

Please write clearly ir	ı block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		_
Candidate signature	I declare this is my own work.	_/

A-level PHYSICS

Paper 3 Section B

Engineering physics

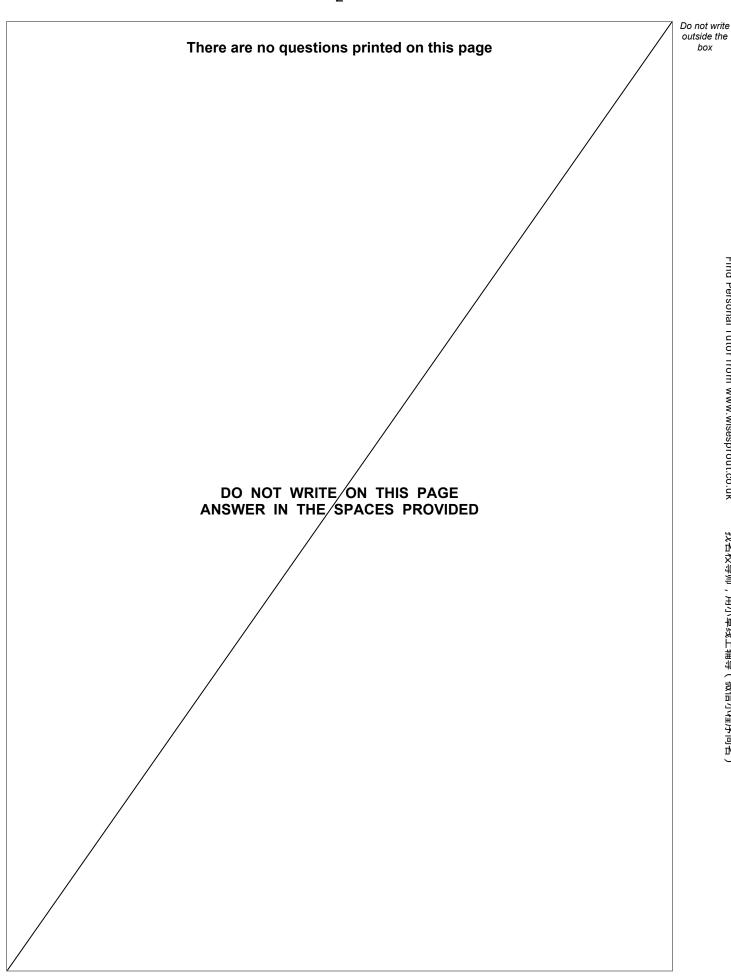
Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

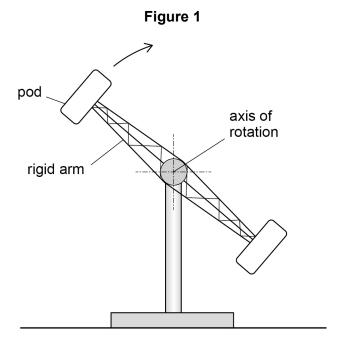
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- · Show all your working.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
TOTAL	



Section B

Answer all questions in this section.

0 1 Figure 1 shows a fairground ride.

The ride consists of a rotor that rotates in a vertical circle about a horizontal axis.

The rotor has two rigid arms. A pod containing passengers is attached to each arm. The rotor is perfectly balanced.

