

F

Friday 27 May 2022 – Morning GCSE (9-1) Chemistry B (Twenty First Century Science)

J258/01 Breadth in Chemistry (Foundation Tier)

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Chemistry B (inside this document)

You can use:

- · an HB pencil
- · a scientific or graphical calculator

Please write clearly in black ink. Do not write in the barcodes .										
Centre number				Candidate number						
First name(s)										
Last name										

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- This document has 28 pages.

ADVICE

· Read each question carefully before you start your answer.

© OCR 2022 [601/8605/7] DC (CJ/JG) 300229/5

OCR is an exempt Charity

Turn over

Answer all the questions.

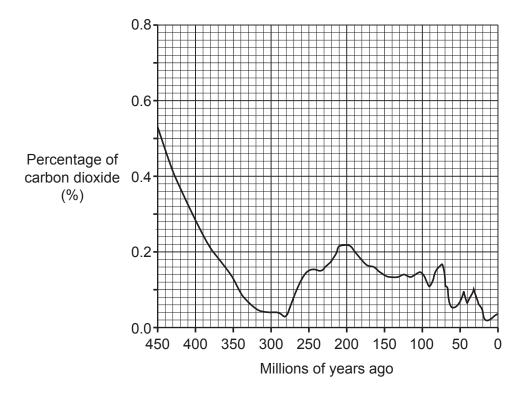
1	Earth's early	atmosphere	contained	mostly	carbon	dioxide	and water	er vapour.

	(a)	As the Earth	cooled,	water v	apour	turned t	o liq	uid wate	r and th	e oceans	forme
--	---	----	--------------	---------	---------	-------	----------	-------	----------	----------	----------	-------

Complete the sentence to explain why the oceans formed.

Put a (ring) around the correct answer.

The oceans formed because the water vapour boiled / condensed / evaporated / froze. [1]


(b) Gradually, plants began to grow on the Earth.

Complete the sentences to describe how an oxygen-rich atmosphere has developed over time.

Use words from the list.

carbon dioxide	combustion	methane	nitrogen	photosynthesis
Plants make oxygen	in a process called	l		
This process uses a	gas called			[2]

(c) The graph shows how the percentage of carbon dioxide in the atmosphere has changed over time.

(i) Describe how the percentage of carbon dioxide in the atmosphere has changed over the last 300 million years.

se data from the graph in your answer.
[2

(ii) State the percentage of carbon dioxide in the atmosphere 200 million years ago.

(iii) 400 million years ago there was 0.28% carbon dioxide in the atmosphere.

Today there is 0.04%.

Calculate how many times more carbon dioxide there was 400 million years ago compared with today.

There was times more carbon dioxide 400 million years ago. [1]

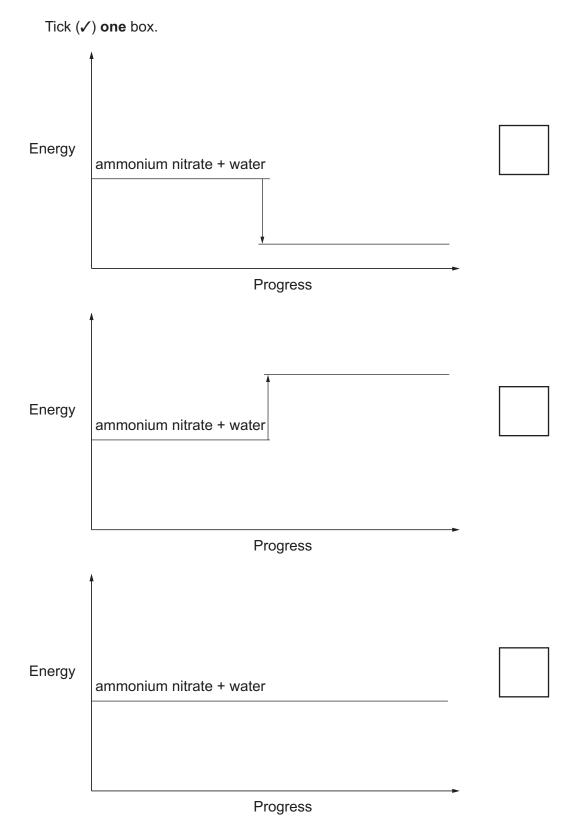
Turn over

2 (a) Complete the sentence to describe how Mendeleev placed elements in the Periodic Table.
Use words from the list.

atomic	colour	molecular	properties	size	
Mendeleev or	ganised the ele	ements based on their		and	their relative
	masses.				[2]

(b) Table 2.1 shows the properties of some elements.

