

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			_
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

F

Foundation Tier Paper 2

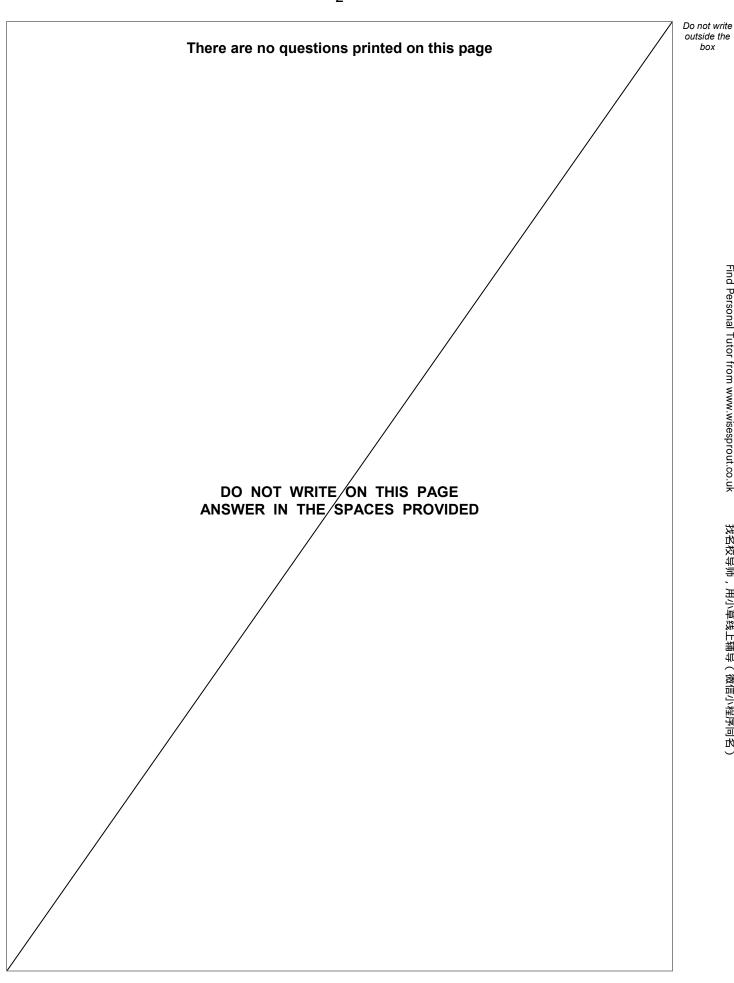
Wednesday 12 June 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions


- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

	Answer all que	stions in the spaces provided	l.
0 1	This question is about drinking	ng water.	
	There are two main steps in	producing drinking water fror	n fresh water.
0 1.1	Draw one line from each ste	p to the reason for the step.	[2 marks]
	Step		Reason for step
			Desalination
	Filtration		Improve taste
			Increase pH
	Sterilisation		Kill bacteria
			Remove solids
0 1.2	Which two substances are u	sed to sterilise fresh water?	[2 marks]
	Tick (✓) two boxes.		
	Ammonia		
	Chlorine		
	Hydrogen		
	Nitrogen		
	Ozone		

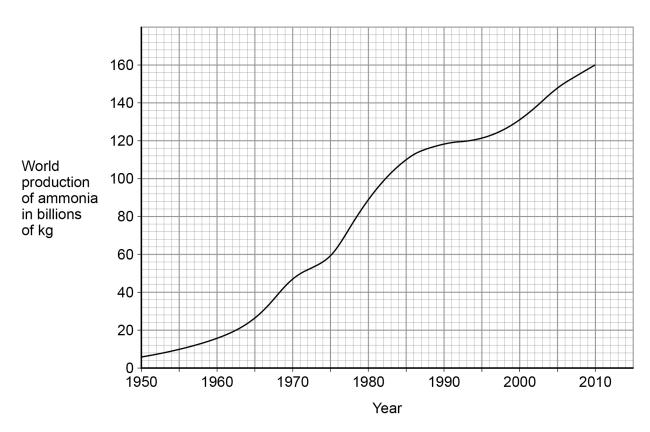
	A large amount of aluminium sulfate was accidentally added to the drinkir supply at a water treatment works.	ng water
0 1.3	Scientists tested a sample of the drinking water to show that it contained solids.	dissolved
	Which two methods show the presence of dissolved solids in the sample water?	
	Tick (✓) two boxes.	[2 marks]
	Add damp litmus paper to the sample.	
	Evaporate all water from the sample.	
	Measure the sample's boiling point.	
	Test the sample with a glowing splint.	

