

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE In Mathematics (9MA0) Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P72130A_*
Publications Code 9MA0_31_2206_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 50.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Marks

AOs

Scheme

Question

Ques	CIOII		iiciiic		Fidiks	AUS
1(a)(i)	X~B(15, 0.48)			M1	3.3
		P(X=3) = 0.019668		awrt 0.0197	A1	3.4
(ii)			2013	awrt 0.920	A1	1.1b
					(3)	
(ł	o)	Y is the number of hits	M is the	e number of misses		
		$Y \sim N(120,62.4)$	$M \sim N$	(130,62.4)	B1	3.3
		$P(X > 110) \approx P(Y > 110.5)$	P(X >	$110) \approx P(M < 139.5)$		
		$ \left[= P \left(Z > \frac{110.5 - "120"}{\sqrt{"62.4"}} \right) \right] $	$ = P \left(Z \right) $	$<\frac{139.5 - "130"}{\sqrt{"62.4"}}$	M1	3.4
		= 0.	88544		A1	1.1b
					(3)	
					(6 n	narks)
			Notes:			
(a)	M1	Writing or using the binomial distribution in (i) or (ii) Allow for sight of B(15, 0.48) or in words: binomial with $n = 15$ and $p = 0.48$ may be implied in (i) or (ii) by one correct answer to 3sf or sight of $P(X \le 4) = 0.07986$ i.e. awrt 0.0799. Allow for ${}^{15}C_3 \times 0.48^3 \times 0.52^{12}$ as this is "correct use" Condone B(0.48, 15)				
(i)	A1	awrt 0.0197				
(ii)	A1	awrt 0.920 (Allow 0.92)				
(b)	B1	Setting up a correct Normal model. Allow sight of $N(120,62.4)$ or $N(130,62.4)$ or				
		$N\left(120, \frac{312}{5}\right)$ or $N\left(130, \frac{312}{5}\right)$ or may be awarded if used correctly in standardisation or in words: Normal with mean = $120/130$ and variance = 62.4 or sd = $\sqrt{62.4}$ condone $N\left(120, \sqrt{62.4}\right)$ or $N\left(130, \sqrt{62.4}\right)$ or sd = 62.4 Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ or awrt 7.90 (condone 7.9)				
	M1	This may be implied by sight of 0.897 or 0.8854 Sight of the continuity correction with a normal distribution				
		110.5 or 111.5 or 109.5		139.5 or 140.5 or 138.5		
		NB we will also allow 129.5 or 1 128.5		NB we will also allow 120 121.5).5 or 119.	5 or
	A1	Continuity correction may be seen in standardisation NB No continuity correction(CC) gives awrt 0.897 which is M0 unless CC seen wrt 0.8854 or awrt 0.885 dependent on sight of >110.5 or <129.5 or <139.5 or >120.5 Allow or instead of < or >				
		NB 0.885548 from B(250, 0.48) scores M0A0				

Qı	J L	Scheme			AOs	
2(a	1) [$P(L < 7.902) = 0.025 \Rightarrow \frac{7.902 - 8}{x} =$	−1.96 oe	M1	3.4	
			0.05 *	Alcso*	1.1b	
	S	C B1(mark as M0A1) for $\frac{7.902 - 8}{0.05} = -$	-1.96 ⇒ 0.024998			
(b)	P($7.94 \le L \le 8.09$) = 0.8490 awrt 0.849		B1	1.1b		
				(1)		
(c)) [P	P(L < 7.94) =] 0.115069 (awrt 0.115) or $[P(L > 8.09) =] 0.03593 (awrt 0.036)$			1.1b	
		P(L < 7.94) =] 0.115069 (awrt 0.115) & [P(L > 8.09) =] 0.03593 (awrt 0.036)			1.1b	
	Expected income per 500 rods = \sum (Income × probability × 500)					
	(5	$00 \times "0.849" \times 0.5) + (500 \times "0.1150"$	$(0.05) + (500 \times 0.03593 \times 0.4)$ or	M1	3.4	
	Ex	pected profit per rod = $\sum (Profit \times profit)$	bability)	1411	3.4	
	0.	30×"0.849"+ -0.15×"0.1150"+ 0.20	0×"0.03593" [= 0.2446]			
		pected profit per 500 rods				
		$00 \times \sum (Profit \times probability) $ or $\sum (Inco$	·	M1d	3.1b	
