

Please write clearly in blo	ock capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

Н

Higher Tier Paper 1

Thursday 16 May 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Mark			
TOTAL			

Answer all questions in the spaces provided.

0 1 This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

Figure 1 shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

Figure 1

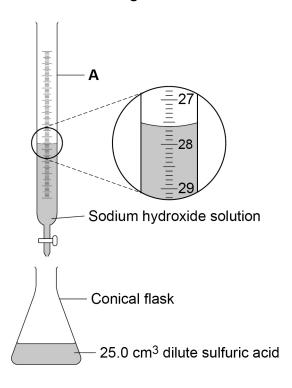
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	Н						
Period 2	Li	Ве	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	S	Cl
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

0 1.1	The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127	
	Why did Mendeleev reverse the order of these two elements?	[1 mark]

0 1.2	Mendeleev left spaces marked with an asterisk *	
	He left these spaces because he thought missing elements belonged	d there.
	Why did Mendeleev's periodic table become more widely accepted t	han previous
	versions?	[3 marks]
0 1.3	Mendeleev arranged the elements in order of their atomic weight.	
	What is the modern name for atomic weight?	[1 mark]
	Tick (✓) one box.	
	Atomic number	
	Mass number	
	Relative atomic mass	
	Relative formula mass	
	relative formatic mass	
0 1 . 4	Complete the sentence.	
<u> </u>	Complete the Schlence.	[1 mark]
	In the modern periodic table, the elements are arranged in order of	
		·

	Chlorine, iodine and astatine are in Group 7 of the modern periodic table.	
0 1 . 5	Astatine (At) is below iodine in Group 7.	
	Predict:	
	 the formula of an astatine molecule the state of astatine at room temperature. 	[2 marks]
	Formula of astatine molecule	
	State at room temperature	
0 1.6	Sodium is in Group 1 of the modern periodic table.	
	Describe what you would see when sodium reacts with chlorine.	[2 marks]

0 2	This question is about acids and alkalis.
0 2.1	Which ion do all acids produce in aqueous solution? [1 mark]
	Tick (✓) one box.
	$H^{\scriptscriptstyle{+}}$
	H-
	O ²⁻
	OH ⁻
0 2.2	Calcium hydroxide solution reacts with an acid to form calcium chloride.
	Complete the word equation for the reaction. [2 marks]
calcium hydro	oxide + acid → calcium chloride +
	Question 2 continues on the next page



A student investigates the volume of sodium hydroxide solution that reacts with 25.0 cm³ of dilute sulfuric acid.

Figure 2 shows the apparatus the student uses.

Figure 2

Use Figure 2 to answer Questions 02.3 and 02.4

0 2 . 3 Name apparatus	A .
------------------------	------------

[1 mark]

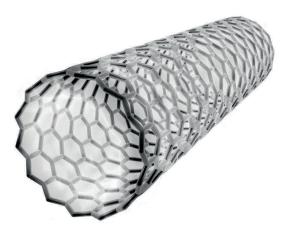
0	2	4	What is the reading on apparatus a	Α?

[1 mark]

cm³

0 2 . 5	The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.				
	The student tested two samples of dilute sulfuric acid, P and Q .				
	Describe how the student could use titrations to find which sample, P or Q , is more concentrated.				
	[6 marks]				

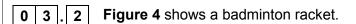
Turn over ▶


11

- 0
 3

 This question is about materials and their properties.
- 0 3 . 1 Figure 3 shows a carbon nanotube.

Figure 3



The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.

[2 marks]

Table 1 shows some properties of materials.

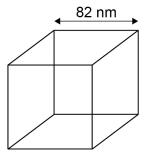
The materials could be used to make badminton racket frames.

Table 1

Material	Density in g/cm ³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

Use Table 1.	[4 marks]



Do

- Zinc oxide can be produced as nanoparticles and as fine particles.
- 0 3 . 3 A nanoparticle of zinc oxide is a cube of side 82 nm

Figure 5 represents a nanoparticle of zinc oxide.

Figure 5

Calculate the surface area of a nanoparticle of zinc oxide.

Give your answer in standard form.

ု၁	П	ıaı	KS.

Surface area =	nm

0 3 . 4 Some suncreams contain zinc oxide as nanoparticles or as fine particles.