0 1.4	Scientists tested two v	water samples from the drin	king water supply.	
	The scientists tested one sample for aluminium ions and the other sample for sulfate ions.			
	Draw one line from ea	ach ion to the compound ne	eded to identify the ion. [2 marks]	
	lon		Compound needed to identify ion	
			Barium chloride	
	Aluminium ion		Copper sulfate	
			Silver nitrate	
	Sulfate ion		Sodium hydroxide	
			Sulfuric acid	
0 1.5	How could pure water solids?	be produced from drinking	water that contained dissolved [1 mark]	
	Tick (✓) one box.			
	Chromatography			
	Cracking			
	Distillation			
	Sedimentation			

0 2	Some central heating be	oilers use methane as a f	fuel.	
	Carbon monoxide detec	ctors are placed near cen	tral heating boilers.	
0 2.1	Which three properties monoxide detectors?	of carbon monoxide mak	e it necessary to use car	bon
	Choose answers from the	he box.		[3 marks]
	acidic	alkaline	colourless	corrosive
	insoluble	odourless	toxic	
	1			
	2			
	3			
0 2.2	Complete the sentence.			[1 mark]
	Methane produces carb	on monoxide when burni	ing in a limited supply of	
		<u>.</u>		
0 2.3	8 g of methane has a vo	olume of 12 dm ³ at room	temperature and pressur	e.
	Calculate the mass of 3	6 dm ³ of methane.		[2 marks]
		Mass =		g

0 2.4	Most methane is obtained from natural gas, which is a fossil fuel. Methane can also be produced renewably. Which two are renewable sources of methane? Tick (✓) two boxes.	[2 marks]
	Animal waste	
	Food in landfill	
	Nitrogen in the air	
	Non-biodegradable plastics	
	Scrap iron	
	Turn over for the next question	

0 3	Hydrogen is a raw material in the Haber process.		
	Hydrogen is produced from methane.		
	The word equation for the reaction is:		
	methane + steam ⇌ carbon monoxide + hydroger	1	
0 3.1	How can you tell that the reaction is reversible?		[1 mark]
0 3 . 2	The forward reaction is endothermic.		
	Name the type of energy change in the reverse reaction.		
			[1 mark]
0 3.3	A nickel catalyst is used in this reaction.		
	Why is a catalyst used in this reaction?		[2 marks]
	Tick (✓) two boxes.		[Z marks]
	To in one and the Assumptions		
	To increase the temperature		
	To produce less carbon monoxide		
	To reduce costs		
	10 100000 0000		
	To use less energy		
	To use less methane		



0 3 . 4

The Haber process also uses nitrogen to produce ammonia.

Figure 1 shows how the world production of ammonia changed between 1950 and 2010.

Figure 1

Describe how the world production of ammonia changed between 1950 and 2010.

[2 marks]

	Most of the ammonia produced is used to make fertilisers.	
0 3.5	Why did the world production of ammonia change between 1950 and Tick (✓) two boxes.	2010? [2 marks]
	The demand for food changed.	
	The demand for fuels changed.	
	The nitrogen percentage in air changed.	
	The number of cars changed.	
	The world population changed.	

Table 1 shows data about four fertilisers, ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}.$

Table 1

Fertiliser	Percentage by mass of nitrogen (%)	Percentage by mass of phosphorus (%)	Percentage by mass of potassium (%)
A	35.0	0.0	0.0
В	21.2	0.0	0.0
С	21.2	23.5	0.0
D	0.0	0.0	52.3

0 3.6	Which combination of t an NPK fertiliser?	fertilisers A , B , C and D provides all of the elements needed for	
	Use Table 1 .	[4 mark]	
	Tick (✓) one box.	[1 mark]	
	A and C		
	A and D		
	B and C		
	C and D		
0 3.7	Which fertiliser is not r	made using ammonia?	
	Use Table 1 .	[1 mark]	
	Tick (✓) one box.	[1 mark]	
	A		
	В		
	С		
	D		

Titan is a moon of the planet Saturn.