	=	$= 500 \times "0.2446"$ or $= "222$ = [£]122.3	2.3"-500×0.2 awrt [£]122	A1	1.1b	
		- [£]122.J	awit [2]122	(5)	1.10	
(d) L	et $X \sim B(200, 0.015)$		M1	3.3	
	P	$P(X \leqslant 5) =$	$P(X \geqslant 6) =$	M1	1.1b	
	N.	0.9176	0.0824	A1	1.1b	
		Innufacturer is unlikely to achieve their m since <u>0.9176 < 0.95</u>	Manufacturer is unlikely to achieve their aim since $0.0824 > 0.05$	Alft	2.4	
				(4)		
	3.51		Notes:	(12 n	narks)	
(a)	M1 A1*		equation. Allow σ for x and awrt ± 1.96	dring goon		
(b)	B1	awrt 0.849	wed by 0.05 or 0.05000 No incorrect wor	rking seen		
<u> </u>			umber of rods) or awrt 0.036 (Implied by av	vrt 18 for n	umber	
(c)	B1	of rods)	, , , , , , , , , , , , , , , , , , ,			
	B1	number of rods)	umber of rods) and awrt 0.036 (Implied by a			
		Correct method to find the total incomextras	e of 500 rods. Attempt at all 3 with at least t	wo correct	and no	
	M1	or Correct method to find sum of all three profits with at least two of 30, -15 or 20 correct. May				
		work in pence but need to be consister		ad to be		
	M1d	consistent. Allow "0.2446"×500 or	rofit for 500 rods. May work in pence but ne "their income" for $500 \text{ rods} - 500 \times 0.2$ (as		or 501)	
	A1	All previous marks must be awarded for awrt 122 awrt 12200p NB if uses any integer values for numbers of rods then it is A0 other than for 18 for $L > 8.09$				
(d)	M1 Selecting the appropriate model. May be seen or used. Allow B(200,0.985) or Po(3) Condone B(0.015, 200) or B(0.985, 200).					
		Writing or using $P(X \le 5)$ Do not accept Writing or using $P(X \ge 6)$ Do				
	M1	P(X < 6) unless found P(X \leq 5) P(X > 5) unless found P(X				
	A1	0.92 (Poisson 0.916)	0.08 or better			
	A1ft	be in words). Ft "their $p = 0.9176$ "	to be awarded. Correct conclusion with the as long as $p > 0.9$ If "their 0.9176 " < 0.95	must be	e `	
		unlikely If "their 0.9176"> 0.95 they must say be likely To ft the alternative then $p < 0.1$				

Que	stion	Scheme	Marks	AOs
3(a)		tr	B1	1.2
			(1)	
(b)(i)		$\mu = \frac{174.9}{31} = 5.6419$ awrt 5.64	B1	1.1b
(ii)		$\sigma_r = \sqrt{\frac{3523.283}{31} - \mu^2}$	M1	1.1b
		= 9.04559 awrt 9.05	A1	1.1b
			(3)	
	(c)	Leuchars is in the North and Camborne is in the South	M1	2.4
		The mean is smaller for Leuchars than Camborne therefore there is no evidence that Dian's belief is true	A1ft	2.2b
			(2)	
((d)	eg $p = 0.27$ is unlikely to be constant.	B1	2.4
			(1)	
				(7 marks)
		Notes:		
(a)	B1	Allow Tr or trace or Trace		
(b) (i)	B1	For a correct mean awrt 5.64		
(ii)	M1	For a correct expression for sd including the $\sqrt{}$ Ft their mean		
	A1	awrt 9.05 (Allow <i>s</i> = 9.1932 awrt 9.19) NB awrt to 9.05 or 9.19 with no working is M1 A1		
(c)	M1	For stating Leuchars is North of Camborne oe eg Camborne is further south		
	A1ft	M1 must be awarded. A correct conclusion and correct comment about the means ft their mean in (b) Allow No		
	SC	for No and there are only 2 places used so there is insufficient data. Mark as M0A1 on epen		
(d)	A correct reason referring to independence (needs context as to what is independent) eg consecutive 14 days unlikely to be independent			

Question		Scheme	Marks	AOs
4(a)		$H_{0:} p = 0.1$ $H_{1:} p \neq 0.1$	B1	2.5
			(1)	