Suggest **one** reason why it costs less to use nanoparticles rather than fine particles in suncreams.

[1 mark]

10

0 4	This question is about atomic structure.					
0 4.1	Atoms contain	Atoms contain subatomic particles.				
	Table 2 shows	properties of two su	ıbatomic particles			
	Complete Tabl	e 2.			[2 marks]	
		[=				
		Name of particle	Relative mass	Relative charge		
		neutron				
				+1		
	An element X h	nas two isotopes.				
	The isotopes h	ave different mass r	numbers.			
0 4 . 2	Define mass no	umber.			[1 mark]	
0 4.3	Why is the mass number different in the two isotopes? [1 ma					
		Ouestion 4 continu	ies on the next r	nage		

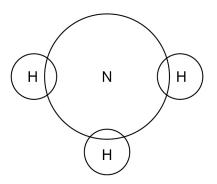
Turn over ▶

riila reisoliai	Tind Dorsonal
מנס	1
	5
IIId Felsoliai Tatol Holli www.wisespiodi.co.dk	www.wisosprout oo uk

0	
О	

找名校导师,用小草线上辅导(微信小程序同名)

0 4.4	The model of the atom changed as new evidence was discovered.
	The plum pudding model suggested that the atom was a ball of positive charge with electrons embedded in it.
	Evidence from the alpha particle scattering experiment led to a change in the model of the atom from the plum pudding model.
	Explain how.
	[4 marks]



- 0 5 This question is about ammonia, NH₃
- 0 5 . 1 Complete the dot and cross diagram for the ammonia molecule shown in Figure 6.

Show only the electrons in the outer shell of each atom.

[2 marks]

Figure 6

0 5. 2 Give **one** limitation of using a dot and cross diagram to represent an ammonia molecule.

[1 mark]

0 5. 3 Explain why ammonia has a low boiling point.

You should refer to structure and bonding in your answer.

[3 marks]

Turn over ▶

Ammonia reacts with oxygen in the presence of a metal oxide catalyst to produce nitrogen and water.

Which metal oxide is most likely to be a catalyst for this reaction?

[1 mark]

Tick (✓) one box.

CaO

Cr₂O₃

MgO

Na₂O

Figure 7 shows the displayed formula equation for the reaction.

Figure 7

$$4H-N-H + 3O=O \longrightarrow 2N=N + 6H-O-H$$

Table 3 shows some bond energies.

Table 3

Bond	N — Н	0=0	$N \equiv N$	0 — Н
Bond energy in kJ/mol	391	498	945	464

0 5.5	Calculate the overall energy change for the reaction.	
	Use Figure 7 and Table 3.	[3 marks]
	Overall energy change =	kJ
0 5 . 6	Explain why the reaction between ammonia and oxygen is exothermic.	
	Use values from your calculation in Question 05.5	[2 marks]
		[2 marks]
	Question 5 continues on the next page	

Find Personal Tutor from www.wisesprout.co.uk 找名校导师,用小草线上辅导(微信小程序同名)

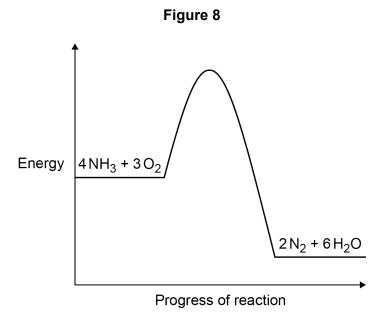
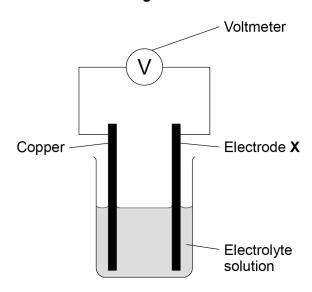

0 5 . 7

Figure 8 shows the reaction profile for the reaction between ammonia and oxygen.

Complete Figure 8 by labelling the:

- activation energy
- overall energy change.

[2 marks]


0 6

This question is about chemical cells.

A student investigated the voltage produced by different chemical cells.

Figure 9 shows the apparatus.

Figure 9

This is the method used.

- 1. Use cobalt as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode X.

0	6	1	Suggest two control variables used in this investigation.

[2	m	ar	KS

1			
2			

Turn over ▶

Do not write outside the box

Table 4 shows the student's results.

Table 4

Electrode X	Voltage of cell in volts
cobalt	+0.62
copper	0.00
magnesium	+2.71
nickel	+0.59
silver	-0.46
tin	+0.48

Use Table 4.				
l marks]				

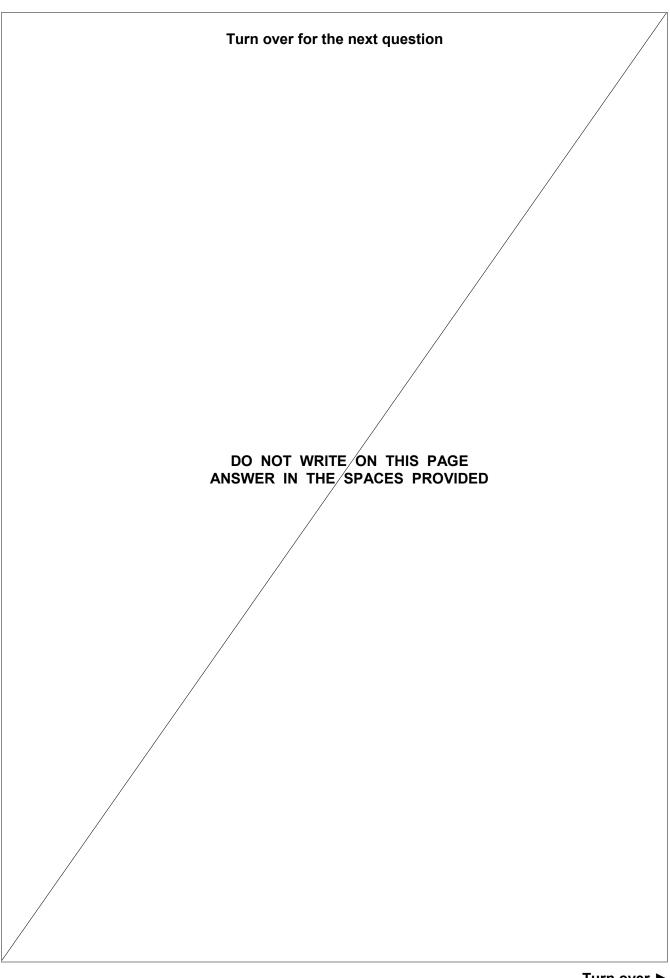
9

0 6.3	Which of the following pairs of metals would produce the greatest voltage when us as the electrodes in the cell?					
	Use Table 4.					
	Tick (✓) one box.					
	Magnesium and cobalt					
	Magnesium and tin					
	Nickel and cobalt					
	Nickel and tin					
0 6.4	Hydrogen fuel cells can be used to power different forms of transport.					
	Some diesel trains are being converted to run on hydrogen fuel cells.					
	A newspaper article referred to the converted trains as the new 'steam trains'.					
	Suggest why.					

Personal '
onal Tutor from
ersonal Tutor from www.wisesprout.co.uk
找名校导师
师,用小草线上辅导,
(微信小程序同名)

0 7	This question is about electrolysis.	
	Aluminium is produced by electrolysing a molten mixture of aluminium oxide and cryolite.	
0 7.1	Explain why a mixture is used as the electrolyte instead of using only aluminium oxide.	
	[2 mark	(s]
		_
0 7.2	What happens at the negative electrode during the production of aluminium? [1 mail	rk]
	Tick (✓) one box.	
	Aluminium atoms gain electrons.	
	Aluminium atoms lose electrons.	
	Aluminium ions gain electrons.	
	Aluminium ions lose electrons.	
0 7.3	Oxygen is produced at the positive electrode.	
	Complete the balanced half-equation for the process at the positive electrode. [2 mark]	(s]
	\rightarrow O_2 +	

0 7.4	Explain why the positive electrode must be continually replaced.						
0 7.5	The overall equation for the electrolysis of aluminium oxide is:						
	$2Al_2O_3 \rightarrow 4Al + 3O_2$						
	Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed.						
	Relative atomic masses (A_r) : O = 16 Al = 27						
	· · · · · · · · · · · · · · · · · · ·	[4 marks]					
	Mass of oxygen =	kg					
		··•					

