

GCSE Mathematics

Paper 3 Higher Tier

Mark scheme

8300 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments			
	$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$	B1				
1	Ad	lditional	Guidance			
	1	B1				
2	Additional Guidance					
	$w = \frac{y}{2x}$	B1				
3	Additional Guidance					
4	210°	B1				
	Ad	lditional	Guidance			

	$200 \div 0.4$ or $200 \div 40 \times 100$ or $200 = 0.4 \times n$					
	500	A1				
	Ad	lditional	Guidance			
	Build up method must be complete					
5						
	eg 200 = 40%, 100 = 20%, 500 (= 100		M1A1			
	200 = 40%, 100 = 20%, 400 = 80%, 100 + 400					
	200 = 40%, 100 = 20%, 400 = 80% M0A0					
	0.4 : 0.6 = 200 : 300 M1A0					
	100 = 20%, 300 = 60%			M1A0		
	$200 \div 0.4 = 500, 500 + 200 = 700$ inco	rrect met	hod	M0A0		

Question	Answer	Mark	Commen	ts	
	Alternative method 1				
	A includes 1 or B does not include 1	B1	oe Correct statement about 1 without contradiction		
	A does not include 6 or B includes 6	B1	oe Correct statement about 6 without contradiction		
	Alternative method 2				
	$1 \le x < 6$ or $1 < x \le 6$	M1	oe eg $x \ge 1$ and $x < 6$ for 1 st statement		
	or $1 \le x$ and $1 < x$ or $x < 6$ and $x \le 6$		A includes 3 and B includes 18		
6	or A is 1, 2, 3, 4, 5 or B is 2, 3, 4, 5, 6		A is 3, 17 and B is 4, 18		
	A is 1, 2, 3, 4, 5 and B is 2, 3, 4, 5, 6	A1	oe eg A = 1 to 5 and B = 2 to	6	
	Ac	lditional	Guidance		
	For 2 marks, must have clearly indicat	ed both s	ets of integer solutions	M1A1	
	For 2 marks, must have clearly indicat	ed both d	ifferences	B1B1	
	A could be 1 but not 6, B could be 6 but	ut not 1		B1B1	
	A is $x = 1$ and B is $x = 6$			B1B1	
	A: 3, 6, 9, 12, 15 and B: 6, 9, 12, 15, 18			M1A0	
	Comment that inequality signs are swi	n no other working	B0B0		
	'1 and 6 don't appear in both' - need t	o be corre	ectly linked to A and B	B0B0	

Question	Answer	Mark	Commen	ts
	5.5 in the correct position	B1	oe	
	6.5 in the correct position	B1	oe	
_, ,	Ad	ditional	Guidance	
7(a)	5.50 or $5\frac{1}{2}$ or $\frac{11}{2}$			B1
	6.50 or $6\frac{1}{2}$ or $\frac{13}{2}$			B1
	One correctly evaluated trial using		eg 6.3 + 4.1 = 10.4	
	(6, 6.5] + (4, 4.5)		og 0.0 1 1.1 = 10.1	
	or (6, 6.5) + (4, 4.5]	M1		
		IVI I		
	or two values in the ranges given that work if correctly evaluated		eg 6.4, 4.2	
	One correctly evaluated trial using		eg 6.4 + 4.2 = 10.6	
	(6, 6.5) + (4, 4.5)	A1		
	with an answer that rounds to 11		Ignore fw	
7(b)	Additional Guidance			
	6.4 + 4.4 = 10.8 (= 11) do not need to show 11			M1A1
	6.4999 + 4.4999 = 10.9998			M1A1
	6.5 + 4.4 = 10.9			M1A0
	4.5 + 6.2 = 10.7		M1A0	
	6 + 4 = 10		МО	
	6.5 + 4.5 = 11		MO	
	6.49 + 4.49 = 11		MO	
	Could be true	B1		
8(a)	Additional Guidance			

Additional Guidance

Question	Answer	Mark	Comme	nts	
	Must be true	B1			
8(b)		Additional	Guidance		
	$\frac{2}{3} \times 720 \text{ or } \frac{3}{5} \times 700$	M1	oe Accept use of 0.66 or 0).67	
	480 or 420	A1			
	900	A1	Ignore fw		
9(a)	Additional Guidance				
- (-)	900 with no working			M1A1A1	
	900 out of 1420 or $\frac{900}{1420}$ (ignore fw)			M1A1A1	
	$\frac{480}{720}$ (480 boys out of 720) or $\frac{1}{1}$	420 1420 (420 girls o	out of 1420 students)	M1A1A0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	720 + 700 or 1420 or 720 + 700 – their 900 or 520	M1	oe		
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% ft their part (a) Ignore fw		
	Alternative method 2				
9(b)	720 + 700 or 1420 or $\frac{1}{3}$ × 720 or 240 or $\frac{2}{5}$ × 700 or 280 or 240 + 280 or 520	M1	ое		
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% Ignore fw		
	Alternative method 3				
	$720 + 700 \text{ or } 1420$ or $\frac{900}{1420}$ or $\frac{45}{71}$ or $\frac{\text{their } 900}{1420}$	M1	oe fraction, decimal or percentage 0.63 or 0.63 63.()% or 63%		
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% ft their part (a) Ignore fw		

Additional guidance is on the next page

Question	Answer	Mark	Commen	ts		
9(b)	Additional Guidance					
cont	$\frac{520}{1420}$ followed by incorrect simplification	on of fract	tion	M1A1		
	2x + 10 = 3x - 20	M1	oe $180 - (2x + 10) + 3x - 20 = 180$			
	3x - 2x = 20 + 10 or $x = 30$	M1dep	oe			
	2 × their 30 + 10 or 3 × their 30 – 20 or 70	M1dep	oe			
	110	A1				
	Ad					
	x = 30, y = 180 - 3(30) + 20 = 110			M1M1M1A1		
40(.)	x = 30, y = 180 - 3(30) - 20 = 110 recovered missing bracket			M1M1M1A1		
10(a)	x = 30, y = 180 - 3(30) - 20 = 70 not recovered			M1M1M0A0		
	2x + 10 = 3x - 20 3x - 2x = 20 + 10 x = 10 $2 \times 10 + 10 (= 30)$	M1M1M1A0				
	$2x + 10 = 3x - 20$ $x = 10$ $2 \times 10 + 10 (= 30)$			M1M0M0A0		
	y + 2x + 10 = 3x - 20 + y			M1M0M0A0		
	w = 3x - 20 seen or on diagram			M0M0M0A0		
	w = 2x + 10 seen or on diagram			МОМОМОАО		

Question	Answer	Mark	Comment	S	
10(b)	2x + 10 = 60 or $2x = 60 - 10$ or $2x = 50$ or $x = 25$	M1			
	3 × their 25 – 20 or 55 or 180 – 55 or 125	M1dep	oe		
	(y =) 125 and bigger or $(y is)$ 15 bigger	A1ft	oe ft their (a)		
	Additional Guidance				
	Note: A complete logical explanation of the effect of lines not being parallel eg				
	w is smaller so $2x + 10$ is smaller so x is smaller so $3x - 20$ is smaller so y is bigger			M1M1A1	
	$2 \times 25 + 10 = 60$			M1M0A0	
	y is bigger ticked but no valid working			M0M0A0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	Any correct scaling of the ratio 5 : 2 eg 10 (:) 4 or 20 (:) 8 or 25 (:) 10	M1	oe		
	22.5 (:) 9 or 22.5 (red) or 30 (:) 12 or 12 (blue)	M1dep	oe		
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1			
	Alternative method 2				
	9 ÷ 2 or 4.5 or 30 ÷ 5 or 6	M1	oe 2 ÷ 9 or 0.22 5 ÷ 30 or 0.16 or 0.17		
11	5 × their 4.5 or 22.5 or 7 × their 4.5 or 2 × their 6 or 12 or 7 × their 6 or 42	M1dep	oe		
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1			
	Alternative method 3				
	$\frac{2}{7}$ × purple = blue $\frac{5}{7}$ × purple = red	M1	oe $\frac{2}{7}$ × purple = 9 $\frac{5}{7}$ × purple = 30		
	$9 \times \frac{7}{2}$ or $30 \times \frac{7}{5}$ or 42	M1dep	oe		
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1			

Additional guidance is on the next page

Comments

	Ac	ditional	Guidance
	28 + 3.5 = 31.5		M1M1A1
	28 + 3.5		M1M1A0
	31.5, answer 31		M1M1A1
	31.5 + 42 = 73.5		M1M1A0
11	10 4		M1M0A0
cont	10, 4		M1M0A0
	10 + 4		M1M0A0
	'He has 2.5 times more red than blue'		M1M0A0
	2.5 : 1	M1M0A0	
	2.5	MOMOAO	
	28 on its own		MOMOAO
		1	
	<i>a</i> = 2	B1	May be embedded
	<i>b</i> = 5	B1	May be embedded

Mark

Answer

	a = 2	B1	May be embedded	
	<i>b</i> = 5	B1	May be embedded	
	Ac			
12	$(2r^5)^4$			B1B1
	$(r^5)^4$			B1
	2^4 = 16 on its own is not enough			В0
	a = 5 and $b = 2$			B0B0

Question

Question	Answer	Mark	Co	mments	
	Alternative method 1				
	12 × 1.58 or 18.96 or 28 × 1.52 or 42.56	M1			
	28 x 1.52 – 12 x 1.58 or their 42.56 – their 18.96 or 23.6	M1dep	oe		
	their 23.6 ÷ (28 – 12) or their 23.6 ÷ 16	M1dep	oe dep on M1 M1		
	1.475 or 1.48	A1			
	Alternative method 2				
13	$16x + 12 \times 1.58$ or $16x + 18.96$ or 28×1.52 or 42.56	M1			
	(16x =) their 42.56 – their 18.96 or $(16x =) 23.6$	M1dep	oe		
	their 23.6 ÷ (28 – 12) or their 23.6 ÷ 16	M1dep	oe dep on M1 M1		
	1.475 or 1.48	A1			
		Additional	Guidance		
	23.6 ÷ 16 = 1.475 = 1.5			M1M1M1A1	
	23.6 ÷ 16 = 1.5			M1M1M1A0	
	23.6 ÷ (28 – 12) 23.6 ÷ 14			M1M1M1A0	
	23.6 ÷ 14			M1M1M0A0	
	Beware use of 0.06 eg 1.58 – 1.52 = 0.06			MO	

Question	Answer	Mark	Comments	
	y is directly proportional to $\frac{1}{x}$	B1		
14	Ad	ditional	Guidance	
	8	B1		
15(a)	Additional Guidance			
	3	B1	Accept –3	
15(b)	Additional Guidance			
10(5)	Au			

Question	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{25}{100}$ × 18 000 or 4500		oe	
	and 18 000 – their 4500 or 18 000 × (1 – 0.25)	M1		
	or 18 000 × 0.75 or 13 500 or 0.88			
	their 13 500 × $(1 - 0.12)^4$ or their 13 500 × 0.88^4		oe Complete method for at least 4 years	
16	their $13500 \times (1 - 0.12)^3$ or their 13500×0.88^3 or 9199.87 or 9199.88 or 9199.90 or 9200	M1dep		
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation	
	Alternative method 2			
	$\frac{25}{100}$ × 18 000 or 4500		oe	
	and 18 000 – their 4500 or 13 500 or 0.88	M1		
	13 500, 11 880, 10 454.() 9199.()	M1dep	oe Complete method for at least 4 years	
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation	

Additional guidance is on the next page

	Additional Guidance	
	Condone eg £8095.88p	M1M1A1
	8095.887	M1M1A0
16 cont	Note the values for successive calculations are 13 500, 11880, 10454.4, 9199.87(2), 8095.88(736)	
	The values for successive savings are 4500, 1620, 1425.6, 1254.52(8), 1103.98	
	For method marks allow rounding or truncating of their totals or savings	