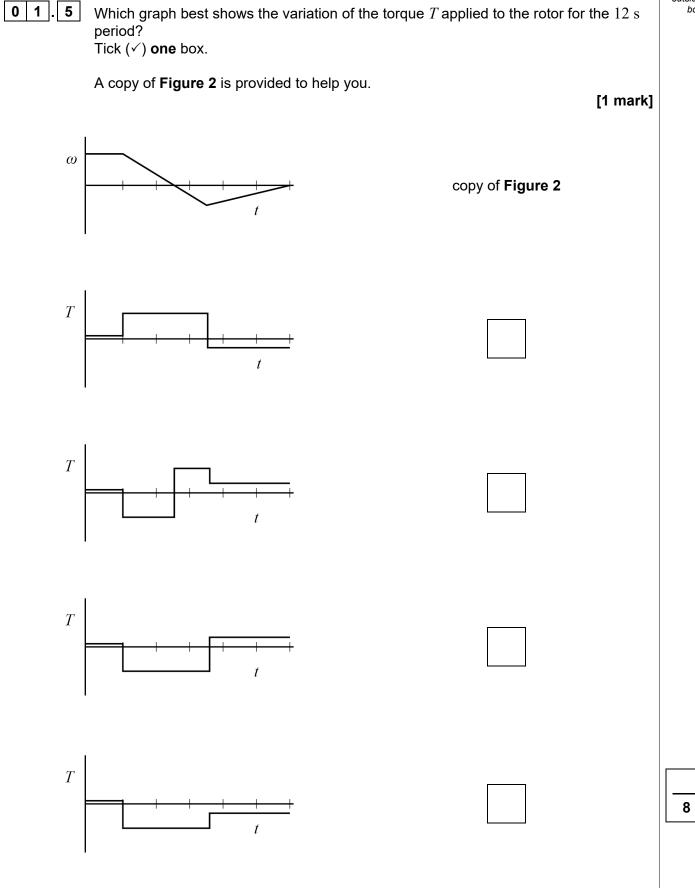
The direction of rotation of the rotor is reversed at times during the ride.

Question 1 continues on the next page

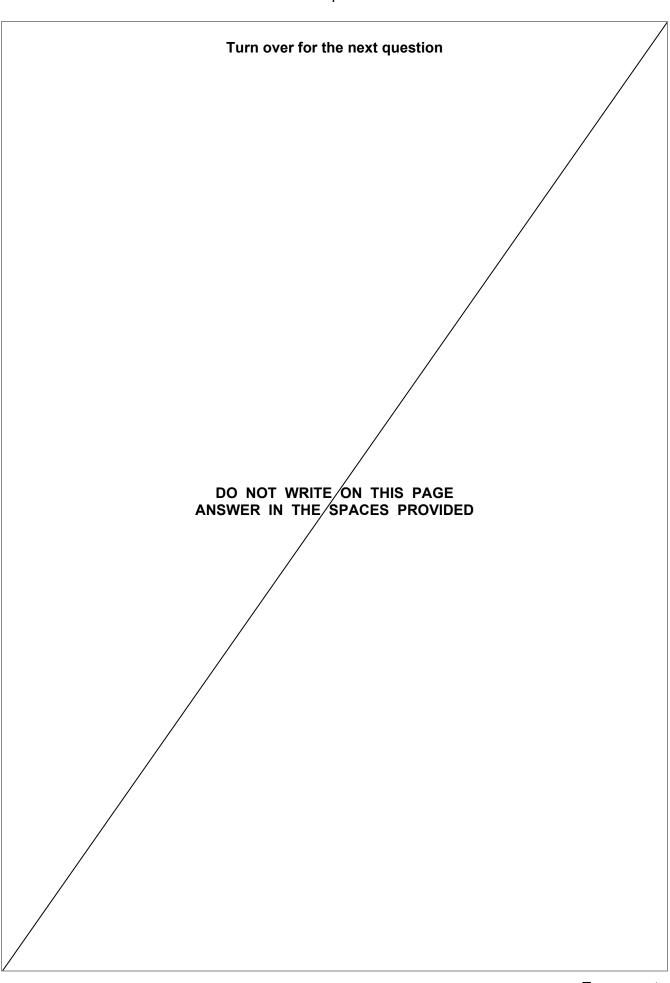
Figure 2 shows the variation of the angular velocity ω of the rotor with time t during a 12 s period.

0 1. Determine the mean angular velocity of the rotor during the 12 s period.

[2 marks]

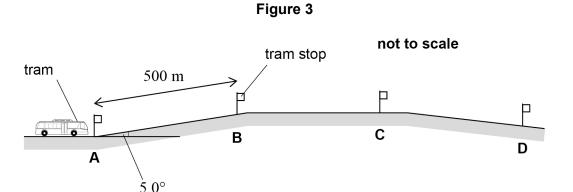

 $\mbox{mean angular velocity} = \underline{\hspace{1cm}} \mbox{rad } s^{-1}$

	The moment of inertia of the rotor about its axis of rotation is $2.1 \times 10^4~kg~m^2$. A constant frictional torque of $390~N~m$ acts at the bearings of the rotor.	
0 1 . 2	Calculate the power output of the driving mechanism during the first 2 s shown in Figure 2	ı
	in Figure 2 .	[1 mark]
	power output =	W
0 1.3	Calculate the maximum torque applied by the driving mechanism to the rotor d	luring
	the 12 s period.	marks]
	maximum torque =	N m
0 1 . 4	Calculate the magnitude of the angular impulse on the rotor between $t = 2.0 \text{ s}$	
[-,-,-	and $t = 7.0 \text{ s.}$	·4l.¶
	L	[1 mark]
	angular impulse = Question 1 continues on the next page	Nms
	adoction i continuos on the next page	



Do not write outside the

0 2


A moving tram is powered by energy stored in a rapidly spinning flywheel.

