

GCSE MATHEMATICS 8300/2F

Foundation Tier Paper 2 Calculator

Mark scheme

June 2020

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1	6:8	B1	

Q	Answer	Mark	Comments
2	250°	B1	

C)	Answer	Mark	Comments
3	3	x-4	B1	

D	Answer	Mark	Comments
4	14	B1	

Q	Answer	Mark	Comment	s
	8	B1		
	Ado	ditional G	Guidance	
	56 ÷ 7 = 8	B1		
5(a)	Answer of ×8 (unless recovered)			В0
	Answer of 8x (unless recovered)			В0
	Award the mark for an embedded and	swer only	if the answer is selected	
	eg1 $7 \times 8 = 56$ with no answer or with		et answer	В0
	eg2 $7 \times (8) = 56$ with no contradictory	answer		B1

Q	Answer	Mark	Comment	ts
	7	B1		
	Ade	ditional G	Guidance	
	25 – 18 = 7	B1		
	18 – 25 = 7 (allow recovery)	B1		
5(b)	Answer of -7 (unless recovered)	В0		
	Answer of 7y (unless recovered)	В0		
	Award the mark for an embedded and	swer only	if the answer is selected	
	eg1 $25-7=18$ with no answer or w	В0		
	eg2 25 – 7 = 18 with no contradictory answer			B1

Q	Answer	Mark	Comments
6(a)	9	B1	

Q	Answer	Mark	Comments
	3 9 9 9 12 14 15 16 18 18 20 or 20 18 18 16 15 14 12 9 9 9 3 or 3 9 9 9 12 14 or 20 18 18 16 15 14	M1	allow one miscopy, extra or omission in full ordered list
	14	A1	
	Ade	Buidance	
	Answer only of 14	M1A1	
6(b)	14 from an incorrect list will be M1 mages and the set of the set	er 14 M1A0	
	List ordered but clearly used for mea eg1 3+9+9+9+12+14+15+ Answer 13 eg2 3 9 9 9 12 14 15 16 18 18 eg3 3+9+9+9+12+14+15+ eg4 3 9 9 9 12 14 15 16 18 18 eg5 3 9 9 9 12 14 15 16 18 18 Answer 13 may come from value bet	18 + 20 = 143 M0A0 3 Answer 13 M0A0 18 + 20 Answer 13 M0A0 wer 9 (mode) wer 17 (range) M0A0	
	eg1 3 9 9 9 12 14 15 16 18 18 eg2 3 9 9 9 12 14 15 16 18 20	,	
	Allow the ordered list to be seen by the	ne given li	st

Q	Answer	Mark	Comment	s	
	(3, 4)	B1			
7(a)	Additional Guidance				
	(3 <i>x</i> , 4 <i>y</i>)			В0	

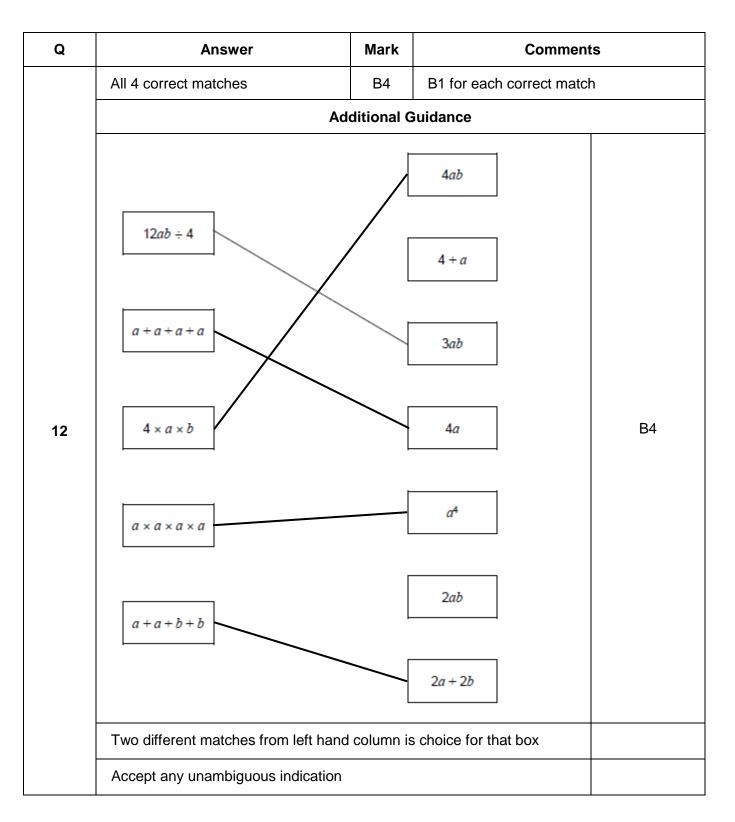
Q	Answer	Mark	Commen	ts
	(0, 8)	B1	SC1 (4, 3) in (a) and (8,	0) in (b)
7(b)	Ad	ditional G	Buidance	
	(0x, 8y)			В0