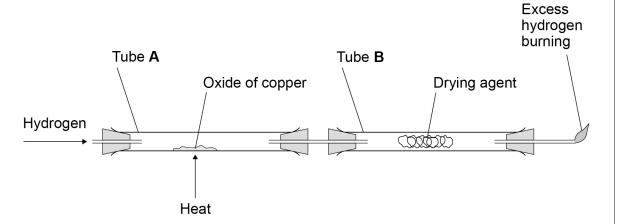


找名校导师,用小草线上辅导(微信小程序同名)

	Sodium metal and chlorine gas are produced by the electrolysis of molten sodium chloride.
0 7.6	Explain why sodium chloride solution cannot be used as the electrolyte to produce sodium metal. [2 marks]
0 7.7	Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm ³ Relative formula mass (M_r): $Cl_2 = 71$ [2 marks]
	Volume = dm ³

Do not write outside the

Do not write


0 8

Copper forms two oxides, Cu₂O and CuO

A teacher investigated an oxide of copper.

Figure 10 shows the apparatus.

Figure 10

This is the method used.

- 1. Weigh empty tube A.
- 2. Add some of the oxide of copper to tube A.
- 3. Weigh tube **A** and the oxide of copper.
- 4. Weigh tube **B** and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- Heat tube A for 2 minutes.
- 7. Reweigh tube **A** and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube **B** and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.

77
~
找名校导师
. >1
X
40
ت
⋾
_
-
\blacksquare
用小草线上辅导
_
ím
ΉШТ
in
ÜΪ
ç.
н
464
#
400
411
$\overline{}$
-
缌
=
DIII
微信小
\neg
-
HIC
뛴
男子
呈字回
野回名
\程序回名
呈序回名)
野回名)

0 8 . 1	Suggest one reason why step 8 is needed.	[1 mark]
0 8.2	Explain why the excess hydrogen must be burned off.	[2 marks]

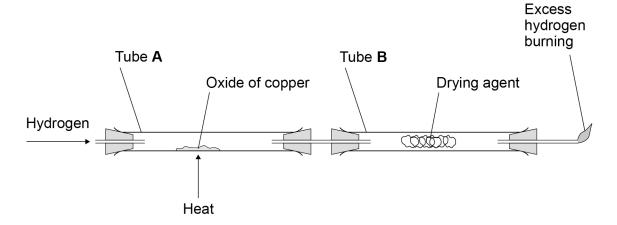

Question 8 continues on the next page

Figure 10 is repeated here.

Figure 10

Table 5 shows the teacher's results.

Table 5

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

ş	3	
•	•	

0 8 . 3	Determin	e the mass	of copper	and the	mass of	f water	produced in	this ex	periment.

Use **Table 5**.

[2 marks]

Mass of copper = _____ g

Mass of water = ____ g

0 8 . 4 The teacher repeated the experiment with a different sample of the oxide of copper.

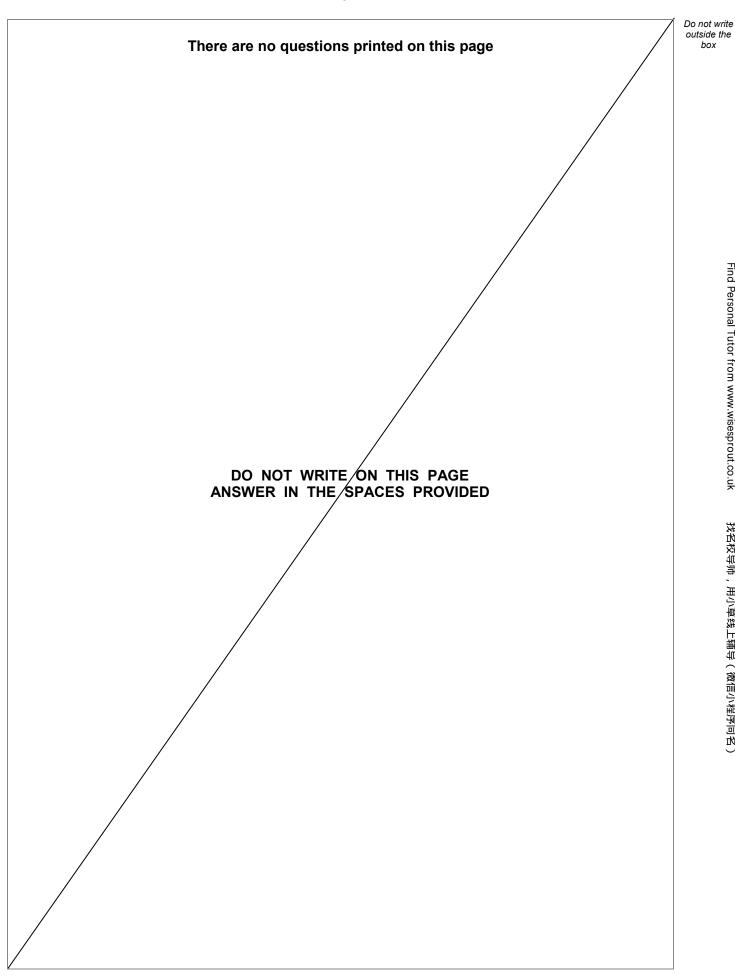
The teacher found that the oxide of copper produced 2.54 g of copper and 0.72 g of water.

Two possible equations for the reaction are:

Equation 1: $Cu_2O + H_2 \rightarrow 2Cu + H_2O$

Equation 2: $CuO + H_2 \rightarrow Cu + H_2O$

Determine which is the correct equation for the reaction in the teacher's experiment.


Relative atomic masses (A_r): H = 1 O = 16 Cu = 63.5

Turn over for the next question

Turn over ▶

[3 marks]

0 9	A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.
	This is the method used.
	1. Measure 25.0 cm ³ potassium hydroxide solution into a polystyrene cup.
	2. Record the temperature of the solution.
	3. Add 2.0 cm ³ dilute sulfuric acid.
	4. Stir the solution.
	5. Record the temperature of the solution.
	6. Repeat steps 3 to 5 until a total of 20.0 cm ³ dilute sulfuric acid has been added.
0 9.1	Suggest why the student used a polystyrene cup rather than a glass beaker for the reaction.
	[2 marks]

Question 9 continues on the next page

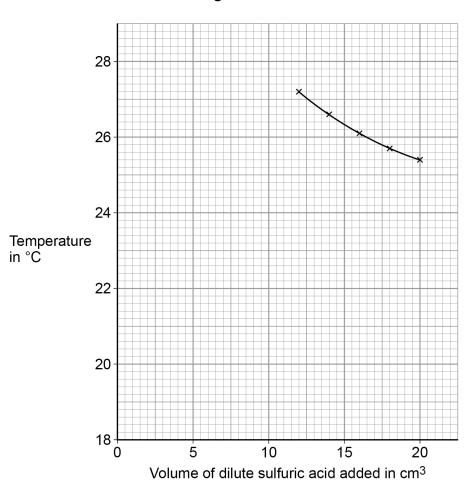

Table 6 shows some of the student's results.

Table 6

Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

Figure 11 shows some of the data from the investigation.

Figure 11

Do not write

0 9.3	 plot the data from Table 6 draw a line of best fit through these points extend the lines of best fit until they cross. Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm³ of the netoccium bydrovide colution	[4 marks]
	25.0 cm ³ of the potassium hydroxide solution.	
	Use Figure 11.	[1 mark]
	Volume of dilute sulfuric acid to react completely =	cm ³
0 9.4	Determine the overall temperature change when the reaction is complete. Use Figure 11 .	[1 mark]
	Overall temperature change =	°C

Question 9 continues on the next page

0 9 . 2

Complete Figure 11:

Do not write outside the

0	9	. 5	The student repeated th	e investigation

The student used solutions that had different concentrations from the first investigation.

The student found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid completely reacted with 25.0 cm³ of potassium hydroxide solution.

The equation for the reaction is:

$$2\,\text{KOH} \; + \; \text{H}_2\text{SO}_4 \; \rightarrow \; \text{K}_2\text{SO}_4 \; + \; 2\,\text{H}_2\text{O}$$

Calculate the concentration of the potassium hydroxide solution in mol/dm³ and in g/dm³

Relative atomic masses (A_r): H = 1 O = 16 K = 39 [6 marks]

Concentration in mol/dm³ = _____ mol/dm³

Concentration in g/dm³ = g/dm³

END OF QUESTIONS

Copyright information

For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