Name	Atomic number	Melting point (°C)	Appearance	Electrical conductivity
Lithium	3	181	shiny when cut	good
Boron	5	2076	black	poor
Magnesium	12	650	shiny	good
Phosphorus	15	44	white/yellow	poor

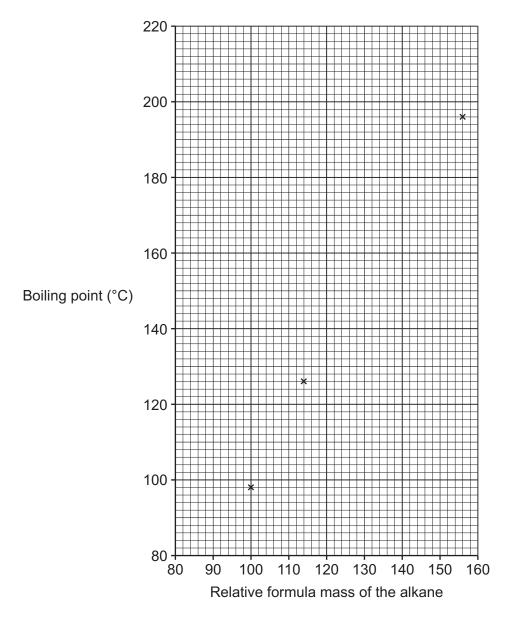

Table 2.1

(i)	Which two elements in Table 2.1 are metals?	
	and	[1]
(ii)	Which column in Table 2.1 did you use to work out your answer to (b)(i) ?	
		[1]
(iii)	The elements in Table 2.1 are all solids at room temperature (25 °C).	
	How does the data in the table show that this is true?	
		[1]
(iv)	What does atomic number tell you about the nucleus of an atom?	
		[1]

- (c) Iodine and chlorine are halogens in Group 17 (Group 7).
 - (i) Draw lines to connect each **halogen** with its correct **appearance** at room temperature (25 °C).

	Halogen	Appearance	
		Grey solid	
	Chlorine		
		Purple gas	
	lodine		
		Green gas	
		Brown liquid	
			[2]
(ii)	Sodium iodide solution reacts with chlorine.		
	Complete the word equation for this reaction.		
	sodium iodide + chlorine \rightarrow iodine +		[4]
			[1]

- 3 'Cool packs' containing ammonium nitrate are used to treat sports injuries.
 - (a) Ammonium nitrate absorbs energy when it dissolves in water. The temperature of the water falls.
 - (i) Which energy level diagram shows the energy change when ammonium nitrate dissolves in water?


[1]

	(ii)	Which label should be used for the	e product of the dissolving process?	
		Tick (✓) one box.		
		Ammonium nitrate liquid		
		Ammonium nitrate solution		
		Ammonium nitrate solvent		F41
				[1]
	(iii)	Which word describes this dissolv	ing process?	
		Tick (✓) one box.		
		Decomposition		
		Endothermic		
		Exothermic		
		Precipitation		[1]
	_			ניז
(b)	Eve	has some solid ammonium nitrate		
		scribe the experiment Eve can do to en solid ammonium nitrate dissolve	o find out how far the temperature of the water falls s in water.	
				[3]

4 Crude oil contains many alkanes. The table shows some of these alkanes:

Alkane	Formula	Relative formula mass	Boiling point (°C)
Heptane	C ₇ H ₁₆	100	98
Octane	C ₈ H ₁₈	114	126
Decane	C ₁₀ H ₂₂	142	174
Undecane	C ₁₁ H ₂₄	156	196

(a) The graph shows how boiling point changes with relative formula mass for three of the alkanes.

(i) Plot the point for decane on the graph.

[1]

(ii) Draw a line of best fit.

[1]

