

Please write clearly in	า block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	
		/

GCSE CHEMISTRY

F

Foundation Tier Paper 2

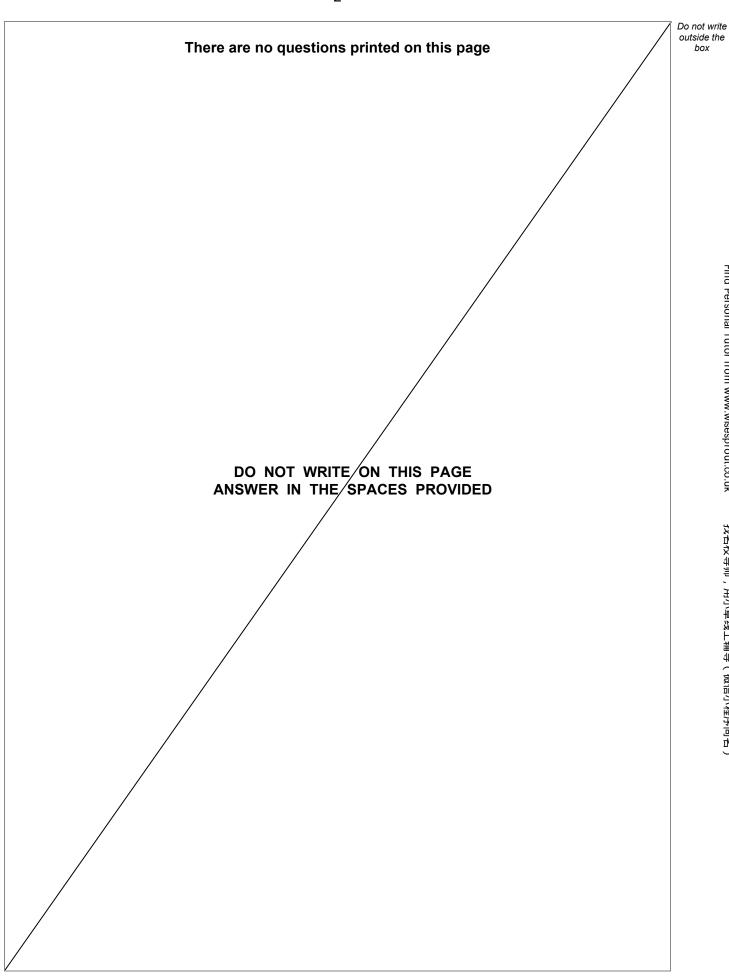
Tuesday 13 June 2023 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions


- · Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

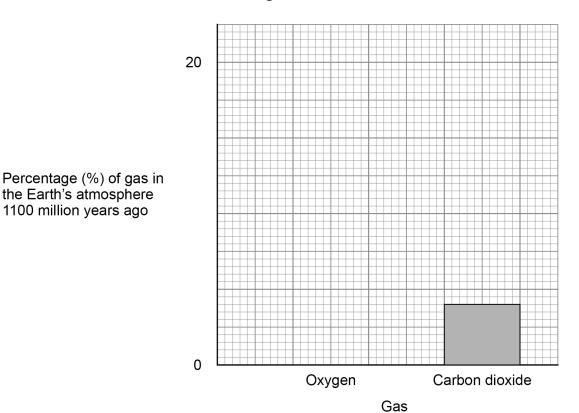
For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

0 1	This question is about oxygen.
	Scientists think that there was little or no oxygen in the Earth's early atmosphere.
0 1.1	Which planet today has an atmosphere that is similar to the Earth's early atmosphere? [1 mark] Tick () one box. Jupiter Mars Neptune Saturn
0 1.2	Which is the approximate percentage of oxygen in the Earth's atmosphere today? [1 mark] Tick (✓) one box.
	20%
	50%
	80%
	100%
	Question 1 continues on the next page

0 1.3	Which two of the following increased the percentage of oxygen in the Earth's	Do not write outside the box
	atmosphere? [2 marks]	
	Tick (✓) two boxes.	
	Active volcanoes emitted gases	
	Algae and plants evolved	
	Animals evolved	
	Carbonate sediments formed in oceans	reisonal luto
	Photosynthesis took place	g
		www.waspiout.co.ux
		טוסמו.מט
		2
		38 11 28 4 28
		-
		五少年发
		半级工抽 守(成后少柱/7月七)
		1 2 2
		1±/J7/⊔J T
		,

- 0 1 . 4
- Some scientists think that 1100 million years ago the Earth's atmosphere contained:
- 16% oxygen
- 4% carbon dioxide.

Complete Figure 1.


You should:

the Earth's atmosphere 1100 million years ago

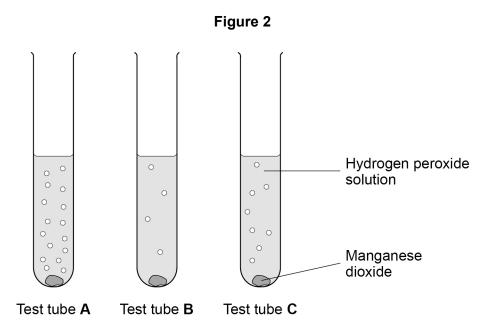
- complete the y-axis scale
- plot the percentage of oxygen in the Earth's atmosphere 1100 million years ago.