Q	Answer	Mark	Comment	s
	Any even square whole number	B1	eg 4 or 16 or 36 or 64	4
	Ad	ditional G	Guidance	
	0			B1
8(a)	$2^2 = 4$			B1
	Answer only of 2 ²			В0
	Answer only of $\frac{16}{4}$			В0

Q	Answer	Mark	Comments	
	125 216 343 with no extras		B1 125 216 343 seen	with extras
			or	
		B2	two of 125 216 343 see extras	en alone or with
			or	
			$5^3 6^3 7^3$	
8(b)	Ad	ditional G	Guidance	
	125 216 343 seen with answer 5 ³ 6 ³ 7 ³			B2
	5 ³ 6 ³ 7 ³ only			B1
	125 216 343 seen with answer 5 6	7		B1
	5 6 7 only			В0
	Extras may be incorrect for B1			

Q	Answer	Mark	Comment	s
	3 and 72 or 6 and 36 or 9 and 24 or 12 and 18	B1	either order	
8(c)	Add			
	Answer line takes precedence	: £	the energy are calcuted	
	Award the mark for embedded answer eg1 216 \div 3 = 72 with no answer or	with incor	rect answer	В0
	eg2 216 \div (3) = (72) with no contradictor	B1		
	eg3 3 × 72 in working with no contra	dictory an	swer	B1

Q	Answer	Mark	Comment	ts
	Valid reason		eg the percentages do not add to 100(%)	
		B1	or there are 10(%) too m	any
			or they add to 110(%)	
	Ade	ditional C	Buidance	
	One of the percentages is 10(%) too	big		B1
	Allow $18 + 54 + 38 = 110$			B1
	They add up to more than 100(%)			B1
	It does not equal 100(%)			B1
9(a)	It's not possible to have 110(%)	B1		
	Condone eg percentages only go up percentage = 100(%)	B1		
	They don't add up correctly			В0
	There are too many adults			В0
	Seniors must also be adults			В0
	Ignore irrelevant statements alongsid			
	eg the percentages do not add up to than juniors	B1		
	Two statements, one correct, one inc			
	eg the percentages do not add up to	100, they	add up to 111	В0


Q	Answer	Mark	Comment	ts
	2 × 120 or 240	M1	oe	
	$(3 \times) \frac{1}{5} \times 120$ or 24 or 72	M1	oe	
	312	A1	SC2 528	
	Ade	ditional G	Guidance	
	$\frac{1}{5}$ of 120 with no correct evaluation			2nd M0
	Do not allow a misread of the fraction			
9(b)	eg . $\frac{1}{5}$. = 2% stated with no method s	2nd M0		
, ,	Allow 3 adults and/or 2 juniors as a meg 1 3 × 120	M1		
	eg2 3 × 120 and 2 × $\frac{1}{5}$ × 120			M2A0
	240 ÷ 5			M1M0A0
	$\frac{1}{5}$ × 120 = 24 and 120 – 24 (working	2nd M0 (but may score SC2)		
	Using $\frac{4}{5}$ can score SC2 for the ft answer or a max of M1 for 240 seen			
	Allow up to M2 even if not subsequer	ntly used		

Q	Answer	Mark	Comments	5
	73	B1		
10(a)	10(a) Additional Guidance			
	Mark output box if answer line blank			