When the tram is at a tram stop, the flywheel is 'charged' by being accelerated to a high rotational speed.

The mass of the tram, flywheel and passengers is $1.46 \times 10^4 \, kg$.

The distance between tram stops is 500 m.

Figure 3 shows that between stops **A** and **B** the track is inclined at a constant 5.0° to the horizontal.

The tram must travel 500 m along this incline on one charge of energy.

The total resistive force on the tram due to its motion is constant at 1.18 kN.

The flywheel is a solid steel disc of diameter $1.00~\mathrm{m}$. It has a moment of inertia of $62.5~\mathrm{kg}~\mathrm{m}^2$.

0 2 . 1	Calculate the minimum angular speed of the flywheel when the tram leaves	stop A so
	that the tram reaches stop B using only energy stored in the flywheel.	[3 marks]
	minimum angular speed =	rad s ⁻¹
0 2 . 2	Between stops C and D the tram travels downhill.	
	Suggest two advantages of keeping the flywheel connected to the driving w when the tram travels downhill.	heels
		[2 marks]
	1	
	2	
	Question 2 continues on the next page	
	adostion 2 continues on the next page	

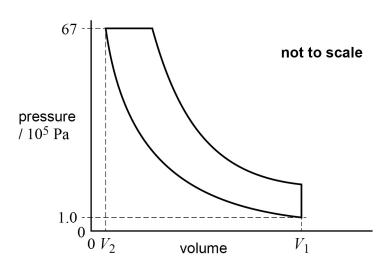
0 2.3	The same tram is to be used on a track where the stops are further apart, so the flywheel system needs to be modified.
	Discuss the design features of the flywheel that will enable it to store more energy without increasing the mass of the tram.
	In your answer you should consider:
	 the design of the flywheel how the choice of materials used to make the flywheel is influenced by its design and maximum angular speed
	other design aspects that allow for high angular speeds of the flywheel. [6 marks]

Do not write outside the box

寻师,用小卓线上辅导(微信小程序)	,用小阜线上辅导(微信
(微信	(強信
(微信	(強信
(微信	(強信
(微信小程序)	(微信小
微信小程序	微信小
四	小程序回名)
$\overline{}$	
(強信	(強信

Turn over for the next question

Do not write outside the box


0 3.1	Explain what is meant by an adiabatic change.	[1 mark]

0 3 . 2

Figure 4 shows the p-V diagram for an ideal diesel engine cycle.

Figure 4

In this cycle, air is compressed adiabatically from a pressure of 1.0×10^5 Pa and volume V_1 to a pressure of 67×10^5 Pa and volume V_2 .

The adiabatic index γ for air = 1.4

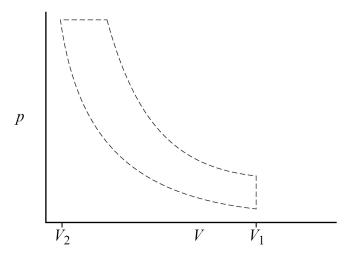
Calculate the compression ratio $\frac{V_1}{V_2}$.

[2 marks]

compression ratio =

Question 3 continues on the next page

Turn over ▶


0	3 . 3	Explain why the compression ratio for a diesel engine must be greater than compression ratio for a petrol engine.	the
			[2 marks]

The dashed lines in Figure 5 show the $p\!-\!V$ diagram for the ideal diesel engine cycle.

0 3. **4** Draw, on **Figure 5**, a typical indicator diagram for a real four-stroke diesel engine with the same values of V_1 and V_2 .

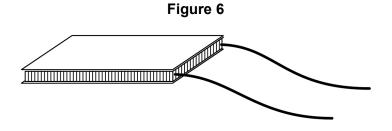
[2 marks]

Figure 5

0 3.5 Mark with an **X** on your diagram the point where the injection of fuel starts.