[2 marks]

Figure 1

Question 1 continues on the next page

Oxygen is produced when manganese dioxide is added to hydrogen peroxide solution.

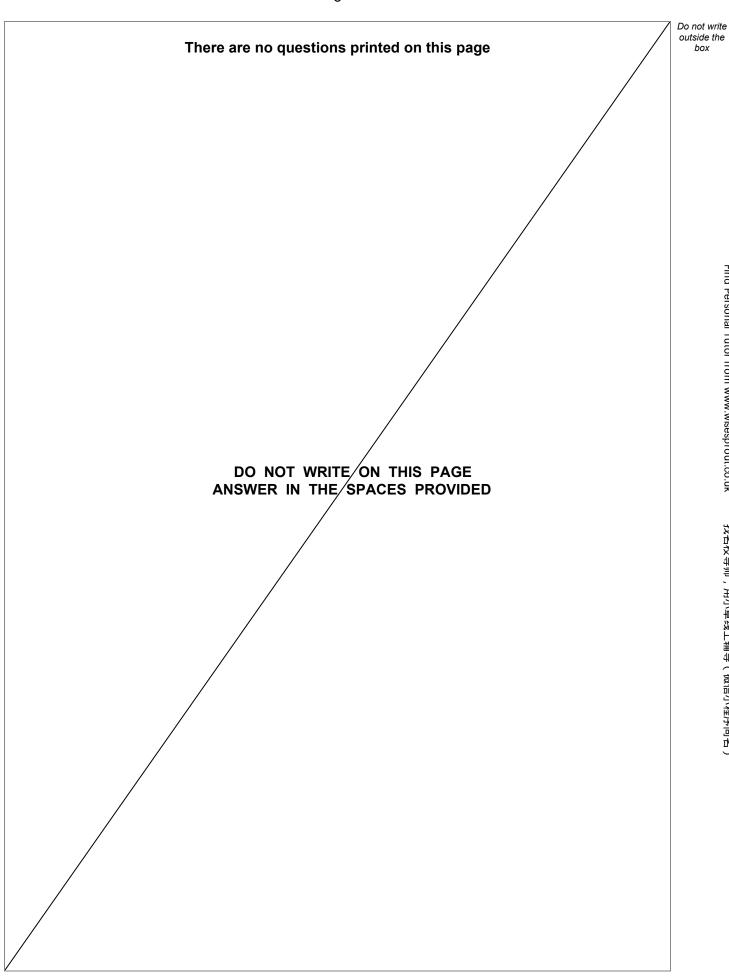

The equation for the reaction is:

A student investigated the effect of changing the temperature on the decomposition of hydrogen peroxide.

This is the method used.

- 1. Add 5 cm³ of hydrogen peroxide solution to three test tubes labelled **A**, **B** and **C**.
- 2. Place each test tube in a water bath at a different temperature.
- 3. Add 0.2 g of manganese dioxide to each test tube.

Figure 2 shows the results.



/早线上铺守(
、微信小程序同名)

0 1.5	Which test tube contained hydrogen peroxide solution at the highest tempe		outside the box
	Tick (✓) one box.	[1 mark]	
	Test tube A		
	Test tube B		
	Test tube C		
0 1.6	The student tested the gas produced.		9
	What is used to prove that the gas is oxygen?	[4 manula]	
	Tick (✓) one box.	[1 mark]	
	A glowing splint		7
	Bromine water		
	Damp litmus paper) 1 2
0 1.7	Manganese dioxide does not appear in the chemical equation for this reacti	on.	-
	Which is a correct statement about manganese dioxide in this reaction?	[4 manula]	3
	Tick (✓) one box.	[1 mark]	Ī
	Manganese dioxide increases the activation energy in this reaction.		- - -
	Manganese dioxide is a catalyst in this reaction.		
	Manganese dioxide is used up during this reaction.		
	Manganese dioxide reduces the rate of this reaction.		9

0 2 This question is about glass and polymers.

Beakers can be made from borosilicate glass or poly(propene).

Table 1 shows information about materials used to make beakers.

Table 1

	Material used to make beakers	
	borosilicate glass	poly(propene)
Temperature at which melting begins in °C	850	160
Flammability	does not burn	burns
Resistance to impact	shatters	tough
Cost of 100 cm ³ beaker in £	1.50	2.00

0 2.1	Suggest two reasons why a Bunsen burner should not be used to heat a liquipoly(propene) beaker.	iid in a
	Use Table 1 .	2 marks]
	1	
	2	
0 2.2	Poly(propene) beakers are more expensive than borosilicate glass beakers.	
	Suggest one reason why using poly(propene) beakers instead of borosilicate beakers could save money.	glass
	Use Table 1 .	[1 mark]

Do not write outside the

	10	
0 2.3	Which is a raw material used to make borosilicate glass? [1 mar Tick (✓) one box.	·k]
	Boron trioxide	
	Clay	
	Limestone	
	Poly(propene) is produced from propene.	
	The displayed structural formula of propene is:	
	$\begin{array}{c c} H & CH_3 \\ & \\ C =\! C \\ & \\ H & H \end{array}$	

Table 2 shows some information about the elements in one molecule of propene.