© OCR 2022

	(iii)	The relative	e formula mas	s of C ₉ H ₂₀ is	128.		
		Use the gra	aph to estimate	e the boiling p	oint of C ₉ H ₂₀ .		
			В	oiling point of	C ₉ H ₂₀ =	°C	[1]
(b)	(i)	The genera	al formula of al	kanes is C _n H	_{2n+2} . Pentane h	nas five carbon atoms.	
		State the fo	ormula of penta	ane.			
							[4]
	(ii)	Complete t	he word equat			ntane burns completely in oxyge	
		pentane +	oxygen \rightarrow	carbon dioxid	e +		
							[1]
(c)	(i)	What is the	simplest rati	o of carbon at	oms to hydrog	en atoms in ethane (C ₂ H ₆)?	
		S	implest ratio o	f carbon aton	ns : hydrogen a	itoms =:	[1]
	(ii)	State the e	mpirical formu	la of ethane (C ₂ H ₆).		
				Empirica	l formula		[1]
(d)	Cor	mplete the se	entences to de	escribe C-C b	onds.		
	Use	words from	the list.				
	СО	valent	given	ionic	shared		
	C-0	C bonds are					
	The	electrons b	etween the ca	rbon atoms a	re		[2]
(e)	Eth	anol, C ₂ H ₅ O	H can be mad	e from crude	oil.		
	Wh	y is the OH	group in ethan	ol called the f	unctional gro	up?	
	Tick	(√) one bo	х.				
	It co	ontains an o	xygen atom.				
	It is	at one end	of the molecul	e. [
	It co	ontains a co	valent bond.				
	It gi	ves ethanol	its chemical p	roperties.			[41
				_			[1]

This	is question is about the reactivity of metals.									
(a)	Ма	gnesium reacts	with iron sulfide	e.						
	mag	gnesium + iron	sulfide $ ightarrow$ iro	on + magnesium	n sulfide					
	(i)	The formula fo								
		Write a balanced symbol equation for this reaction.								
	[1]									
	(ii) How does this reaction show that magnesium is above iron in the reactivity series?									
							. [1]			
(b)	Cor	nplete the sente	ences about the	e reactivity of met	tals with acids.					
	Use	words from the	e list.							
	ele	ectrons	protons	quickly	slowly					
	Metals higher in the reactivity series react with acids more									
			,							
		nis is because they form positive ions more easily by losing								

5

11

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

			12			
(a)	Iron ore contains This is a word eq			with carbon to m	ake iron.	
	iron oxide + car	bon $ ightarrow$ iron +	carbon mc	noxide		
	Which statement	describes this	reaction?			
	Tick (✓) one box					
	Iron is oxidised.					
	Carbon is reduce	ed.				
	Iron oxide is redu	ıced.				
	Carbon monoxide	e is oxidised.				[1]
(b)	160 g of iron oxid	le makes 112g	of iron.			
	Calculate the ma	ss of iron in 10	0g of iron ox	kide.		
			Mass	of iron =		g [2]
(c)	Iron is used to ma	ake steel.				
	Complete the ser	ntences about s	steel.			
	Use words from t	the list.				
	alloys alu	uminium	carbon	ceramics	polymers	
	Steel contains at	oms of iron and	d			
	Steel is an exam	ple of materials	s known as			[2]

© OCR 2022

6

/4/	The	main	diaadyantaaa	of maina	oto ol	in the	st it woods
(a)	rne	mam	disadvantage	oi usina	Steer	וא פו	ม แบบรเร.

Complete the sentences about rusting.

Use words from the list.

barrier	carbon dioxide	nitrogen	reduction	solution	water	
Steel rusts	when it reacts with c	oxygen and				
Rusting can be prevented by covering the steel with grease,						
which form	s a					

(e) Used steel is collected and recycled.

Which statements about recycling are advantages and which are disadvantages?

Tick (✓) **one** box in each row.

	Advantage	Disadvantage
Recycling steel uses much less energy than making iron and steel from iron ore.		
Materials must be collected and sorted in recycling.		
Raw materials (metal ores) are not used in recycling.		

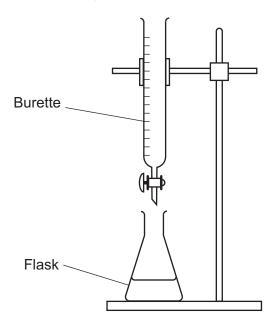
[2]

[2]

a) Co	omplete the ser	ntence.		
Th	ne gas made wh	hen the reaction fizzes	is called carbon	
b) He	ere are Jack's r	esults:		
E	Experiment	Mass of zinc carbonate (g)	Type of zinc carbonate	Time to stop fizzing (minutes)
	1	2.0	lumps	10
	2	2.0	powder	6
(i)		t his results from Expe results of these two exp	-	
(i)	Jack looks a	t his results from Expe	riment 1 and Experim	e powder reacts faster th
(i) (ii)	Jack looks a How do the the lumps?	t his results from Expe results of these two exp	riment 1 and Experiments show that th	
	Jack looks a How do the r the lumps?	t his results from Expe results of these two exp	riment 1 and Experiments show that the	e powder reacts faster th
	Jack looks a How do the r the lumps?	t his results from Expe results of these two exp	riment 1 and Experiments show that the	e powder reacts faster th
	Jack looks a How do the r the lumps?	t his results from Expe results of these two exp	riment 1 and Experiments show that the	e powder reacts faster th