(1	b)	Use of $X \sim B$ (50, 0.1) implied by sight of one of awrt 0.0052 or awrt 0.9755 or awrt 0.0245	M1	3.4
		Critical regions $X = 0$ or $X \ge 10$	A1	1.1b
		$X = 0$ and $X \ge 10$ plus $P(X = 0) = \text{awrt } 0.0052$ and $P(X \ge 10) = \text{awrt } 0.0245$	A1	1.1b
		SC: Both CR correct with no probabilities and no distribution seen scores M0A1A0		
			(3)	
(c)	0.0297	B1ft	1.1b
			(1)	
((d)	15 is <u>in the critical region</u> therefore there is evidence to support the <u>manager</u> 's belief	B1ft	2.2b
			(1)	
			(6 n	narks)
		Notes		
(a)	B1	For both hypotheses in terms of p or π . Connected to H_0 and H_1 correct Condone 10% but not 10	ly	
(b)	M1	Using correct distribution to find the probability associated with one tail of the CR If the correct distribution is <u>stated</u> (may be seen in part(a)) allow for one tail of the correct CR or one of (awrt 0.025 or awrt 0.005 or awrt 0.975) seen connected to a correct probability statement		
	A1	Lower CR $X = 0 / X < 1 / X \le 0 /$ [condone eg P(X = 0) labelled as CR] Or Upper CR $X \ge 10$ or $X > 9$ [condone P(X \ge 10) oe labelled as CR]		
	A1	Both CR's correct with the relevant probabilities Allow \cup for "and" and $X > 9$, $X < 1$,		
(c)	B1ft	awrt 0.0297 or 2.97% or ft for the sum of the probabilities in (b) for "their 2 critical regions" if seen. If none seen it must be awrt 0.0297		
(d)	B1ft	A correct statement about 15 and "their CR" or sight $P(X \ge 15) = 0.0000738$ and comparison with "their 0.0245 " and a compatible correct statement in context. eg There is evidence that there has been		

Quest	tion	Scheme	Marks	AOs		
5(a		$\frac{365}{1825}$ or $\frac{1}{5}$ or 0.2 oe	B1	1.1b		
		$\frac{1825}{1825}$ or $\frac{1}{5}$ or 0.2 oc	DI	1.10		
			(1)			
(b))	$\frac{170}{1000}$ or $\frac{34}{1000}$ or awrt 0.093	B1	1.1b		
		1825 365				
			(1)			
(c))	$90 \times 0.4 + 80 \times 0.05[=40]$ or $90 \times 0.6 + 80 \times 0.95[=130]$ or	M1	3.1b		
		$740 \times 0.65 = 481 \text{or} 740 \times 0.35 = 259$ $H 40 412 R 481 247 259 133 F 130$	B1 B1 A1	1.1b 1.1b 1.1b		
(d))	P(P(- F) 380 [76 0.200] as a supert 0.200	(4)	1 11		
	•	$P(R' \cap F) = \frac{380}{1825} \left[= \frac{76}{365} = 0.208 \right]$ oe awrt 0.208	(1)	1.1b		
(e))	[133 + "130" _]"263" overt 0.144	(1)			
		$\left \frac{133 + 130}{1825} \right = \left \frac{203}{1825} \right $ awrt 0.144	B1ft	1.1b		
			(1)			
(f))	247 + "481"		2.4		
		247+"481"+123+"40"	M1	3.4		
		$=\frac{728}{}$ awrt 0.817	A1	1.1b		
		891		1.10		
		Notes:	(10 m	n a wlva)		
		Look out for answers given in the question. If you see answers in the		narks) 1 and		
		in the answer space those in the answer space take precedence.	ie questioi	ı unu		
(a)	B1	Allow equivalent				
(b)	B1	Allow equivalent				
(c)	M1	Correct method to find one of the values 40 or 130 or 481or 259				
		Implied by 40, 481, 259 or 130 seen in correct place on diagram				
	B1 R1	One of the highlighted correct				
	B1 A second value highlighted correct or their $("259"+"481") = 740$ or					
		their ("40"+" 481") = 521 or their ("40"+"130") = 170				
	A1	Fully correct				
(d)	B1	380/1825oe or awrt 0.208				
(e)	B1ft	Correct answer or Ft their 130 (>0) do not allow if blank Allow ft correct to 3 sf.				