Table 2 shows the percentages of some gases in the atmosphere of Titan and in the atmosphere of the Earth.

Table 2

Gas	Percentage of gas in atmosphere (%)		
Gas	Titan	Earth	
Nitrogen	98	78	
Oxygen	Zero	21	
Methane	1.4	0.0002	
Argon	0.14	0.9	
Carbon dioxide	0.0001	0.04	

0	4 1	Which two gases are present in smaller percentages on the Earth than on Titan?
		[1 mark]
		and

Complete the bar chart in Figure 2 to show the percentages of nitrogen gas and 4 2 0 oxygen gas in the Earth's atmosphere. [2 marks] Figure 2 100 80 60 Percentage of gas in Earth's atmosphere (%) 40 20 Nitrogen Oxygen gas gas 0 4 Why are algae less likely to photosynthesise on Titan than Earth? Use Table 2. [1 mark] Tick (✓) one box. Titan's atmosphere contains too little argon. Titan's atmosphere contains too little carbon dioxide. Titan's atmosphere contains too little methane.

Titan's atmosphere contains too little nitrogen.

Turn over ▶

0 4.4	Titan is warmer than the other moons of Saturn because of the greenhouse effect.		
	How do greenhouse gases to	rap energy from the sun?	[1 mark]
	Tick (✓) one box.		[
	All wavelengths of radiation	are reflected back to the su	rface of Titan.
	Long wavelength radiation is	reflected back to the surfa	ce of Titan.
	Short wavelength radiation is	s reflected back to the surfa	ce of Titan.
	As well as methane, the atm Methane is an alkane and pr		mall amounts of propene gas.
0 4 . 5	Bromine water is an orange	solution used to identify alk	enes.
	Draw one line from each gas	s to its effect on bromine wa	
	0		[2 marks]
	Gas	1	Effect on bromine water
			Forms a blue solution
	Methane		Forms a colourless solution
			Forms a green solution
	Propene		Forms a white precipitate
			No effect

Propene reacts with water (steam) to make propanol.
The ratio of the masses of propene and water that react is:
propene : water
7:3
Calculate the mass of propene that reacts with 21 g water. [2 marks]
Mass = g

Turn over for the next question

0 4 . 6

Figure 3 shows a surfer on a surfboard.

Figure 3

Some surfboards are made from addition polymers.

Addition polymers are made from small alkene molecules.

0 5.1	Which type of bonding is present in small alkene molecules?	[1 mark]
	Tick (✓) one box.	į
	Covalent	

Ionic

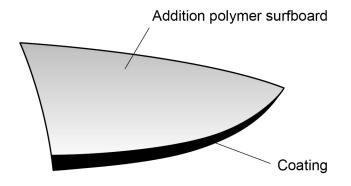

Metallic

Figure 4 shows the structure of part of an addition polymer surfboard.

The outer surface of the surfboard is coated.

Figure 4

The coating is made from soda-lime glass fibres surrounded by a plastic.

0 5 . 3 What type of material is the coating of the surfboard?

[1 mark]

Tick (✓) one box.

Alloy

Ceramic

Composite

Nanotube

Turn over ▶

0 5.4	Complete the sentence.		
	Choose answers from the box.		[2 marks
	air	ammonia	copper
	limestone	9	sand
	The materials used to make th	e soda-lime glass fibres a	are sodium carbonate,
		and	
0 5.5	Suggest two reasons why surf	boards are coated.	[2 marks
	1		
	2		

Some surfboards are made from wood.

Table 3 contains information about the materials in an addition polymer surfboard and a wooden surfboard.