Table 2

Symbol for element	Name of element	me of element in one molecule of propene	
С			
Н			

Complete Table 2.

[2 marks]

Which structure is the repeating unit of poly(propene)?

[1 mark]

Tick (✓) one box.

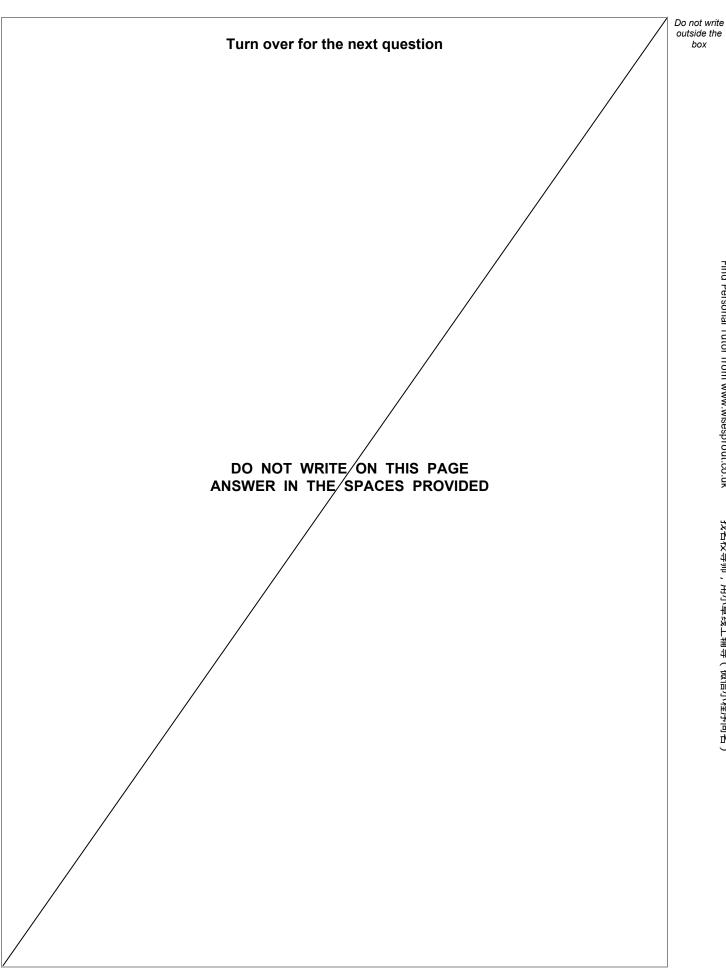
$$\begin{array}{c|cccc}
 & H & H \\
 & C & C \\
 & H & H \\
\end{array}$$

$$\begin{array}{c|cccc}
CH_3 & CH_3 \\
 & & \\
C & & C
\end{array}$$

- 0 2.6 Poly(propene) is produced in three stages:
 - Stage 1: separating large alkane molecules from crude oil
 - Stage 2: producing propene molecules from large alkane molecules
 - Stage 3: joining many propene molecules together.

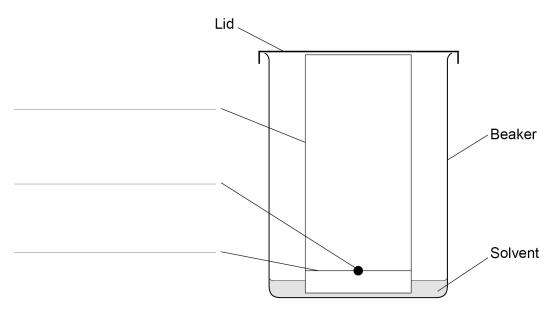
Name Stage 1, Stage 2 and Stage 3.

Choose answers from the box.


[3 marks]

crack	ing	fermentation	fractional distillation	
	polymerisatio	n rev	erse osmosis	
Stage 1 is			·	
Stage 2 is			.	
Stage 3 is			·	

0 2.7	A molecule of hexene contains a double carbon–carbon bond.	Do not write outside the box
	Many hexene molecules join together to form poly(hexene).	
	Which two words describe a hexene molecule in this process?	
	Tick (✓) two boxes. [2 marks]	
	Alkene	
	Catalyst	רווים
	Composite	reisonai i
	Element	
	Monomer	12
		פאטוסמרינטימצ
		7
		3% 11
		发出交 华岩、
		بر ت
		以 十 董
		4 2
		 1 1 1 1
		半级工抽 守(城后少柱/7月石)



0 3 This question is about chromatography.