(c)	What is the most likely time taken for Experiment 3 ?						
	Tick (✓) one box.						
	Less than 6 minutes.						
	6 minutes.						
	Between 6 and 10 minutes.						
	10 minutes.						
	Longer than 10 minutes.						
(d)	At the end of Experiment 2 , the mixture formed contains a solution of zinc sulfate with some unreacted solid zinc carbonate.						
	Jack filters the mixture to remove the unreacted solid zinc carbonate.						
	Describe how Jack can obtain a sample of zinc sulfate crystals from the solution.						
	[2						
(e)	Jack makes 6.6g of zinc sulfate. He calculates that he should have made 9.8g.						
	Calculate the percentage yield.						
	Give your answer to 2 significant figures.						
	Use the equation: percentage yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$						
	Percentage yield = % [3						

8 Sara compares two drain cleaners called 'Drainclear' and 'Noblock'. Both drain cleaners contain a solution of sodium hydroxide.


Sara titrates the **same** volume of each drain cleaner with the **same** concentration of dilute hydrochloric acid.

(a) Which word describes the reaction between sodium hydroxide and hydrochloric acid?

Tick (✓) one box.	
Oxidation	
Reduction	
Neutralisation	
Condensation	

[1]

(b) This is a diagram of Sara's apparatus:

This is Sara's method:

- Put 25.0 cm³ of drain cleaner into the flask.
- Add an indicator to the drain cleaner.

Write down the next **two** steps of Sara's method to get to the end-point of the titration.

1	 	
2	 	
		101

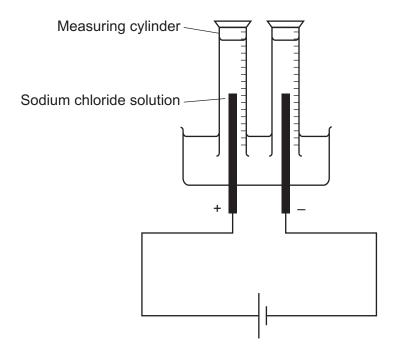
[2]

(c) Here are Sara's results:

(ii)

Drain cleaner	Accura	te titration result	ts (cm³)	Mean volume of hydrochloric acid (cm ³)
Drainclear	6.85	6.80	6.75	6.80
Noblock	20.45		20.35	20.40

(i) Calculate the missing titration result for Noblock.


Answer = cm ³ [1]
Look at the mean volume of hydrochloric acid used for each drain cleaner.
What can you conclude about the amount of sodium hydroxide in Drainclear and Noblock?
Give one reason for your answer.
Conclusion
Reason
[2]

9	(a)	When	molten	compounds	are	electroly	vsed.
J	(a)	4 A I I C I I	HIOREH	Compounds	aıc	CICCLION	vocu.

- the metal is made at the negative electrode
- the non-metal is made at the positive electrode.

State what is made at each electrode when molten aluminium oxide is electrolysed.	
Negative electrode	
Positive electrode	
	[2]

(b) Nina electrolyses sodium chloride solution, using inert (unreactive) electrodes.

electrode

(i)	Draw a line to connect the box labelled electrode with the correct part of the diagram	n.
		[1]

(ii) Explain why Nina places a measuring cylinder containing sodium chloride solution over each electrode.

(iii) Sodium is **not** made at the negative electrode when sodium chloride solution is electrolysed.

Name the gas made at the negative electrode.

[1]
ь.

10 Jamal has a sample of copper sulfate crystals.

The copper sulfate crystals have been accidentally mixed with graphite powder. Graphite is a form of carbon.

- (a) Jamal dissolves the sample of copper sulfate crystals in water.
 - (i) Complete the sentence to explain why graphite can be separated by filtering it out.

Use one word from the list.

a	aqueous	insoluble	non-aqueous	soluble	
	•	separated by fi	iltering it out because	graphite is	
Ш	water.				[1]

(ii) Jamal is using mixtures and pure substances.

Complete **Table 10.1** to identify which are mixtures and which are pure substances.

Tick (✓) one box in each row.

	Mixture	Pure substance
Copper sulfate crystals		
Graphite powder		
Copper sulfate mixed with graphite powder		

Table 10.1

[2]

(b) Table 10.2 shows two tests Jamal does on the copper sulfate solution:

Test	Result
Add sodium hydroxide solution	
Add acidified barium chloride solution	

Table 10.2

Complete the results in **Table 10.2** by writing what Jamal sees when he does the tests.