Table 3

	Addition polymer surfboard	Wooden surfboard
Relative strength	14	38
Cost (£ per m³)	140	390
Density (kg/m³)	50	150
Disposal at end of life	Difficult to recycle	Can be used as fuel

ĺ	4	
		•

0 5.6	Suggest two advantages and two disadvantages of using addition polymers rather than wood to make surfboards.		
	Use Table 3 . [4 marks]		
	Advantages of addition polymers	-	
	Disadvantages of addition polymers	-	
		-	
0 5.7	Calculate the volume of wood in a wooden surfboard of mass 5.25 kg Use Table 3 and the equation:		
	Density in kg/m ³ = $\frac{\text{Mass in kg}}{\text{Volume in m}^3}$ [3 marks]		
	Volume = m ³		

	-
0 6	This question is about the corrosion of metals.
	The corrosion of iron is called rusting.
0 6 . 1	Plan an investigation to show that both water and air are needed for iron to rust.
	You should include the results you expect to obtain.
	Use apparatus and materials from the list:
	 test tubes stoppers iron nails tap water boiled water drying agent
	• oil. [6 marks]

A student investigated how the mass of three iron nails, ${\bf A},\,{\bf B}$ and ${\bf C},$ increased after rusting.

Table 4 shows the student's results.

Table 4

Nail	Mass of nail before rusting in g	Mass of nail after rusting in g	Increase in mass of nail in g
A	1.22	1.30	0.08
В	1.25	1.36	x
С	1.24	1.33	0.09

0 6 . 2	Calculate X in Table 4.	[1 mark]
	X =	g
0 6.3	Calculate the mean increase in mass of the three iron nails, A , B and C . Use Table 4 and your answer to Question 06.2	[1 mark]
	Mean increase in mass =	9

Turn over ▶

Some students investigated the rate of decomposition of hydrogen peroxide.

The equation for the reaction is:

hydrogen peroxide → water + oxygen

0 7 . 1

Complete the sentence.

Choose an answer from the box.

[1 mark]

a burning splint

a glowing splint

damp litmus paper

limewater

The students tested the gas produced to show that it was oxygen.

The students used

Student **A** investigated the effect of the particle size of a manganese dioxide catalyst on the rate of the reaction.

This is the method used.

- 1. Measure 25 cm³ hydrogen peroxide solution into a conical flask.
- 2. Add some fine manganese dioxide powder to the conical flask.
- 3. Measure the volume of oxygen produced every 30 seconds for 10 minutes.
- 4. Repeat steps 1 to 3 two more times.
- 5. Repeat steps 1 to 4 with coarse manganese dioxide lumps.

0 7.2	The method student A used did not give repeatable results.	
	How could student A make the results repeatable?	[4
	Tick (✓) one box.	[1 mark]
	Student A should make measurements every 2 minutes.	
	Student A should measure the mass of manganese dioxide.	
	Student A should use 50 cm ³ hydrogen peroxide.	
	Student A should use a beaker instead of a conical flask.	
	Student B used a method which gave repeatable results.	
0 7 . 3	How could student B improve the accuracy of these results?	
0 7 . 3	Tick (✓) one box.	[1 mark]
	Calculate a mean but do not include any anomalous results.	
	Calculate a mean but do not include the first set of results.	
	Record the results in a table and plot the results on a bar chart.	
	Record the results in a table and plot the results on a line graph.	

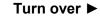
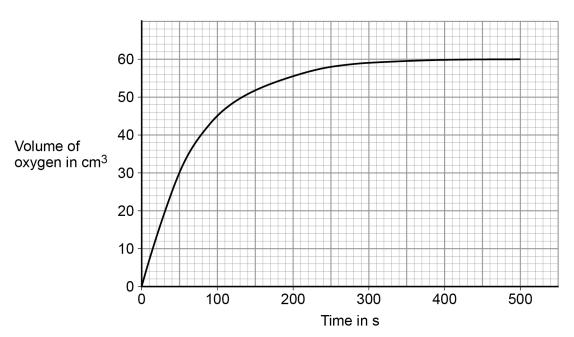



Figure 5 shows student B's results for coarse manganese dioxide lumps.

0 7 . 4 Calculate the mean rate of reaction between 30 and 250 seconds for coarse manganese dioxide lumps.

Use **Figure 5** and the equation:

Mean rate of reaction =
$$\frac{\text{Volume of oxygen formed}}{\text{Time taken}}$$

Give your answer to 3 significant figures.