A student investigated an orange dye using paper chromatography.

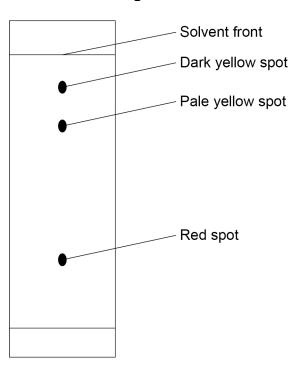
0 3. 1 Figure 3 shows the apparatus at the start of the investigation.

Figure 3

Complete the labels on Figure 3.

[3 marks]

0 3. 2 Figure 4 shows the results at the end of the investigation.	Do not write outside the box
Figure 4	
Orange colour	
	ring reisonal lutol nom w
The student made a mistake in the investigation. What mistake did the student make to produce the results shown in Figure 4 ?	www.www.www
Tick (✓) one box.	2
Left the investigation for too long	X 日
Used a lid on the beaker	王 公 ·
Used a solvent which did not dissolve the dye	上冊 女 () XX 同立 Y 生 ア 以 口
Question 3 continues on the next page	,



Do not write outside the box

A different student did the investigation correctly.

Figure 5 shows the results.

Figure 5

0	3	. 3	How do the results in Figure 5 show that the orange dye is not a pure substance?
			[1 mark]

0 3.4	Determine the R_f value for the red spot.	Do not write outside the box
	You should measure:	
	the distance moved by the red spot	
	the distance moved by the solvent.	
	Use Figure 5 and the equation:	
	$R_f = \frac{\text{distance moved by red spot}}{\text{distance moved by solvent}}$	
	distance moved by solvent	
	[4 marks]	3
	Distance moved by red spotcm	
	Distance moved by solventcm	
	R _f =	www.www.www
0 3.5	Which spot had the greatest R _f value?	00.us 3% 11/X 4 %
	Use Figure 5. [1 mark]	4 \ \ \ \
	Tick (✓) one box.	3
	Dark yellow spot	# % ± 4
	Pale yellow spot	
	Red spot	10
	Turn over for the next question	

This question is about a reversible reaction.

A student heated calcium hydroxide to produce calcium oxide and water vapour.

This is the method used.

- 1. Add 2.00 g of calcium hydroxide into a test tube.
- 2. Heat the test tube and contents for 1 minute using a Bunsen burner.
- 3. Allow the test tube and contents to cool.
- 4. Weigh the test tube and contents.
- 5. Repeat steps 2 to 4 five more times.

0 4 . 1 Table 3 gives the appearance of the reactant and of the products.

Table 3

	Compound	Appearance
Reactant calcium hydroxide white po		white powder
Products	calcium oxide	white powder
Froducts	water vapour	colourless gas

The student looked at the test tube and contents during heating.

The student could **not** tell that a chemical reaction was taking place by looking at the test tube and contents.

Give two reasons why.

Use the information in Table 3.

[2 marks]	Γ2	ma	ırks	1
-----------	----	----	------	---

1			
2			

0 4.2	Accurate results are not produced if solid powders escape from the test tube during heating.	Do not write outside the box
	Suggest why sealing the test tube with a stopper is not a good way of preventing the solid powders from escaping. [1 mark]	
0 4 . 3	The student wanted to calculate the mass of the contents of the test tube after each minute of heating.	
	The student weighed the test tube and contents after each minute of heating.	
	What other measurement is also needed to calculate the mass of the contents of the test tube?	
	Tick (✓) one box.	
	The change in mass of the contents of the test tube at the end	
	The mass of the contents of the test tube at the start	
	The mass of the empty test tube	
	Question 4 continues on the next page	
		,

Do not write

The student heated $2.00\ g$ of calcium hydroxide to produce calcium oxide and water vapour.

Table 4 shows the results.

Table 4

Total heating time in minutes	Mass of contents of test tube in grams
0	2.00
1	1.76
2	1.64
3	1.56
4	1.52
5	1.51
6	1.51

0	4		4	Complete the sentence.
---	---	--	---	------------------------

Choose the answer from the box.

Use Table 4.

[1 mark]

	3 minutes	4 minutes	5 minutes	6 minutes
0 4 . 5	calcium oxide and wa	ter vapour is	of the calcium hydroxid	
			Mass =	g

	The forward reaction is				
	combustion	endo	hermic	exoth	ermic
	Choose the answer from the box.				[1 mark]
	Complete the sentence.				
0 7 . 7		gy iroin	the surroundings.		
0 4 . 7	The forward reaction takes in energian	ay from	the surroundings		
	More than 5.90 kJ				
	5.90 kJ				
	Less than 5.90 kJ				
	Tick (✓) one box.				[1 mank]
	How much energy is transferred to	the sur	roundings in this rea	ction?	[1 mark]
0 4.6	3.03 g of calcium oxide reacts comhydroxide.	npletely	with water to produce	e 4.00 g o	f calcium
			Ü		
	3.03 g of calcium oxide is product5.90 kJ of energy is taken in fror		rroundings.		
	When 4.00 g of calcium hydroxide water:		letely changed into o	calcium ox	kide and
	The reaction is reversible.				
	calcium hydroxide ≓	<u> </u>	calcium oxide	+	water
	The word equation for the reaction	ı is:			

0 5	This question is about greenhouse gases and climate change.		
0 5.1	Which two gases are greenhouse gases? Tick (✓) two boxes. [2 marks]		
	Argon		
	Carbon dioxide		
	Nitrogen		
	Methane		
	Oxygen		
0 5.2	Why are greenhouse gases essential for supporting life on Earth? [1 mark		
	The percentage of greenhouse gases in the Earth's atmosphere today is increasing. Many scientists think that this increase is causing global climate change.		
0 5.3	What is a cause of the greenhouse effect?		
	Complete the sentence. [1 mark		
	Greenhouse gases absorb long wavelength		

0 5.4	Which two are potential effects of global climate change? [2 marks Tick (✓) two boxes.	Do not write outside the box
	Fewer droughts	
	Fewer storms	
	Higher sea levels	
	Less coastal flooding	Tid Person
	Melting polar ice	
		WWW.W
		ring rersonal lutor from www.wisesprout.co.uk
0 5 . 5	Water vapour is a greenhouse gas.	Ö.Ç
	The percentage by mass of water vapour in the Earth's atmosphere is 0.25%.	3% 124
	Calculate the mass of water vapour in 350 kg of the Earth's atmosphere.	发 中
	Give your answer in grams. [3 marks	.1 E.
		_ _ _
		- <u>t</u>
	Mass =	9

This question is about fuels.

The energy produced by burning fuels is used to generate electricity in power stations.

Table 5 shows information about three fuels used to generate electricity.

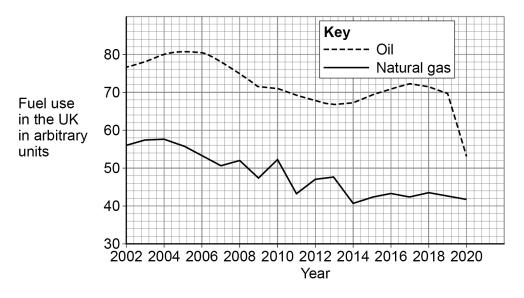
Table 5

	Fuel		
	Coal	Oil	Natural gas
State of fuel at room temperature	solid	liquid	gas
Transportation of fuel to power station	train	pipeline	pipeline
Percentage by mass of sulfur in fuel (%)	5	1	0.001
Relative quantity of solid particles produced when fuel is burned	high	medium	low

0 6.1	Explain why coal is usually transported to power stations by train and not by pipeline.
	Use Table 5 . [2 marks]

out.co.uk
找名校导师,
用小草线上辅导
(微信小程序同名

	Sulfur dioxide and particulates are atmospheric pollutants produced when fuels are burned.	
0 6.2	1 kg of each fuel in Table 5 is burned. Which fuel produces the most sulfur dioxide?	
	Give one reason for your choice. [2 ma	rks]
	Reason	
06.3	Give one problem caused by sulfur dioxide.	ark]
0 6.4	Particulates are formed from solid particles. 1 kg of each fuel in Table 5 is burned. Which fuel produces the least particulates? Give one reason for your choice. [2 ma	rks]
	Fuel Reason	
0 6.5	Give one problem caused by particulates.	ark]


0	6	6	Complete the sentence

[1 mark]

Solid particles are formed when fuels undergo incomplete _____

0 6 . 7 Figure 6 shows how the use of oil and of natural gas as fuels changed in the UK between 2002 and 2020.

Figure 6

Describe the trends shown in Figure 6 .	[3 marks]

0 7	This question is about alloys.	Do not write outside the box
	Steels are alloys of iron.	
0 7.1	Which non-metal element is in all steels? [1 mark]	
	Tick (✓) one box.	
	Carbon	3
	lodine	
	Sulfur	
		WWW.W
0 7.2	Which two elements other than iron are in stainless steels? [2 marks]	www.wash.co.uz
	Tick (✓) two boxes.	
	Chromium	3X 11 13X 4 29 7
	Gold	13.4 4% 1
	Magnesium	. ## 4 4 72. II
	Nickel	
	Zinc	Ü
	Question 7 continues on the next page	

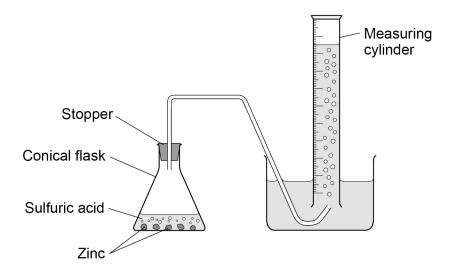
Do not write outside the box

7 . 3	Give two p	properties of stainless stee	ls.		
	Choose an	swers from the box.	[2 ma	rks]	
	brit	tle	hard	low density	
		resistant to corrosion	soluble	in water	
	Property 1				
	Titanium is	used in alloys.			
	Table 6 sh	ows information about sor	ne alloys of titanium.		
		Tabl	le 6		
Titaniu	m alloy	Other metals in alloy	Strength	Used in	
A		6.0% aluminium 4.0% vanadium	high	aircraft parts hip joint replacements	
В		5.0% aluminium 2.5% tin	high	aircraft parts	
С		3.0% aluminium 2.5% vanadium	medium	tennis rackets heart pacemakers	
7.4			kg of titanium alloy (C .	
				[3 ma	rks]
				Mass =	kg
	Titaniu A B	Choose and brite Property 1 Property 2 Titanium is Table 6 sh Titanium alloy A B C C Calculate t	Choose answers from the box. brittle resistant to corrosion Property 1 Property 2 Titanium is used in alloys. Table 6 shows information about sor Table Titanium alloy Other metals in alloy A 6.0% aluminium 4.0% vanadium B 5.0% aluminium 2.5% tin C 3.0% aluminium 2.5% vanadium	Choose answers from the box. brittle	Choose answers from the box. 2 ma

找名校导师,用小草线上辅导
(微信小程序同名)

Suggest why alloy A and alloy B are used to make aircraft parts.	
Use Table 6 . [1 m	nark]
Titanium alloys used for medical purposes must not be toxic.	
Suggest why alloy B is not used for medical purposes.	
Use Table 6 . [1 m	nark]
	Use Table 6 . [1 n Titanium alloys used for medical purposes must not be toxic. Suggest why alloy B is not used for medical purposes. Use Table 6 .

Turn over for the next question



A student investigated the rate of the reaction between zinc and sulfuric acid.

Hydrogen gas is produced during this reaction.

Figure 7 shows the apparatus.

Figure 7

This is the method used.

- 1. Add 50 cm³ of sulfuric acid to a conical flask.
- 2. Add 2.0 g of zinc to the conical flask.
- 3. Quickly put a stopper in the conical flask and start a timer.
- 4. Measure the time taken to collect 20 cm³ of gas.
- 5. Repeat steps 1 to 4 three more times.

0 8 . 1	Suggest why the stopper must be put in the conical flask as quickly as possible in step 3 .
	[1 mark]

0 8.2 The student calculated the rate of the reaction for each trial.

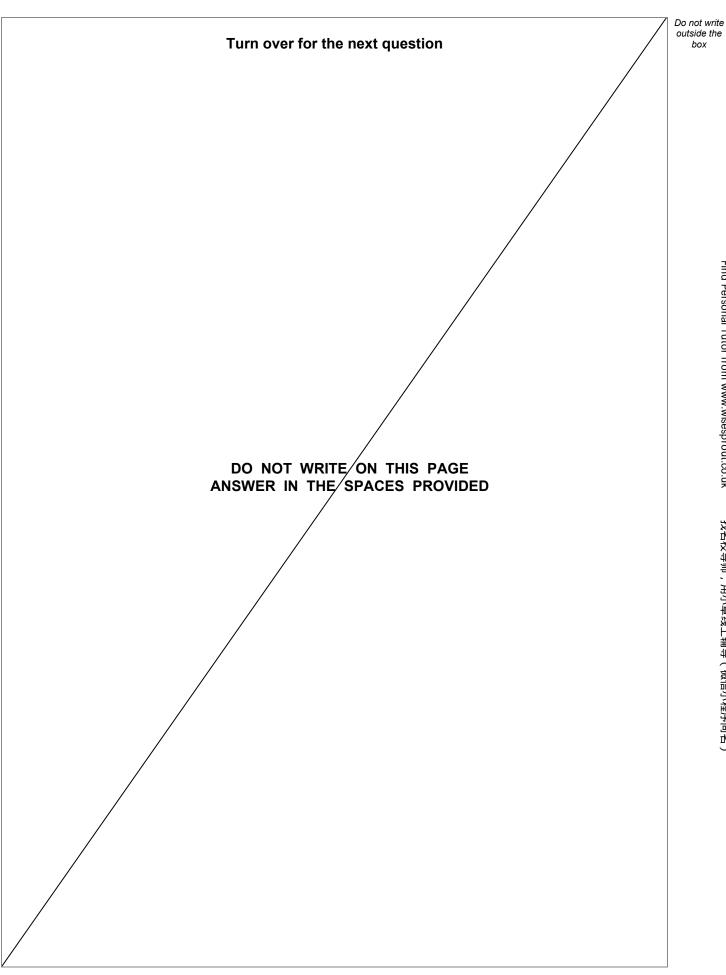
Table 7 shows the results of the calculations.

Table 7

	Trial 1	Trial 2	Trial 3	Trial 4
Rate of reaction in cm ³ /s	0.78	0.81	0.68	0.81

Determine the me	an time taken to collect 2	20 cm³ of gas.	
Do not include an	y anomalous results.		
Use the equation:	mean rate of reaction =	volume of gas collected mean time taken	
			[5 marks]

Mean time taken =


Question 8 continues on the next page

Ŀ Ķ
找名校导师
,用小草线上辅导
$\overline{}$
微信小程序同:

0 8 . 3	The student changed the investigation so th of gas was greater.	at the mean time taken to collect 20 cm ³
	Which two changes would increase the mea	an time taken to collect 20 cm³ of gas? [2 marks]
	Tick (✓) two boxes.	[2 marks]
	Use a catalyst	
	Use a larger conical flask	
	Use a lower temperature	
	Use smaller pieces of zinc	
	Use sulfuric acid of a lower concentration	
0 8 . 4	Hydrogen gas is produced during this reacti	on.
	Describe the test for hydrogen gas.	
	Give the result of the test.	
		[2 marks]
	Test	[2 marks]
	Test	[2 marks]
		[2 marks]

This question is about alcohols and carboxylic acids.

Alcohols are used as fuels.

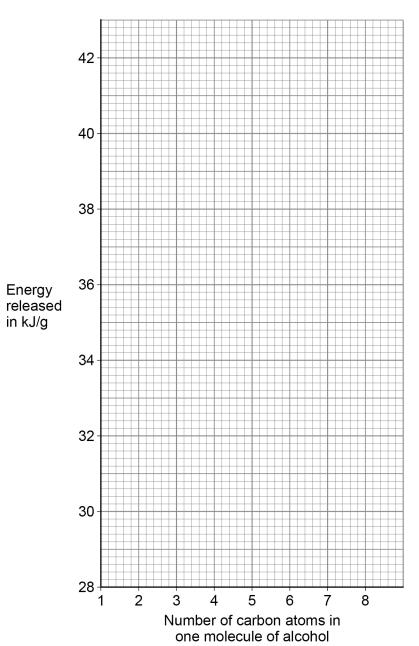
A student burned 1.00 g of six alcohols and determined the energy released from each.

Table 8 shows the results.

Table 8

Alcohol	Formula of one molecule of the alcohol	Energy released in kJ/g
Ethanol	C₂H₅OH	29.6
Propanol	C₃H ₇ OH	33.6
Butanol	C ₄ H ₉ OH	36.1
Pentanol	C₅H₁₁OH	37.7
Hexanol	C ₆ H ₁₃ OH	38.9
Heptanol	C ₇ H ₁₅ OH	39.8

0 9 . 1	Calculate the mass of ethanol that must be burned to relea	se the same a	mount of
	energy as burning 1.00 g of heptanol.		[2 marks]
		Mass =	a


0 9 . 2 The energy released in kJ/g varies with the number of carbon atoms in one molecule of each alcohol.

Plot the data from Table 8 on Figure 8.

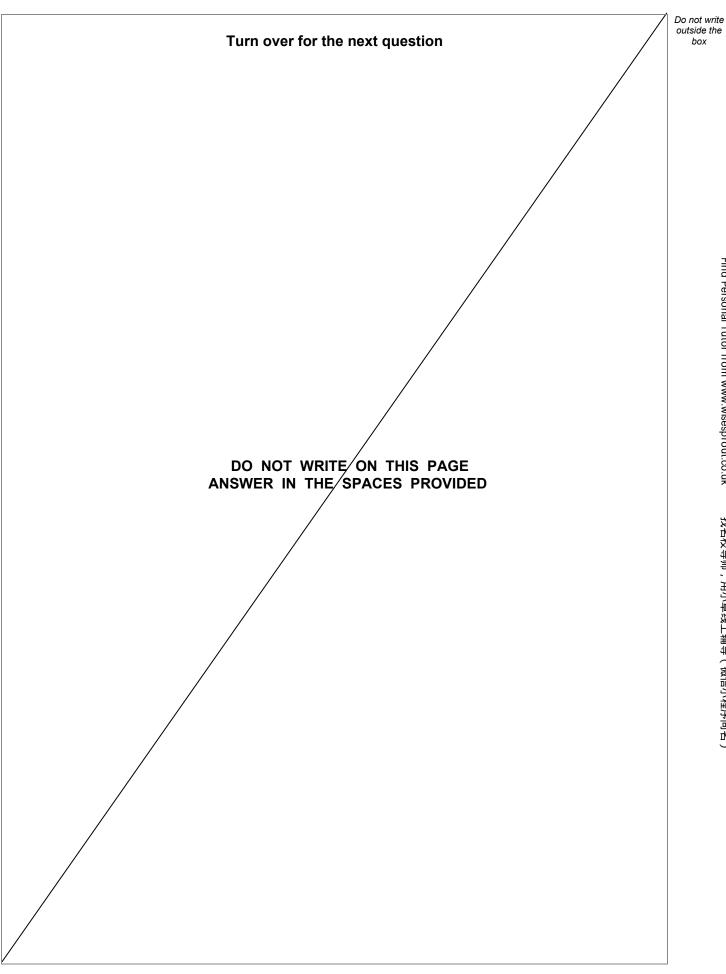
[2 marks]

0 9 . 3 Estimate the energy released in kJ when 1.00 g of octanol (C₈H₁₇OH) is burned. Use **Figure 8**.