Q	Answer	Mark	Comments	
	–21	B1		
10(b)	10(b) Additional Guidance			
	Mark output box if answer line blank			

Q	Answer	Mark	Comments
10(c)	3	B1	

Q	Answer	Mark	Comment	ts
	В		B1 (A =) -11 or (B =) -	13
	and			
	(A =) -11	B2		
	and			
	(B =) -13			
11	Additional Guidance			
	If answer line blank, accept B clearly	indicated	in working	
	Accept -13 on answer line instead of	of B		
	Accept 47 × 21 – 10 ³ on answer line instead of B			
	B with neither value correct			

Q	Answer	Mark	Comment	s
	318 ÷ 30 or 10.6(0) or 287 ÷ 28 or 10.25	M1	oe eg working in pence	
13	or 10.6(0) – 10.25 or 0.6(0) – 0.25 or 0.35	oe eg working in pence allow £0.35 pence or £0.35p pence		
	Ade	ditional G	Guidance	
	Answer 0.35 pence			M2A0
	£0.35 seen but answer 0.35 pence			M2A0
	35p seen but answer 0.35 pence			M2A0
	Allow recovery of units eg 10.6(0) – 1	0.25 = 35	5	M2A1

Q	Answer	Mark	Comments	
14	True False False True	В3	B2 three correct B1 two correct allow any unambiguous ind	lication
	Additional Guidance			
	A tick and a cross in the same row – mark the tick			
	Only a cross used in a row – regard cross as their selection for that row			

Q	Answer	Mark	Comments	3	
	Alternative method 1	-			
	150 × 0.19 or 28.5(0)	M1	oe eg working in pence		
	4 × 150 × 0.07 or 42	M1	oe eg working in pence 70.5 implies M2		
	70.50	A1	allow £70.50p		
	Alternative method 2				
	0.19 + 4 × 0.07 or 0.47	M1	oe eg working in pence		
	150 × their 0.47 or 70.5	M1dep	oe eg working in pence		
4=	70.50	A1	allow £70.50p		
15	Additional Guidance				
	70.50 seen in working but answer of 70.5			M2A1	
	70.5 without 70.50 seen			M2A0	
	4 × 0.07 only			MO	
	150 × 0.19 = 28 and answer 70 (implies 42)			M2A0	
	150 × 0.19 and 150 ÷ 4			M1M0A0	
	150 × 0.19 = 28.5 and 28.5 × 4			M1M0A0	
	4 × 150 × 0.19			MO	
	Allow up to M2 even if not subsequently used				

Q	Answer	Mark	Comment	s	
	Alternative method 1				
	9 × 2 or 18 or (8 – 2) × 4 or 24	M1	oe		
	9 × 2 + (8 – 2) × 4	M1dep	oe eg $(9-4) \times 2 + (8-2) \times 2 = (8-2) \times 3 $	4 + 4 × 2	
	42	A1			
	Alternative method 2				
	8 × 4 or 32 or (9 – 4) × 2 or 10	M1	oe		
	8 × 4 + (9 – 4) × 2	M1dep	oe eg $(9-4) \times 2 + (8-2) \times 2 = (9-4) \times 2 = (8-2) \times 2 $	4 + 4 × 2	
	42	A1			
16(a)	Alternative method 3				
	9×8 or 72 or $(8-2) \times (9-4)$ or 30	M1	oe		
	$9 \times 8 - (8 - 2) \times (9 - 4)$	M1dep	oe		
	42	A1			
	Additional Guidance				
	A correct area seen but not used ma	A correct area seen but not used may score M1			
	$9 \times 2 = 18, 8 \times 4 = 32 \text{ and } 18 \times 32$	$9 \times 2 = 18, \ 8 \times 4 = 32 \ \text{and} \ 18 \times 32$			
	9 × 2 × 8 × 4			MO	
	The 2nd M is for a complete method that would lead to an answer of 42 eg $9 \times 2 = 18$, $6 \times 4 = 24$, $18 + 24 = 42$, then $42 \div 2 = 21$			M1M0	
	Beware eg 8 + 4 + 8 + 4 = 24 which is M0 without a correct area seen			MO	
	Ignore any units given with answer				