[2]

11 Mia investigates the rate of reaction when zinc reacts with dilute sulfuric acid. She adds zinc pieces to dilute sulfuric acid at room temperature.

Fig. 11.1 shows the apparatus she uses:

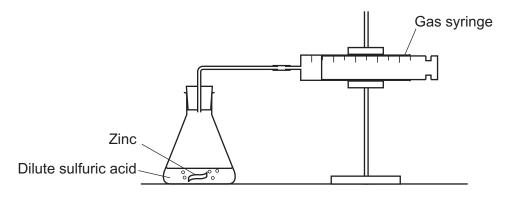


Fig. 11.1

(a) Complete the symbol equation for the reaction.

Include a state symbol.

$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + \dots$$

(b) Mia measures the volume of gas in the gas syringe every two minutes.

Fig. 11.2 shows a graph of her results:

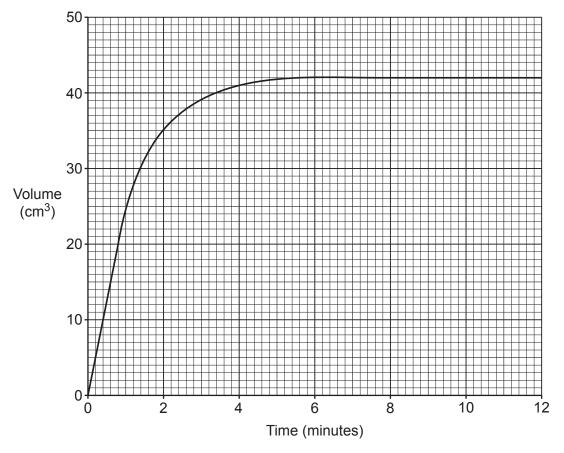
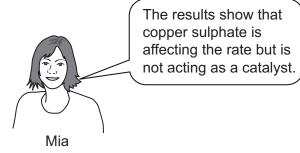


Fig. 11.2

© OCR 2022

[2]

(i) Calculate the rate of reaction during the first minute, using Fig. 11.2.


	Give your answer in cm ³ /s.
	Rate of reaction =cm ³ /s [3]
(ii)	Explain why the mass of the flask and its contents decreases during the reaction.
	[1]

(c) Mia repeats the experiment at the same temperature. She adds a few drops of blue copper sulfate.

Her results show that:

- more gas is produced in the first minute, than in the first experiment.
- the blue colour changes to colourless during the reaction.

Mia makes a statement about the results:

How do the results support Mia's statement?	
Explain your answer.	
	Lα

(u)	inia repeats the experiment at a nigher temperature.		
	Which statements explain why the reaction is faster at	a higher temperature?	
	Tick (✓) two boxes.		
	The particles move faster.		
	There are more frequent collisions.		
	The yield is higher at a higher temperature.		
	The particles are closer together.		
	The zinc breaks down into smaller pieces.		[2]
		l l	r—1

12 The table shows some properties of metals, polymers and clay ceramics:

Type of material	Effect of force on material	Electrical conductivity	Hardness
Metals	malleable	good	hard
Polymers	flexible	poor	soft
Clay ceramics	snaps		

(a) Complete the table by adding the two missing properties of clay ceramics.

[2]

(b) Layla has three different water jugs.

The jugs are made from aluminium, poly(ethene) and pottery (clay ceramic).

Draw lines to connect each material with its correct property.

Material	Property of jug
	Softens easily when heated.
Aluminium	
	Goes out of shape if dropped.
Poly(ethene)	
	Breaks if dropped.
Pottery	
	Rusts quickly.

[3]

(c) Poly(ethene) is made from ethene.

Complete the equation by drawing the structure of the repeating unit of poly(ethene).

$$\mathbf{n} \left(\begin{array}{c} \mathbf{H} \\ \mathbf{C} = \mathbf{C} \\ \mathbf{H} \end{array} \right) \quad \longrightarrow \quad$$

Ethene Poly(ethene)

[1]

(d) Genes are made from the natural polymer DNA.

Which monomers make DNA?

Tick (✓) one box.

Cellulose	
Nucleotides	
Sugars	
Unsaturated hydrocarbons	

[1]

END OF QUESTION PAPER

26

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).		

© OCR 2022

• • • • • • • • • • • • • • • • • • • •	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.

© OCR 2022