[1 mark]

Energy released = kJ

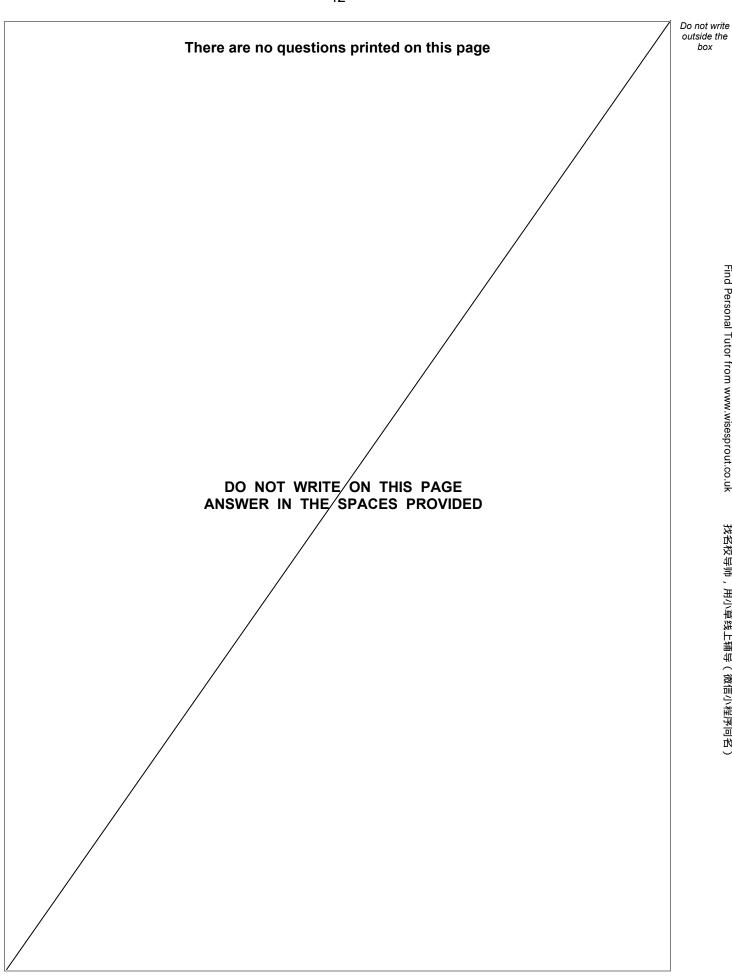
	Carbon dioxide is produced when alcohols are burned. Carbon dioxide is identified by bubbling the gas through limewater.
0 9.4	Complete the sentence.
	Choose the answer from the box. [1 mark]
	calcium chloride calcium hydroxide calcium nitrate calcium sulfate
	Limewater is an aqueous solution of
0 9.5	Give the result of the test when carbon dioxide is bubbled through limewater. [1 mark]



	Ethanoic acid can be produced from ethanol.	Do not write outside the box
0 9.6	What is reacted with ethanol to produce ethanoic acid? [1 mark]	
	Tick (✓) one box.	
	A halogen	
	An alkali metal	_
	An oxidising agent	100000000000000000000000000000000000000
	Water	
		V WWW. WI
0 9.7	Ethanoic acid contains the functional group –COOH	www.www.wood
	Complete the displayed structural formula of this functional group. [1 mark]	
		3& E1X 4 % , 75 G
	-c o	#
	O — H	1
		ᄊᇛᇬᄱᆂᄭᄓᄞᆸ
	Question 9 continues on the next page	
	Question a continues on the next page	

0 9.8	Ethanoic acid reacts w	vith different compounds.		C
	Draw one line from ea ethanoic acid.	ch compound to a product of the reaction of the c	ompound with	
			[2 marks]	
	Compound	Product of the reaction with ethanoic acid		
		Carbon dioxide		
		Ethene		
	Ethanol			
		Ethyl ethanoate		
	Sodium carbonate			
		Hydrogen		
		Poly(ethene)		

Do not write outside the box


1 0	This question is about chemical analysis.
	Potassium bromide is used in medicine.
	A scientist tested a sample of medicine to show the presence of potassium ions and of bromide ions.
	The sample is soluble in water.
10.1	Plan a method the scientist could use to show that the sample of medicine contains potassium ions and bromide ions.
	The scientist has:
	a Bunsen burner
	a metal wire
	• test tubes
	a dropping pipette
	distilled water
	dilute nitric acid
	silver nitrate solution.
	You should give the results of the tests. [6 marks]

		_
	The scientist could also use an instrumental method to show the presence of potassium ions in the medicine.	Do not write outside the box
1 0.2	Which instrumental method could be used to show the presence of potassium ions in the medicine? [1 mark]	
	1	
1 0.3	Give one advantage of using this instrumental method instead of a chemical test. [1 mark]	8

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