Q	Answer	Mark	Commen	ts
	Valid criticism	B1	eg the formula is $\frac{1}{2} \times ba$ or the answer is double to answer or he has forgotten the $\frac{1}{2}$ or it should be $\frac{1}{2} \times 12 \times 12$ or it should be 48	the correct
	Additional Guidance			
	He needs to halve 12 (which is $6, 6 \times 8 = 48$)			B1
	He hasn't halved the base			B1
16(b)	$0.5 \times 12 \times 8 = 48$			B1
	His method was to work out a rectand	В0		
	He should divide by half			В0
	He didn't use the area of a triangle fo	rmula		В0
	He should have timesed all the meas	urements	and divided by 2	В0
	Ignore irrelevant statements alongsid			
	eg1 he has forgotten to divide by 2, t			B1 R1
	eg2 should have divided by 2, he worked out the area of a rectangle B1			DI
	Two statements, one correct, one inc eg1 he has forgotten to divide by 2,		be 14 × 8 ÷ 2	B0
	eg2 should have divided by 2, he we			B0
	eg3 forgot to halve the base, should	I have bee	en 6 × 8 = 49	В0

Q	Answer	Mark	Comments
17(a)	reflection	B1	

Q	Answer	Mark	Comments
17(b)	rotation	B1	

Q	Answer	Mark	Comments	
	Alternative method 1			
	14 × 0.8 or 11.2 or 1.5 × 2 ÷ 0.8 or 3.75	M1	oe implied by 8.2 or 5.4(6) or 5.47 or 5.5	
	their $11.2 - 2 \times 1.5$ or their $11.2 - 3$ or 8.2 or $(14 - \text{their } 3.75) \times 0.8$ or 8.2	M1dep	oe implied by 5.4(6) or 5.47 or 5.5	
	their 8.2 ÷ 1.5 or 5.4(6) or 5.47 or 5.5 or $5 \rightarrow 7.5$ or $6 \rightarrow 9$ with M2 seen	M1dep	oe	
18	6 with 5.4(6) or 5.47 or 5.5 seen or 6 with $5 \rightarrow 7.5$ and $6 \rightarrow 9$ and M2 seen	A1		
	Alternative method 2			
	14 × 0.8 or 11.2	M1	oe implied by 7.4(6) or 7.47 or 7.5 (packs)	
	their 11.2 ÷ 1.5 or 7.4(6) or 7.47 or 7.5 (packs) or $7 \rightarrow 10.5$ or $8 \rightarrow 12$ with M1 seen	M1dep	oe $\frac{14 \times 0.8}{1.5}$ is M2	
	their $7.4(6) - 2$ or $5.4(6)$ or 5.47 or 5.5 or $7-2$ or $8-2$ with M2 seen	M1dep	oe	
	6 with 7.4(6) or 7.47 or 7.5 seen or 6 with $7 \rightarrow 10.5$ and $8 \rightarrow 12$ and M2 seen	A1		

Mark scheme and Additional Guidance continues on the next page

Q	Answer	Mark	Comments		
	Alternative method 3 Working in weeks				
	1.5 ÷ 0.8 or 1.875	M1	oe implied by 7.4(6) or 7.47 or 7.5 (packs)		
	14 ÷ their 1.875 or 7.4(6) or 7.47 or 7.5 (packs) or $7 \rightarrow 13.1(25)$ or $8 \rightarrow 15$	M1dep	oe		
	their $7.4(6) - 2$ or $5.4(6)$ or 5.47 or 5.5 or $7-2$ or $8-2$ with M2 seen	M1dep	oe		
18 cont	6 with 7.4(6) or 7.47 or 7.5 seen or 6 with $7 \rightarrow 13.1(25)$ and $8 \rightarrow 15$ seen	A1			
	Additional Guidance				
	Select the scheme that favours the si if not subsequently used	tudent for	the first 2 M marks even		
	Alts 2 and 3 the 7.5 must be packs	not 7.5 kg	(from 5 × 1.5)		
	For the final mark of Alt 1, eg 5 \rightarrow 7.5 and 0.7 (short) is sufficient evidence and there are equivalents for Alts 2 and 3				
	For the final mark of Alt 1, eg 6 \rightarrow 9 and 0.8 (over) is sufficient evidence and there are equivalents for Alts 2 and 3				
	Accept repeated addition or subtraction of 1.5 if clear eg $1.5 + 1.5 + 1.5 + 1.5 + 1.5 = 7.5$ implies $5 \rightarrow 7.5$				

Q	Answer	Mark	Commen	ts
	Alternative method 1			
	6.5 – 4 or 2.5	M1		
	50 ÷ their 2.5 or 50 × 100 ÷ their 2.5 or 2000	M1dep	oe	
	1 cm represents 20 metres	A1		
	Alternative method 2			
40	80 and 130 seen	M1		
19	80 ÷ 4 with 130 seen oe eg $20 \times 4 = 80$ with or M1dep $130 \div 6.5$ with 80 seen		oe eg 20 × 4 = 80 with 1	30 seen
	1 cm represents 20 metres	A1		
	Additional Guidance			
	In Alt 1, 65 – 40 unless recovered In Alt 1, 0.065 – 0.04 unless recovered			
	In Alt 2, 0.08 and 0.13 unless recovered			МО

Q	Answer	Mark	Comment	s
	(24 + 8 =) 32 B2 B1 (2 a =) 2 × 12 or (2 a or (b =) 8			=) 24
	Additional Guidance			
	32 with no incorrect working	B2		
	32 from incorrect working eg 22		В0	
20(a)	24 + 9 = 33		B1	
	22 + 8 = 30		B1	
	24a without a B1 response	В0		
	8b without a B1 response			
	24a + 8b without a B1 response		В0	
	Use of inequalities in answer without	a B1 resp	oonse	В0

Q	Answer	Mark	Commen	ts
	An example where x and y are both negative and $\frac{y}{x} = 4$	B1	eg $x = -1$ and $y = -4$ values of x and y can be eg $\frac{-12}{-3}$ (= 4)	implied
	Additional Guidance			
20(b)	Correct use of ÷ instead of fractions is allowed eg –12 ÷ –3			B1
	Must show the fraction or division or	h is x and which is y	P.O.	
	eg -1 and -4			В0
	Decimals and / or fractions may be used eg $\frac{-6.4}{-1.6}$ or $\frac{-2}{-\frac{1}{2}}$			
	One correct example among several attempts B1			B1

Q	Answer	Mark	Comment	s	
	Alternative method 1	1			
	30 × 8 or 240	M1			
	440 – their 240 or 200	M1dep	implied by 10 (medium) a or numbers of sweets in large totalling 200	` • ,	
	12m + 16l where m and l are integers with $m = 2l$ or		eg 12 × 6 + 16 × 3 or 72 + 48 with 6 (mediu shown	m) and 3 (large)	
	12 × 2 + 16 or 120 (sweets in medium) and 80 (sweets in large) or	M1			
	10 medium or 5 large		medium or large may be	implied	
	30 : 10 : 5	A1	oe ratio eg 6:2:1		
21	Alternative method 2				
	30 × 8 or 240	M1			
	440 – their 240 or 200	M1dep	implied by 10 (medium) a or numbers of sweets in large totalling 200		
	12 × 2x + 16x = their 200 or $x = 5$ or 12y + 16 × $\frac{1}{2}$ y = their 200 or $y = 10$	M1dep	oe equation in terms of la any letter oe equation in terms of m		
	30:10:5	A1	any letter oe ratio eg 6:2:1		
			-		
	Additional Guidance Ignore incorrect simplification if 30:10:5 seen				
	Answer 240 : 120 : 80			M1M1M1A0	
	Award up to M3 even if working not subsequently used				

Q	Answer	Mark	Commer	its
	2 and 5 with no other roots	either order B1 at least one correct one incorrect root SC1 (2, 0) or (5, 0) or	·	
	Ado	ditional G	Buidance	
	x = 2 and $x = 5$			B2
	2, 5 or 5, 2	B2		
	(2, 0) and (5, 0) and 2 and 5	SC1		
22(a)	(2,0) and $(5,0)$ and -2 and -5	В0		
ZZ(u)	2, 0 and 5, 0 (both pairs imply coordinates)			SC1
	2, 0 or 5, 0 (one pair implies roots)			B1
	(0, 2) and (0, 5)			В0
	0, 2 and 0, 5 (both pairs imply coord	dinates)		В0
	0, 2 or 0, 5 (one pair implies roots)	B1		
	Both answers embedded			
	$2^2 - 7 \times 2 + 10 = 0$ and $5^2 - 7 \times 5 +$	B1		
	(x-2)(x-5)			В0

Q	Answer	Mark	Commen	ts
	3.5	B1 oe		
	Additional Guidance			
	x = 3.5			B1
22(b)	3.5 <i>x</i>	В0		
	Ignore any y-coordinate even with brackets omitted			
	eg (3.5, -2.25) or 3.5, -2 or $x = 3.5$ $y = -2.25$ or $x = 3.5$ $y = 2$			B1
	(-2.25, 3.5)			В0

Q	Answer	Mark	Comments	
	Plots at least 3 points correctly	M1	$\pm \frac{1}{2}$ square	
	All four points correctly plotted and joined	A1	$\pm \frac{1}{2}$ square ignore working for part (b)	
23(a)	Additional Guidance			
25(a)	$\pm \frac{1}{2}$ square means half a small square horizontally and vertically			
	If a point is within tolerance the line n	thin $\pm \frac{1}{2}$ square of their		
	Mark intention for joining point to point			

Q	Answer	Mark	Comments		
	[70, 78]	B1			
	Additional Guidance				
23(b)	Answer in range with or without working, with no graph or incorrect graph			B1	
	70.5 – 75 on answer line (both values in range)			B1	

Q	Answer	Mark	Commen	ts		
	15	B2	B1 answer 3 or answer 5 or answer 3 (×) 5 or (75 =) 3 (×) 5 (×) 5 o or (105 =) 3 (×) 5 (×) 7 or (1) 3 5 15 25 (75) or (1) 3 5 7 15 21 35			
	Ad	ditional G	Guidance			
	NB 15 from 3 + 5 + 7 does not score unless working for B1 seen elsewhere					
24	Prime factor responses for B1 may be factor tree or in a Venn diagram					
	eg1 3 5 5 in repeated division or fa	B1				
	eg2 3 5 7 inside one circle of a Ve	nn diagra	m	B1		
	eg3 3 5 inside the intersection of a	Venn dia	gram	B1		
	For products of prime factors, repeated division, factor trees and Venn diagrams, ignore inclusion of factors of 1					
	A repeated division needs to reach the final prime factor but does not need to reach 1					
	B1 can be awarded even if LCM is subsequently worked out					
	List of factors may be seen as factor					

Q	Answer	Mark	Comment	ts	
	Alternative method 1				
	$200 - 2 \times 5 \times 5$ or $200 - 50$ or 150 or $4 \times 5 \times y$ or $20y$	M1	oe eg $5y + 5y + 5y + 5y$ implied by 37.5 or answe	r 937.5	
	$4 \times 5 \times y = 200 - 2 \times 5 \times 5$ or $4 \times 5 \times y = 200 - 50$ or $4 \times 5 \times y = 150$ or $150 \div 4 \div 5$ or $150 \div 20$ or 7.5	M1dep	oe eg 20 <i>y</i> = 150		
25(a)	187.5	A1	oe		
	Alternative method 2				
	$200 - 2 \times 5 \times 5$ or $200 - 50$ or 150	M1	oe implied by 37.5 or answe	r 937.5	
	150 ÷ 4 × 5 or 37.5 × 5	M1dep	oe		
	187.5	A1	oe		
	Additional Guidance				
	Embedded 7.5 eg 4 × 5 × 7.5 = 150			M1M1	

Q	Answer	Mark	Comments
25(b)	It is smaller than the answer to part (a)	B1	

Q	Answer	Mark	Comments
26	39	B1	

Q	Answer	Mark	Commen	ts
	40 (women) and 44 (men) and No or 40:44 and No or 84 and No or 8 (women leave) and 2 (men arrive) and No	oe B1 40 (women) and 44 or 40:44 or 84 or 8 (women leave) and		
27	Additional Guidance			B0
	NB 84 from incorrect working eg 41 + 43 = 84			ВО
	For B1 the values may be seen amore eg1 20: 22 30: 33 40: 44 50: 55 eg2 21, 42, 63, 84, 105, eg3 10, 20, 30, 40, 50, and 11, 2 eg4 $\frac{44}{84}$ (implies 84)	B1		
	For B2 the value(s) must be chosen that point and No must be indicated			

Q	Answer	Mark	Comments	
	Alternative method 1 Total % for A after 6 tests – total % for B after 5 tests			
	60 × 5 or 300 or 52 × 5 or 260	M1	oe	
	$\frac{24}{50} \times 100 \text{ or } 0.48 \times 100$ or 48	M1	oe 348 implies M1M1	
	$60 \times 5 + \frac{24}{50} \times 100 - 52 \times 5$ or $300 + 48 - 260$ or 88	M1dep	oe eg 348 – 260 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	
28	Alternative method 2 Total score for A after 6 tests – total score for B after 5 tests			
	$\frac{60}{100} \times 50 \text{ or } 30$	M1	oe allow $\frac{30}{50}$ implied by 150 or 174	
	$\frac{52}{100} \times 50$ or 26	M1	oe allow $\frac{26}{50}$ implied by 130	
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or $150 + 24 - 130$	M1dep	oe eg 174 – 130 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	

Mark scheme and Additional Guidance continues on the next two pages

Q	Answer	Mark	Comments	
	Alternative method 3 Total score for A after 6 tests – total score for B after 5 tests			
	50 × 5 or 250	M1	oe implied by 150 or 130 or 174	
	$\frac{60}{100} \times 50 \times 5 \text{ or } 150$ and $\frac{52}{100} \times 50 \times 5 \text{ or } 130$	M1dep	oe allow $\frac{150}{250}$ and $\frac{130}{250}$	
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or $150 + 24 - 130$	M1dep	oe eg 174 – 130	
	44	A1	allow $\frac{44}{50}$	
28 cont	Alternative method 4 Difference in scores after 5 tests + 6th score for A			
	60 – 52 or 8	M1	oe	
	$\frac{60-52}{100} \times 50$ or 4	M1dep	oe eg $\frac{60}{100} \times 50 - \frac{52}{100} \times 50$ or $30 - 26$ allow $\frac{4}{50}$	
	$\frac{60-52}{100} \times 50 \times 5 + 24$ or $4 \times 5 + 24$ or $20 + 24$	M1dep	oe	
	44	A1	allow $\frac{44}{50}$	

Additional Guidance is on the next page

	Additional Guidance				
	To award the 3rd M a calculation or a value (not an equation) must be seen				
	Select the scheme that favours the student for the first 2 M marks even if not subsequently used				
28 cont	Alt 1 Do not award 1st M for 300 if incorrect method seen eg $6 \times 50 = 300$ does not score the 1st M				
	Alt 1 Do not award 2nd M for 48 if incorrect method seen eg $100 - 52 = 48$ does not score the 2nd M				
	Alt 2 Do not award 2nd M for 26 if incorrect method seen eg $50 - 24 = 26$ does not score the 2nd M				

Q	Answer	Mark	Commen	nts
29	2625 ÷ 250 or 2.625 ÷ 250 or 2625 ÷ 0.00025 or answer with digits 105	M1	oe eg $\frac{2.625 \times 1000}{250}$	
	10.5	A1	oe	
	Additional Guidance			
	Digits 105 may have additional zeros			
	eg1 0.000105			M1A0
	eg2 10500			M1A0
	eg3 10.05			M0A0

Q	Answer	Mark	Commer	nts
30	$\frac{9-3}{12}$ or $\frac{6}{3}$ or $2x (+c)$ where c is a constant	M1 A1	oe eg $\frac{3-9}{-2-1}$ or $\frac{-6}{-3}$	
	Additional Guidance			
	2x may be implied eg $y-3=2(x+2)$			M1A0