(f)	M1 A1	For a single fraction with the numerator < denominator and n is an integer we will award for $n/891$ or $n/(\text{sum of their 4 values in } H$, each > 0) or awrt 0.817				
		728/891 oe or awrt 0.817				

	Qu	uestion Scheme			Marks	AOs	
(b) $\Pi_0: \rho = 0 \ \Pi_1: \rho < 0$			(h) decreases or the gradient of the curve is becoming	flatter with increasing <i>m</i> : diminishing	B1	2.4	
Critical value 0.3887 (Allow \pm) There is evidence that the product moment correlation is less than 0 / there is a negative correlation (c) $\log_{10} h = -0.05 \log_{10} m + 1.92$ $\log_{10} h = \log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} m + \log_{10} m^{0.05}$ and $\log_{10} h = \log_{10} a + \log_{10} m^{0.05}$ and $\log_{10} h = \log_{10} a + \log_{10} m^{0.05}$ or $\log_{10} h = \log_{10} a + k \log_{10} m$ M1 1.1b $\frac{h = 10^{1.92} \times 10^{-0.05 \log_{10} m} = 0}{h^{-0.05} \times 10^{-0.05 \log_{10} m} = 0}$ $\frac{h = 10^{1.92} \times 10^{-0.05 \log_{10} m} = 0}{h^{-0.05} \times 10^{-0.05 \log_{10} m} = 0}$ $\frac{h = 10^{1.92} \times 10^{-0.05 \log_{10} m} = 10^{1.52} \text{ or } \log_{10} a = 1.92 \text{ and } k = -0.05$ $\frac{h = 10^{1.92} \times 10^{-0.05 \log_{10} m} = 0}{h^{-0.05} \times 10^{-0.05 \log_{10} m} = 0}$ Notes: (9 marks) (9 marks) Geg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation with no context or $\rho < 0$ Independent of hypotheses correct in terms of ρ (allow p) M1 For the ev of -0.3887 or any even that $0.3 < ev < 0.5$ Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of secting -0.3887 or if they give 0.3887 or any even that $0.3887 < 0.897$ and which mentions "pince/correlation/relationship" and less than 0' negative or $\rho < 0$ A contradictory statement scores $A0$ eg Accept H_0 therefore negative correlation 11 May be implied by 2md M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides $\frac{10}{1000000000000000000000000000000000$					(1)		
There is evidence that the product moment correlation is less than 0 / there is a negative correlation (c) $ og_{10} h = -0.05 \log_{10} m + 1.92 h = am^{k} \rightarrow \log_{10} h = \log_{10} am^{k} M1 1.1b $ $ og_{10} h = -\log_{10} m^{0.05} + 1.92 \text{ or } \log_{10} h = \log_{10} m^{k} M1 1.1b $ $ og_{10} h = -\log_{10} m^{0.05} + 1.92 \text{ or } \log_{10} h = \log_{10} a + \log_{10} m^{k} M1 2.1 $ $ h = 10^{1.92 \times 10^{10000} m^{0.05}} = 1.92 \text{ or } \log_{10} h = \log_{10} a + k \log_{10} m M1 1.1b $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 1.92 \text{ or } \log_{10} h = \log_{10} a + k \log_{10} m M1 1.1b $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{10000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{100000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{100000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{1000000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{100000000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{1000000000} m^{0.05} = 0 $ $ h = 10^{1.92} \times 10^{10000000000000000000000000000000000$	((b) $H_0: \rho = 0 \ H_1: \rho < 0$		B1	2.5		
there is a negative correlation (c) $\log_{10} h = -0.05 \log_{10} m + 1.92$			Critical value – 0.3887 (Allow ±)		M1	1.1b	
CC $\log_{10} h = -0.05 \log_{10} m + 1.92$ $h = am^k \rightarrow \log_{10} h = \log_{10} am^k$ M1 1.1b $\log_{10} h = \log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} m^{0.05} + 1.92$ or $\log_{10} h = \log_{10} a + \log_{10} m^k$ or $\log_{10} a + \log_{10} m^k$ M1 2.1 $\log_{10} h = \log_{10} a + \log_{10} m^k$ M1 2.1 $\log_{10} h = \log_{10} a + \log_{10} m^k$ M1 2.1 $\log_{10} h = \log_{10} a + \log_{10} m^k$ M1 1.1b $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$ M1 $\log_{10} h = \log_{10} a + \log_{10} m$			_	ment correlation is less than 0/	A1	2.2b	
