 248 cm ²	
	Ad	ditional C	Guidance	
	sf = 2 ²			B1
	62 × 4	B1		
23(a)	62 × 2 ²	B1		
	The area is 248 (ignore units)			B1
	Should be 2 × 10 × 6 + 2 × 10 × 4 +	2 × 6 × 4	B1	
	Condone It should be 4			B1
	4		В0	
	He should have multiplied all lengths	В0		
	It should be 10 × 4 × 6			В0

Question	Answer	Mark	Comme	nts	
	Alternative method 1				
	$\sqrt[3]{\frac{125}{8}}$ or $\frac{5}{2}$ or $\sqrt[3]{\frac{8}{125}}$ or $\frac{2}{5}$	M1	oe eg $\sqrt[3]{15.625}$ or 2.5 or $\sqrt[3]{0.064}$ or 0.4		
	$5 \times \sqrt[3]{\frac{125}{8}}$ or $5 \div \sqrt[3]{\frac{8}{125}}$	M1dep	oe		
	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	A1			
-	Alternative method 2				
23(b)	$5 \times 3 \times 2 \times \frac{125}{8}$ or 468.75	M1	oe eg $5 \times 3 \times 2 \times 15.6$ or $30 \times \frac{125}{8}$	25	
	$x \times \frac{3x}{5} \times \frac{2x}{5} = \text{their } 468.75$	M1dep	oe eg $\frac{6}{25}x^3$ = their 468	.75	
	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	A1			
	Additional Guidance				
	$\sqrt{\frac{125}{8}}$ or $\sqrt{\frac{8}{125}}$			M0M0A0	
	$x \times \frac{x}{\frac{5}{3}} \times \frac{x}{\frac{5}{2}} = \text{their } 468.75$			M1M1	
	Allow 1.66 or 1.67 for $\frac{5}{3}$				
	eg $x \times \frac{x}{1.66} \times \frac{x}{2.5} = \text{their } 468.75$			M1M1	

Question	Answer	Mark		Comments
	Alternative method 1			
	–2 used for value of <i>x</i>	M1		
	–2 used for value of xand13 used for value of y	M1dep		
	15	A1		
	Alternative method 2			
24	−2 used for x value	M1		
	11 – 2 × –2	M1dep	oe	
	15	A1		
		Additional G	uidance	
	Answer only of 13			M0M0A0
	Answer only of −2			МОМОАО
	13 used for value of $y-x$ does not score 2nd M1			

Question	Answer	Mark	Comments
	CED = 4x or $ACB = 180 - y - (90 - x)$	M1	may be on diagram
	CED = 4x and $DCE = \frac{180 - 4x}{2}$ or ACB = 180 - y - (90 - x) and $DCE = 180 - y - (90 - x)$	M1dep	may be on diagram allow $DCE = ACB$ for $DCE = 180 - y - (90 - x)$
25	M2 seen and $y + 90 - x + \frac{180 - 4x}{2} = 180$ and y = 3x or M2 seen and $\frac{180 - 4x}{2} = 180 - y - (90 - x)$ and y = 3x	A1	M2 seen and $2(180 - y - (90 - x)) + 4x = 180$ and $y = 3x$
	M2A1 seen and all reasons given	A1	eg alt(ernate) seg(ment theorem) and (base angles of) isos(celes) triangle (are equal) and (vertically) opp(osite) angles (are equal) and angles in a triangle (sum to 180°)

Additional Guidance is on the next page

Question	Answer	Mark	Comments
4	1		

	Additional Guidance				
	Allow CE = DE for the reason (base angles of) isos(celes) triangle (are equal)				
İ	Allow $90 - y + x$ or $180 - y - 90 + x$ for $180 - y - (90 - x)$				
	Allow $90 - 2x$ for $\frac{180 - 4x}{2}$				
25 cont	Allow clear indication of angles				
	eg				
	allow <i>E</i> for <i>CED</i>				
	do not allow C for ACB unless seen on diagram				
	Assuming $y = 3x$	Zero			
	For 1st A1, allow equivalent equations				
	eg For $2(180 - y - (90 - x)) + 4x = 180$ allow				
	2(180 - y - (90 - x)) = 180 - 4x				

Question	Answer	Mark	Comments
	Alternative method 1		
	$P = kQ^2$ or $1.25 = k \times 0.5^2$		oe
	or $Q = \frac{c}{R} \text{or } 0.5 = \frac{c}{6}$	M1	
	$k = \frac{1.25}{0.5^2}$ or $k = 5$		oe
	or $P = 5Q^2$	N.4.4	
	or $c = 0.5 \times 6 \text{ or } c = 3$	M1	
	or $Q = \frac{3}{R}$		
26	$P = 5Q^2$ and $Q = \frac{3}{R}$	A1	oe
	or $k = 5$ and $c = 3$		
	$0.8 = \text{their 5} \times \left(\frac{\text{their 3}}{R}\right)^2$		ft their equations of the form $P = kQ^2$ and $Q = \frac{c}{R}$
	or		oe
	$(R =) \sqrt{\frac{\text{their } 5 \times (\text{their } 3)^2}{0.8}}$	M1	eg $(Q =) \sqrt{\frac{0.8}{\text{their 5}}}$ or $Q = 0.4$
			and $(R =)$ their 3 their 0.4
	7.5 or $7\frac{1}{2}$ or $\frac{15}{2}$	A1ft	ft their equations of the form $P = kQ^2$ and $Q = \frac{c}{R}$ with 3rd M1 scored

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments					
	Alternative method 2							
26 cont	$P = \frac{k}{R^2}$ or $1.25 = \frac{k}{6^2}$	M1	oe					
	$k = 1.25 \times 6^2$	M1dep	oe					
	$P = \frac{45}{R^2}$ or $k = 45$	A1	oe					
	$0.8 = \frac{\text{their } 45}{R^2}$ or $(R =) \sqrt{\frac{\text{their } 45}{0.8}}$	M1	oe $ \text{ft their equation of the form } P = \frac{k}{R^2} $					
	7.5 or $7\frac{1}{2}$ or $\frac{15}{2}$	A1ft	ft their equation of the form $P = \frac{k}{R^2}$ with 3rd M1 scored					
	Additional Guidance							
	Allow k and c to be any letters, including using both as k in Alt 1							
	Alt 1 $kP = Q^2$ leading to $k = 0.2$			M1M1				
	Alt 2 $kP = \frac{1}{R^2}$ leading to $k = \frac{1}{45}$ (allow 0.022)			M1M1A1				

Question	Answer	Mark	Comments		
27	³ √13 or 2.35(1)	M1	$\sqrt[3]{6+7}$ or $\sqrt[3]{3\times2+7}$		
	2.413() or 2.4238 or 2.424 or 2.4256 or 2.4259	M1dep			
	2.426	A1			
	Additional Guidance				
	Answer 2.426 (eg from using starting value of 1)			M2A1	
	Answer only 2.425			M0M0A0	
	√13			МОМОАО	
	Condone $2 = \sqrt[3]{13}$ etc				