Question	Answer	Mark	Comments	
	Alternative method 1			
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1\frac{36}{60}$ (hours)	B1		
	9 ÷ 50 or 0.18	M1	oe	
	$70 \times 1\frac{36}{60}$ or 70×1.6 or 112	M1	ое	
	their 112 ÷ 40 or 2.8	M1dep	dep on 2nd M1	
17	2.98 or 2.8 and $(3 - 0.18 =) 2.82$ or 0.18 and $(3 - 2.8 =) 0.2$	A1	Ignore fw	
	Alternative method 2			
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1\frac{36}{60}$ (hours)	B1		
	9 ÷ 50 or 0.18	M1	oe	
	$70 \times 1\frac{36}{60}$ or 112 or 70×1.6 or 112	M1		
	40 × (3 – their 0.18) or 112.8	M1dep	dep on 1st M1	
	112.8 and 112	A1	Ignore fw	

Alternative method 3 and additional guidance is on the next page

1						
	Alternative method 3					
	1 mile per minute					
	or 60 miles per hour					
	or 0.15 (hours)	B1				
	or 1.6 (hours) or $1\frac{36}{60}$ (hours)					
	9 ÷ 50 or 0.18	M1	oe			
	70 ÷ 40 or 1.75	M1				
	70 ÷ 40 × 1.6 or 2.8		oe			
	or their 1.75 × 1.6	M1dep	eg 1.75 + 0.875 + 0.175			
			dep on 2nd M1			
	2.98		Ignore fw			
	or 2.8 and (3 – 0.18 =) 2.82	A1				
	or 0.18 and (3 – 2.8 =) 0.2					
	Ad	ditional	Guidance			
17	Key facts are :					
cont	First stage					
	First stage: Distance travelled 9 miles (given)					
	Time taken 9 minutes (given) or 0.15 hours					
	Average speed 60 mph					
	Miles per gallon 50 mpg (given),					
	Amount of petrol $9 \div 50 = 0.18$ gallor	18				
	Second stage:					
	Distance travelled $70 \times 1.6 = 112 \text{ mile}$	es				
	Time taken 1 hour 36 minutes	(given) o	r 1.6 hours			
	Average speed 70 mph (given) Miles per gallon 40 mpg (given),					
	Amount of petrol $112 \div 40 = 2.8$ gallo	ons				
	An incorrect conversion of 1 hour 36 minutes to 1.36 can score: eg					
	$70 \times 1.36 = 95.2, 95.2 \div 40 = 2.38$, and the second	B0M0M1M1A0		
	$70 \times 1.36 = 95.2, 95.2 \div 40 = 2.38, 0.1$	8 + 2.38	= 2.56	B1M1M1M1A0		
	2.98 = 3 (further work)			B1M1M1M1A1		
	9 ÷ 50			B1M1		

Question	Answer	Mark	Comment	s	
18	Valid criticism	B1	eg $(y =) 0.5$ should be $(y =) 1$ $y = 0.5$ should be when $x = 0$ When $x = 0$ $y = 1$ 0.5 is incorrect Crosses y axis in wrong play Graph should start at 1 $0.5^0 = 1$		
	Additional Guidance				
	Do not accept statements which are contradictory				
	He does not have a scale on the x axis			В0	
	It does not pass through zero			В0	
	The line should meet the x axis			В0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	BDC = 24	B1	May be on the diagram		
	$DFC = \frac{180 - 24}{2}$		May be on the diagram Finding a base angle in triangle CDF		
	or $DCF = \frac{180 - 24}{2}$	B1dep			
	or $\frac{156}{2}$ or 78				
	(3x =) 180 – their 78		oe		
	or $(3x =) 24 + $ their 78	M1	May be on the diagram		
	or $(3x =) 102$				
	34	A1	May be on the diagram		
	Alternative method 2				
	BDC = 24	B1	May be on the diagram		
19	DFC = 180 - 3x	M1	May be on the diagram		
	2(180 - 3x) + 24 = 180		ое		
	or $360 - 6x + 24 = 180$				
		M1dep			
	or $3x + 78 = 180$				
	or $(3x =) 102$				
	34	A1	May be on the diagram		
	Additional Guidance				
	If angles in the same segment are not used ie all the working is using triangle ABF then award maximum of 2 marks				
	If triangle <i>ABF</i> is assumed to be isosceles and there is no evidence of angle <i>BDC</i> = 24 being used then award maximum of 2 marks				
	If triangle ABF is used as isosceles and correctly justified then all marks are available eg 'triangle ABF is similar to triangle CDF'				
	Answer of 34 does not imply full marks				

Additional guidance continues on the next page

	Answer of 34 with no working	B0B0M1A1
19	'their 78' must come from an attempt to calculate $\frac{180 - 24}{2}$	
cont	Angles must be clearly identified	
	eg <i>D</i> = 24	B1
	24 (unless shown on diagram)	В0

	522.5 or 527.5	B1	oe Accept 527.499(999)	
	77.5 or 78.5	B1	oe Accept 78.499(999)	
	527.5 – 77.5	M1	their max total – their min their max total must be (52 their min Ben must be [77, Accept 527.49 or 527.499	25, 530] , 78)
20	450 and Yes with correct working seen	A1	Accept [449.999, 450]	
	Additional Guidance			
	525 – 78 = 447 and yes			B0B0M0A0
	525 = 520 to 530			В0
	78 = 77.5 to 78.5			B1
	520 – 78.5 = 441.5			
				N/1
20	seen Ad 525 – 78 = 447 and yes 525 = 520 to 530 78 = 77.5 to 78.5			В0

	-2.5 < <i>x</i> < 1	B1		
21	Additional Guidance			

Question	Answer	Mark	Comments	
	Alternative method 1			
	Second differences 8	M1	Implied by $4n^2$	
	Any three values from -2 1 4 7	M1dep		
	$4n^2 + 3n - 5$	A1	oe Allow $a = 4$ $b = 3$ $c = -5$	
	Alternative method 2			
22	Any 3 of a + b + c = 2 4a + 2b + c = 17 9a + 3b + c = 40	M1	Using $an^2 + bn + c$	
	16 $a + 4b + c = 71$ Any 2 equations in 2 unknowns eg 3 $a + b = 15$ 5 $a + b = 23$ 7 $a + b = 31$ 8 $a + 2b = 38$ 12 $a + 2b = 54$ 15 $a + 3b = 69$	M1dep	Correctly eliminates the same letter using two different pairs of equations	
	$4n^2 + 3n - 5$	A1	oe Allow $a = 4$ $b = 3$ $c = -5$	

Alternative method 3 and additional guidance is on the next page

22 cont	Alternative method 3				
	Second differences 8 $a = 4$ or $c = 2 - 7$ or $- 5$	M1	Using $an^2 + bn + c$		
	$3a + b = 17 - 2$ and substitutes their a $4n^{2} + 3n - 5$	M1dep A1	oe eg $b=3$ May also see $a+b+c=2$ used to work out c oe Allow $a=4$ $b=3$ $c=-5$		
	Additional Guidance				
	Sequence (–5) 2 17 40 71 1 st differences are (7) 15 23 31 2 nd differences are 8 8 8				

Question	Answer	Mark	Comments	
23	$0 = 5^{2} + 5b + c$ or $-10 = 0^{2} + b(0) + c$ or $c = -10$ $b = -3$ or $x^{2} - 3x + c$ or $(y =) x^{2} - 3x - 10$ $(x - 5)(x + 2)$ or $\frac{-3 \pm \sqrt{(-3)^{2} - 4 \times 1 \times -10}}{2 \times 1}$ or $\frac{3 \pm \sqrt{49}}{2}$ or $(x - \frac{3}{2})^{2} + \dots$ or $2x - 3 = 0$ or x -coordinate of $P = -2$ or two symmetrical coordinates	M1dep	oe oe $(x-5)(x+k)$ and $-5k = -10$ oe Correctly factorises the 3-term quadratic expression or correctly substitutes into quadratic formula for the 3-term quadratic dep on M1 M1 eg $(1, -12)$ and $(2, -12)$	
	$1\frac{1}{2}$ or $\frac{3}{2}$ with no incorrect working	A1	oe Accept (1.5, -12.25)	
	Additional Guidance			

24	Draws a tangent at 1 second	M1	
	Their gradient at 1 second	A1ft	Must see a tangent on the graph ft their tangent ±0.2 tolerance on vertical reading ±0.1 tolerance on horizontal reading
	Additional Guidance		

Question	Answer	Mark	Comments	
	Alternative method 1			
	$17^{2} - (16 \div 2)^{2}$ or $17^{2} - 8^{2}$ or $289 - 64$	M1	Correct use of Pythagoras' theorem eg $8^2 + 15^2 = 17^2$ or $64 + 225 = 289$	
	$\sqrt{17^2 - (16 \div 2)^2}$ (= 15) or $\sqrt{17^2 - 8^2}$ (= 15) or $\sqrt{289 - 64}$ (= 15)	A1	Correct use of Pythagoras' theorem using a square root	
	Alternative method 2			
25(a)	$\sin E = \frac{8}{17}$ or $\cos A = \frac{8}{17}$ or $E = 28.()$ or $A = 61.9()$ or 62 and $\cos 28.() = \frac{EM}{17}$ or $\tan 28.() = \frac{8}{EM}$ or $\sin 61.9() = \frac{EM}{17}$ or $\tan 61.9() = \frac{EM}{8}$	M1		
	17 cos 28.() or 8 ÷ tan 28.() or 17 sin 61.9() or 8 tan 61.9()	A1		
	Additional Guidance			
	8, 15, 17 on their own	M0A0		
	$EM^2 = 289 - 64 = 225$, $EM = 15$		M1A0	

Question	Answer	Mark	Comments				
	Alternative method 1						
	$30^2 + (16 \div 2)^2$ or $30^2 + 8^2$ or 964	M1	oe				
	√their 964 or $2\sqrt{241}$ or [31, 31.1]	M1dep	oe CM				
	$\tan x = \frac{15}{\text{their [31, 31.1]}}$	M1dep	oe eg 90 – tan ⁻¹ their [31, 31.1] 15 dep on M1 M1				
25(b)	[25.7, 26]	A1					
	Alternative method 2						
	$30^2 + 17^2$ or 1189	M1	oe				
	$\sqrt{\text{their } 1189}$ or [34.4, 34.5]	M1dep	oe CE				
	$\sin x = \frac{15}{\text{their [34.4, 34.5]}}$		oe eg $90 - \cos^{-1} \frac{15}{\text{their } [34.4, 34.5]}$				
		M1dep	or $\frac{\sin x}{15} = \frac{\sin 90}{\text{their } [34.4, 34.5]}$				
	[25.7.26]	Λ4	dep on M1 M1				
	[25.7, 26]	A1					

	Alternative method 3				
	$30^2 + (16 \div 2)^2$ or 964 or $30^2 + 17^2$ or 1189	M1	oe		
	$\sqrt{\text{their 964}}$ or $2\sqrt{241}$ or [31, 31.1] or $\sqrt{\text{their 1189}}$ or [34.4, 34.5]	M1dep	oe CM CE		
	$\cos x = \frac{\text{their [31, 31.1]}}{\text{their [34.4, 34.5]}}$	M1dep	oe eg 90 – sin ⁻¹ their [31, 31.1] their [34.4, 34.5]		
			dep on M1 M1		
	[25.7, 26]	A1			
25(h)	Alternative method 4				
25(b) cont	$17^{2} - (16 \div 2)^{2}$ or 225 or $30^{2} + (16 \div 2)^{2}$ or 964 or $30^{2} + 17^{2}$ or 1189	M1	oe EM ² CM ² CE ²		
	$\cos x = \frac{\text{their } 964 + \text{their } 1189 - \text{their } 225}{2 \times \sqrt{\text{their } 964} \times \sqrt{\text{their } 1189}}$	M1dep	oe		
	$\frac{\cos^{-1}}{\text{their 964 + their 1189 - their 225}}$ $2 \times \sqrt{\text{their 964}} \times \sqrt{\text{their 1189}}$	M1dep	oe dep on M1 M1		
	[25.7, 26]	A1			
	Additional Guidance				

Question	Answer	Mark	Commen	ts
	10(3x + 1) or 9x or $x(9-3x-1)$ or $x(8-3x)$ or $(10-x)(3x+1)$ or $x(3x+1)$ or $(10-x)(9-3x-1)$	M1	oe One correct area expression May be implied	on in x
	$10(3x + 1) + x(9 - 3x - 1)$ or $9x + (10 - x)(3x + 1)$ or $(10 - x)(3x + 1) + x(9 - 3x - 1)$ + $x(3x + 1)$ or $10 \times 9 - (10 - x)(9 - 3x - 1)$	M1dep	oe Fully correct unsimplified e area	expression for
26	$30x + 10 + 9x - 3x^{2} - x$ or $9x + 30x + 10 - 3x^{2} - x$ or $30x + 10 - 3x^{2} - x + 9x - 3x^{2} - x$ $+ 3x^{2} + x$ or $90 - 90 + 30x + 10 + 9x - 3x^{2} - x$ or $38x + 10 - 3x^{2}$	M1dep	oe dep on M1 M1 Full expansion All brackets removed	
	$3x^2 - 38x + 55 (= 0)$	A1	oe 3-term equation	
	$(3x-5)(x-11)$ $\frac{-38 \pm \sqrt{(-38)^2 - 4 \times 3 \times 55}}{2 \times 3}$ or $\frac{38 \pm \sqrt{1444 - 660}}{6}$ or $\frac{38 \pm \sqrt{784}}{6}$	M1	oe their 3-term quadratic factorised correctly or correct substitution in formula for their 3-term quadratic equation	
	$\frac{5}{3}$ or $1\frac{2}{3}$ or 1.66(6) or 1.67	A1	oe $x = 11$ included is A0	
	Additional Guidance			
	$3x^2 = 38x - 55$			M1M1M1A1

Question	Answer	Mark	Comments				
	Alternative method 1 – completing the square						
	$(x+\frac{1}{2})^2+$	M1					
	$(x+\frac{1}{2})^2-(\frac{1}{2})^2+1$		oe				
	or $(x+\frac{1}{2})^2 - \frac{1}{4} + 1$	A1					
	or $(x + \frac{1}{2})^2 + \frac{3}{4}$						
	$(x + \frac{1}{2})^2 \ge 0$ and $\frac{3}{4} > 0$	A1	oe				
	and always positive						
	Alternative method 2 – real roots						
27	$\frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times 1}}{2 \times 1}$ or a correct sketch showing a quadratic curve with turning point above the <i>x</i> -axis	M1	oe				
	States no values on <i>x</i> -axis	A1	oe				
	States no values on <i>x</i> -axis and (minimum value =) $\frac{3}{4}$	A1	oe				
	Alternative method 3 – Calculus						
	2x + 1 = 0	M1					
	$x = -\frac{1}{2}$	A1					
	(minimum value =) $\frac{3}{4}$	A1					
	and (minimum value =) $\frac{3}{4}$ Alternative method 3 – Calculus $2x + 1 = 0$ $x = -\frac{1}{2}$	M1 A1					

	Alternative method 4 – Explanation method				
	If $x \ge 0$,				
	$x^2 \ge 0 \text{ and } x \ge 0 \text{ (1 > 0)}$				
	so $x^2 + x + 1 > 0$		B2 for two correct stateme	nts	
			B1 for one correct stateme	ent	
	and				
	If -1 < x < 0				
27	$x^2 > 0$ and $x + 1 > 0$	В3			
cont	so $x^2 + x + 1 > 0$				
	and				
	If <i>x</i> ≤ −1				
	$x^2 > x$ and $x^2 + x > 0$				
	so $x^2 + x + 1 > 0$				
	Additional Guidance				
	Calculating pairs of coordinates alone			M0A0A0	