$ \log_{10}h = \log_{10}m^{0.05} + 1.92 \text{ or } \log_{10}h = \log_{10}m^{0.05} + 1.92 \text{ or } \log_{10}h = \log_{10}m^{0.05} + 1.92 \text{ or } \log_{10}h = \log_{10}a + \log_{10}m^{k} \text{ or } \log_{10}a + \log_{10}m^{k} \text$					(3)		
$ \log_{10} h - \log_{10} m^{-0.05} + 1.92 \text{ or } \\ h = 10^{1.92-0.05\log_{10} m} \text{ oe } \\ \log_{10} h m^{-0.05} = 1.92 \text{ or } \\ \log_{10} h m^{-0.05} = 1.92 \text{ or } \\ \log_{10} h m^{-0.05} = 1.92 \text{ or } \\ h = 10^{1.92} \times 10^{-0.05\log_{10} m} \text{ oe } \\ h = 10^{1.92} \times 10^{-0.05\log_{10} m} \text{ oe } \\ h = 10^{1.92} \times 10^{-0.05\log_{10} m} \text{ oe } \\ h = 10^{1.92} \times 10^{-0.05\log_{10} m} \text{ oe } \\ h = 10^{1.92} \times 10^{-0.05\log_{10} m} \text{ oe } \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} = 10^{1.92} \text{ or } \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = 0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05 \\ h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}} \text{ or } h = 10^{1.92} \times 10^$		(c)	$\log_{10} h = -0.05 \log_{10} m + 1.92$	$h = am^k \to \log_{10} h = \log_{10} am^k$	M1	1.1b	
			$\log_{10} h = \log_{10} m^{-0.05} + 1.92 \text{or}$	-10 -10	M1	2.1	
$hm^{0.05} = 10^{1.92} \text{ or } \frac{h}{m^{-0.05}} = 10^{1.92} \text{ or } hos^{-0.05} = 10^{1.92} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05$ $h = 10^{1.92} m^{-0.05} \text{ or } h = 83.17m^{-0.05} \text{ or } a = \text{awrt } 83.17 \text{ and } k = -0.05$ $A1 1.1b$ $Notes: \qquad (9 \text{ marks})$ $cg \text{ Idea as one increases the other decreases (in context). Allow use of } m \text{ and } h \text{ eg As } m \text{ increases } h \text{ decreases. Do not allow negative correlation with no context or } \rho < 0$ $Allow \text{ there is a negative correlation/association/relationship/exponential between minutes } \frac{\text{exercise}(m)}{\text{and resting heart rate } (h) \text{ oe}}$ $M1 \text{For the cv of } -0.3887 \text{ or any cv such that } 0.3 < \text{cv} < 0.5$ $1 \text{Independent of hypotheses. Correct conclusion that implies reject } H_0 \text{ on basis of seeing } -0.3887 \text{ or if they give } 0.3887 \text{ we must see the comparison } 0.3887 < 0.897 \text{ and which mentions "pmc/correlation/relationship" and less than 0/ negative or \rho < 0 A \text{ contradictory statement scores } A0 \text{ eg Accept } H_0 \text{ therefore negative correlation} 1 \text{In this part once } M0 \text{ is scored no more marks can be scored. Condone no base} 1 \text{M1} \text{M2} \text{M2} \text{ be implied by } 2nd \text{ M1 mark} 1 \text{M2} \text{M3} \text{ be implied by } 3rd \text{ M1 mark} 1 \text{M2} \text{M3} \text{ be implied by } 3rd \text{ M1 mark} 1 \text{M2} \text{M3} \text{ be implied B M1M1M1} 1 \text{M4} \text{M5} \text{ in implies M1M1M1} 1 \text{M6} \text{ thod } 1 \text{: Correct use of the addition/subtraction log rule or eq* in the form } h = 10^{1.92} \times 10^{-0.05 \log m} 1 \text{M6} \text{ thod } 2 \text{: A second correct step for correct use of the power log rule} 1 \text{M6} \text{ thod } 1 \text{: Correct removal of logs or } h = 10^{1.92} \times 10^{\log m^{-0.05}} \text{ Method } 2 \text{: Log } a \text{ (or } a \text{) and } k \text{ correct} 1 \text{Allow } h = \text{awrt } 83.2m^{-0.05}$			$\log_{10} hm^{0.05} = 1.92 \text{ or}$ $\log_{10} \left(\frac{h}{m^{-0.05}}\right) = 1.92 \text{ or}$	$\log_{10} h = \log_{10} a + k \log_{10} m$	M1	1.1b	