[1 mark]

0 3.6	Explain two differences between the ideal cycle and the indicator diagram for the real engine.
	[2 marks]
	1
	2


Turn over for the next question

Turn over ►

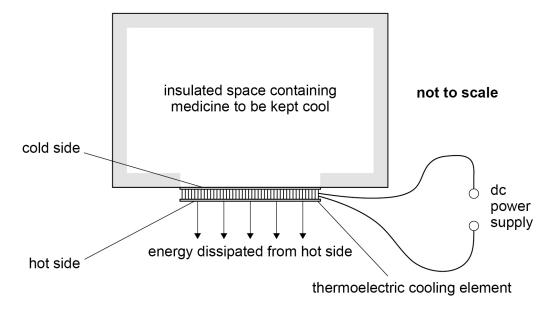
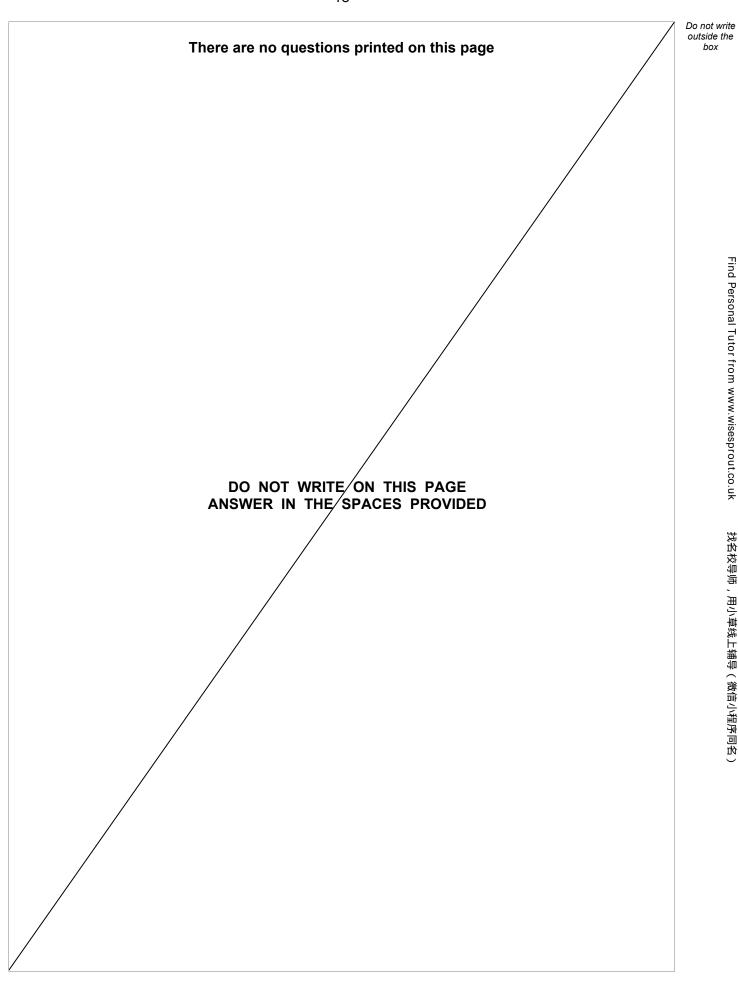

0 4

Figure 6 shows a low-voltage solid-state thermoelectric cooling element. The element is a square of side 40 mm and is 4 mm thick.

Figure 7 shows how the element is used as part of a thermoelectric refrigerator to keep small quantities of medicine at a low temperature.

The manufacturer's data for the element show that when the temperature of the hot side is 35 °C and the temperature of the cold side is 5 °C:


- the rate at which energy is dissipated from the hot side is 65 W
- the electrical power supplied is 28 W.

0 4 . 1	It is claimed that the coefficient of performance (COP) of a thermoelectric refrigerator is much less than the COP of an ideal refrigerator.	•
	Discuss whether the claim is valid for the thermoelectric refrigerator in this question. [4 marks]	
0 4 . 2	Suggest why a small value of the COP might be acceptable for this particular	
	application of a thermoelectric cooling element. [2 marks]	
		Г

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
Copyright information	
For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This bo is published after each live examination series and is available for free download from www.aqa.org.uk.	oklet
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact Copyright Team.	e t the
Copyright © 2022 AQA and its licensors. All rights reserved.	