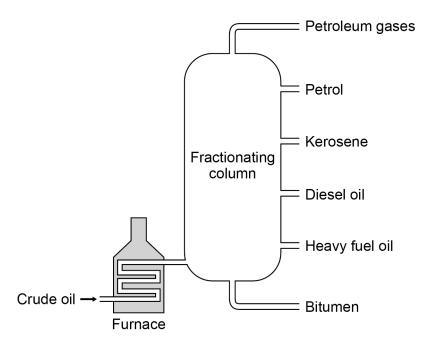
[4 marks]

Volume of oxygen formed
Time taken

Mean rate of reaction =

cm³/s

0 7.5	Fine manganese dioxide powder produces a higher rate of reaction than coarse manganese dioxide lumps.		
	Sketch on Figure 5 the results you would expect for student B 's experiment with fine manganese dioxide powder. [2 marks]		
0 7.6	Hydrogen peroxide molecules collide with manganese dioxide particles during the reaction. Why does fine manganese dioxide powder produce a higher rate of reaction than coarse manganese dioxide lumps? [1 mark] Tick (✓) one box.		
	Fine manganese dioxide powder has a larger surface area. Fine manganese dioxide powder has larger particles.		
	Fine manganese dioxide powder produces less frequent collisions.		
	Turn over for the next question		


Turn over ▶

This question is about crude oil and hydrocarbons.

Figure 6 shows a fractionating column used to separate crude oil into fractions.

Figure 6

Table 5 gives information about some of the fractions.

Table 5

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40–110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

0 8.1	Suggest a suitable temperature for the furnace in Figure 6 .	1 mark] °C
0 8.2	Explain why diesel oil collects above heavy fuel oil but below kerosene in the fractionating column. Use Table 5 .	marks]
0 8.3	Suggest two reasons why bitumen is not used as a fuel. [2	marks]
	2	
	Question 8 continues on the next page	

0 8 . 4	Petrol contains mainly alkanes.
	Which of the following compounds is an alkane?
	Tick (✓) one box.
	C ₂ H ₄
	C ₄ H ₈
	C ₆ H ₁₄
	C ₈ H ₁₆
	Large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.
0 8 . 5	Describe the conditions needed to crack hydrocarbon molecules from the diesel oil
	fraction. [2 marks]

Explain why large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.

[2 marks]

 $lackbox{0}$ $lackbox{8}$. $lackbox{7}$ Complete the equation for the cracking of $C_{15}H_{32}$

[1 mark]

$$C_{15}H_{32} \rightarrow C_{12}H_{26} +$$

Turn over for the next question

This question is about lithium carbonate.

Lithium carbonate is used in medicines.

Figure 7 shows a tablet containing lithium carbonate.

Figure 7

0 9.

1 Lithium carbonate contains lithium ions and carbonate ions.

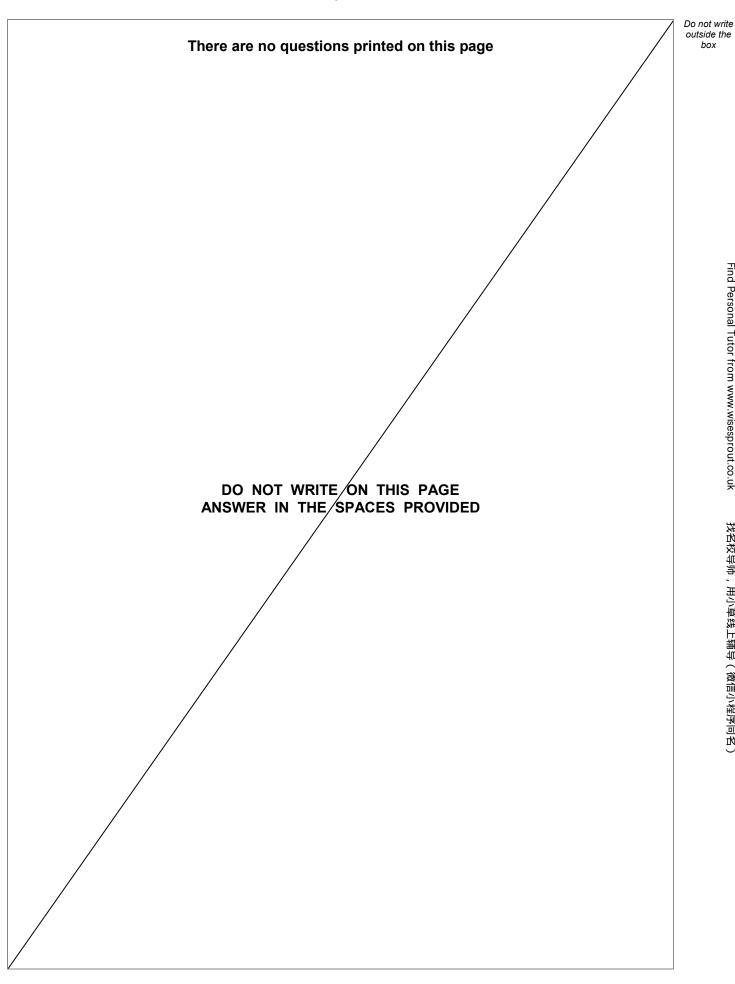
You should include the results of the tests for the ions.

A student tested the tablet for lithium ions and for carbonate ions.

The student used:

- · a metal wire
- · dilute hydrochloric acid
- limewater.

Plan an investigation to show the presence of lithium ions **and** of carbonate ions in the tablet.



[6 marks]

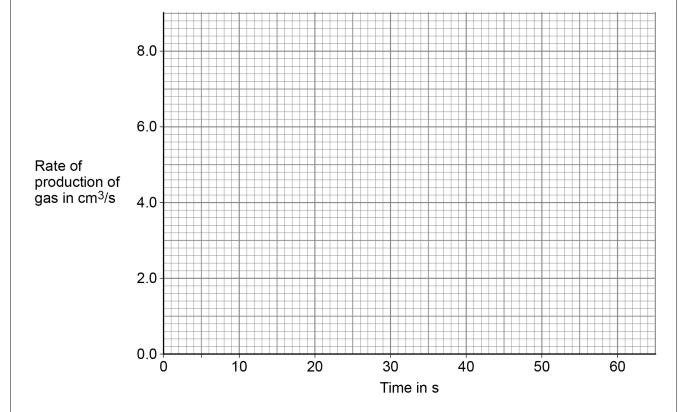
		D 0
9 . 2	The tablet also contains other substances.	
	The substances in tablets are present in fixed amounts.	
	What name is given to mixtures like tablets?	[1 mark]
9.3	The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate.	
	Calculate the percentage by mass of lithium carbonate in this tablet.	[3 marks]
	Percentage by mass of lithium carbonate =	% _

1 0	This question is about rate of reaction.
	A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid.
	The equation for the reaction is:
	$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
1 0 . 1	Which state symbol in the equation for the reaction does not represent one of the three states of matter?
	[1 mark]
	The student determined the rate of production of hydrogen gas.
1 0.2	What two pieces of measuring apparatus could the student use to find the rate of production of hydrogen gas?
	[2 marks]
	1
	2

Question 10 continues on the next page

Table 6 shows the results of the investigation.

Table 6


Time in s	Rate of production of gas in cm ³ /s
10	6.9
20	3.9
30	2.0
40	0.9
50	0.3
60	0.0

1 0 . 3 Plot the data from Table 6 on Figure 8.

You should draw a line of best fit.

[3 marks]

1 0 . 4	Give three conclusions that can be drawn about the rate of reaction between magnesium and dilute hydrochloric acid in this investigation.		
	Use data from Figure 8 and Table 6. [3 marks]		
	1		
	2		
	3		
1 0 . 5	The student repeated the investigation using dilute hydrochloric acid at a higher temperature.		
	All the other variables were kept the same.		
	Which two statements are correct? [2 marks]		
	Tick (✓) two boxes.		
	More bubbles were produced in the first 10 seconds.		
	The activation energy for the reaction was higher.		
	The magnesium was used up more quickly.		
	The reaction finished at the same time.		
	The total volume of gas collected was greater.		

END OF QUESTIONS

There are no questions printed on this page

Do not write outside the

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