Notes: (9 marks)			$hm^{0.05} = 10^{1.92}$ or $\frac{h}{m^{-0.05}} = 10^{1.92}$ or	$\log_{10} a = 1.92$ and $k = -0.05$	M1	1.1b	
Source			$h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or	or $a = \text{awrt } 83.17 \text{ and } k = -0.05$	A1	1.1b	
 (a) B1 eg Idea as one increases the other decreases (in context). Allow use of m and h eg As m increases h decreases. Do not allow negative correlation with no context or ρ < 0 Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oe (b) B1 Both hypotheses correct in terms of ρ (allow p) M1 For the cv of −0.3887 or any cv such that 0.3 < cv < 0.5 Independent of hypotheses. Correct conclusion that implies reject H₀ on basis of seeing − 0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or ρ < 0 A contradictory statement scores A0 eg Accept H₀ therefore negative correlation (c) In this part once M0 is scored no more marks can be scored. Condone no base M1 May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides May be implied by 3rd M1 mark Method 2: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule or eq^a in the form h = 10^{1.92} × 10^{-0.05log m} Method 2: A second correct step for correct use of the power log rule M1 Method 1: Correct use of the addition/subtraction log rule or eq^a in the form h = 10^{1.92} × 10^{-0.05log m} Method 2: A second correct step for correct use of the power log rule M1 This line implies M1M1M1 Method 1: Correct removal of logs or h = 10^{1.92} × 10^{log m-0.05} Method 2: Log a (or a) and k correct A1 Allow h = awrt 83.2m^{-0.05} 				~~			
 (a) B1 decreases. Do not allow negative correlation with no context or ρ < 0 Allow there is a negative correlation/association/relationship/exponential between minutes exercise(m) and resting heart rate (h) oe (b) B1 Both hypotheses correct in terms of ρ (allow p) M1 For the cv of −0.3887 or any cv such that 0.3 < cv < 0.5 Independent of hypotheses. Correct conclusion that implies reject H₀ on basis of seeing −0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or ρ < 0 A contradictory statement scores A0 eg Accept H₀ therefore negative correlation (c) In this part once M0 is scored no more marks can be scored. Condone no base M1 May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eqⁿ in the form h = 10^{1.92} × 10^{-0.05 log m} Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1M1 Method 1: Correct removal of logs or h = 10^{1.92} × 10^{log m-0.05} Method 2: Log a (or a) and k correct Allow h = awrt 83.2m^{-0.05} 			eg Idea as one increases the other decrease				
 (b) B1 Both hypotheses correct in terms of ρ (allow p) M1 For the cv of −0.3887 or any cv such that 0.3 < cv < 0.5 Independent of hypotheses. Correct conclusion that implies reject H₀ on basis of seeing −0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or ρ < 0 A contradictory statement scores A0 eg Accept H₀ therefore negative correlation (c) In this part once M0 is scored no more marks can be scored. Condone no base M1 May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eqⁿ in the form h = 10^{1.92} ×10^{-0.05log m} Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1M1 Method 1: Correct removal of logs or h = 10^{1.92} ×10^{log m-0.05} Method 2: Log a (or a) and k correct A1 Allow h = awrt 83.2m^{-0.05} 	(a)	B1	decreases. Do not allow negative correlation with no context or $\rho < 0$ Allow there is a negative correlation/association/relationship/exponential between mir				
Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing – 0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or ρ < 0 A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation (c) In this part once M0 is scored no more marks can be scored. Condone no base M1 May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides M3 May be implied by 3rd M1 mark M6 M1 Method 1: Correct use of the power log rule or making h the subject M6 M1 Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form h = 10 ^{1.92} × 10 ^{-0.05log m} M6 M1 Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 M1 Method 1: Correct removal of logs or h = 10 ^{1.92} × 10 ^{log m-0.05} Method 2: Log a (or a) and k correct A1 Allow h = awrt 83.2m ^{-0.05}	(b)			llow p)			
Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing – 0.3887 or if they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0/ negative or ρ < 0 A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation (c) In this part once M0 is scored no more marks can be scored. Condone no base M1 May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides M3 May be implied by 3rd M1 mark M6 M1 Method 1: Correct use of the power log rule or making h the subject M6 M1 Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form h = 10 ^{1.92} × 10 ^{-0.05log m} M6 M1 Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 M1 Method 1: Correct removal of logs or h = 10 ^{1.92} × 10 ^{log m-0.05} Method 2: Log a (or a) and k correct A1 Allow h = awrt 83.2m ^{-0.05}		M1	For the cy of -0.3887 or any cy such tha	t 0.3 < cv < 0.5			
May be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correct Allow $h = \text{awrt } 83.2m^{-0.05}$		A1	Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0 / negative or $\rho < 0$				
Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides May be implied by 3rd M1 mark M1 Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correct A1 Allow $h = \text{awrt } 83.2 m^{-0.05}$	(c)		In this part once M0 is scored	no more marks can be scored. Condone	no base		
 M1 Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule This line implies M1M1M1 M1 Method 1: Correct use of the addition/subtraction log rule or eqn in the form h = 10^{1.92} ×10^{-0.05log m} Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 Method 1: Correct removal of logs or h = 10^{1.92} ×10^{log m-0.05} Method 2: Log a (or a) and k correct Allow h = awrt 83.2m^{-0.05} 			May be implied by 2nd M1 mark				
M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log rule This line implies M1M1M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correct Allow $h = \text{awrt } 83.2 m^{-0.05}$			May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject				
M1 Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correct A1 Allow $h = \text{awrt } 83.2m^{-0.05}$		M1	This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$			g m	
Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{109m}$ Method 2: Log a (or a) and k correct Allow $h = \text{awrt } 83.2m^{-0.05}$		M1	•	4.01.92 4.01og m ^{-0.05}			
A		Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m}$		$10^{1.72} \times 10^{\log m} \qquad \text{Method 2: } \text{Log } a \text{ (or } a)$	and k corre	ect	
		A			$^{.92} m^{-0.05}$		

Find Personal Tutor from www.wisesprout.co.uk

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom