

Mark Scheme (Result)

November 2021

Pearson Edexcel GCE Further Mathematics Advanced Subsidiary Level in Mathematics Paper 1 8MA0/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Publications Code 8MA0_01_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are `correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

找名校导师,用小草线上辅导(微信小程序同名)

1 Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$) M1	1.1b
Chooses outside region for their values Eg. $x > 5$, $x < -4$	M1	1.1b
Presents solution in set notation $\{x: x < -4\} \cup \{x: x > 5\}$ oe	A1	2.5
	(3)	
	(3 marks)

Notes

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as 5 < x < -4

A1: Presents in set notation as required $\{x: x < -4\} \cup \{x: x > 5\}$ Accept $\{x < -4 \cup x > 5\}$. Do not accept $\{x < -4, x > 5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Question	Scheme	Marks	AOs
2	$\frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{3^{2x-2}}{3^{y+2}} = 3^4 \text{ or } \frac{9^{x-1}}{3^{y+2}} = 81 \Longrightarrow \frac{9^{x-1}}{9^{\frac{1}{2}(y+2)}} = 9^2$	M1	1.1b
	$\Rightarrow 2x - 2 - y - 2 = 4 \Rightarrow y = \text{ or } \Rightarrow x - 1 - \frac{1}{2}y - 1 = 2 \Rightarrow y =$	dM1	1.1b
	$\Rightarrow y = 2x - 8$	A1	1.1b
		(3)	
	Eg. $\log_3\left(\frac{9^{x-1}}{3^{y+2}}\right) = \log_3 81$	M1	1.1b
Alt	$\Rightarrow (x-1)\log_3(9^{x-1}) - (y+2)\log_3(3^{y+2}) = 4$ $\Rightarrow 2(x-1) - y - 2 = 4 \Rightarrow y =$	dM1	1.1b
	$\Rightarrow y = 2x - 8$	A1	1.1b
		(3	8 marks)
	Notes		
Altern base w	pts to set 9^{x-1} and 81 as powers of 3. Condone $9^{x-1} = 3^{2x-1}$ and $9^{x-1} =$ atively attempts to write each term as a logarithm of base 3 or 9. Your vitten to award this mark.	ou must see	
	mpts to use the addition (or subtraction) index law, or laws or logar rearranges the equation to reach y in terms of x . Condone slips in the		•
A1: $y = 2x$	-8		

Question	Scheme	Marks	AOs
3	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b
	$=\frac{3}{2} \times \frac{x^{2}}{2} - 2 \times \frac{x^{-2}}{-2} (+c)$	dM1	3.1a
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b
		(4)	
		(4 n	narks)
$\int \frac{3x^4}{2x^3}$ A1: $\int \frac{3}{2}x^4$	but to divide to form a sum of terms. Implied by two terms with one correct $-\frac{4}{2x^3} dx$ scores this mark. $2x^{-3} dx$ o.e such as $\frac{1}{2} \int (3x - 4x^{-3}) dx$. The indices must have been proceed to be conditioned on the integral sign for this mark.		both
	the full strategy to integrate the expression. It requires two terms with one for $=ax^{p} + bx^{q}$ where $p = 2$ or $q = -2$	correct in	dex.
A1: Correct	t answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$		

Question	Scheme	Marks	AOs
4 (a)	Attempts to compare the two position vectors. Allow an attempt using two of \overrightarrow{AO} , \overrightarrow{OB} or \overrightarrow{AB} E.g. $(-24\mathbf{i}-10\mathbf{j}) = -2 \times (12\mathbf{i}+5\mathbf{j})$	M1	1.1b
	Explains that as \overrightarrow{AO} is parallel to \overrightarrow{OB} (and the stone is travelling in a straight line) the stone passes through the point <i>O</i> .	A1	2.4
		(2)	
(b)	Attempts distance $AB = \sqrt{(12+24)^2 + (10+5)^2}$	M1	1.1b
	Attempts speed = $\frac{\sqrt{(12+24)^2 + (10+5)^2}}{4}$	dM1	3.1a
	Speed = 9.75 ms^{-1}	A1	3.2a
		(3)	
		(5 marks
Alt(a)	Attempts to find the equation of the line which passes through <i>A</i> and <i>B</i> E.g. $y-5 = \frac{5+10}{12+24}(x-12)$ ($y = \frac{5}{12}x$)	M1	1.1b
	Shows that when $x = 0$, $y = 0$ and concludes the stone passes through the point Q	A1	2.4
	through the point <i>O</i> . Notes		
either E.g. S Alterr	The probability of the equation of the line through <i>A</i> and <i>B</i> pro- matively attempts to find the equation of the line through <i>A</i> and <i>B</i> pro-	OB or AB	
<i>y</i> =	x Condone sign slips.	C	
straigh	that as \overrightarrow{AO} is parallel to \overrightarrow{OB} or as \overrightarrow{AO} is parallel to \overrightarrow{OB} (and the stone at line) the stone passes through the point O . Alternatively, shows that line and concludes (the stone) passes through the point O .		-
(b)			
	appendix point the distance <i>AB</i> using a correct method. Some slips but expect to see an attempt at $\sqrt{a^2 + b^2}$ where <i>a</i> or <i>b</i> is consistent of the distance <i>AB</i> using a correct method.	orrect	
dM1: Dep	endent upon the previous mark. Look for an attempt at $\frac{\text{distance } AB}{4}$		

找名校导师,用小草线上辅导(微信小程序同名)

Question	Scheme	Marks	AOs
5(a)	Attempts to find the value of $\frac{dy}{dx}$ at $x = 2$	M1	1.1b
	$\frac{dy}{dx} = 6x \Rightarrow$ gradient of tangent at <i>P</i> is 12	A1	1.1b
		(2)	
(b)	Gradient $PQ = \frac{3(2+h)^2 - 2 - 10}{(2+h) - 2}$ oe	B1	1.1b
	Gradient $PQ = \frac{3(2+h)^2 - 2 - 10}{(2+h) - 2}$ oe $= \frac{3(2+h)^2 - 12}{(2+h) - 2} = \frac{12h + 3h^2}{h}$	M1	1.1b
	=12+3h	A1	2.1
		(3)	
(c)	Explains that as $h \rightarrow 0$, $12+3h \rightarrow 12$ and states that the gradient of the chord tends to the gradient of (the tangent to) the curve	B1	2.4
		(1)	
		(6 marks)
	apts to differentiate, allow $3x^2 - 2 \rightarrowx$ and substitutes $x = 2$ into the $\frac{dy}{dx} = 6x \Rightarrow$ gradient of tangent at <i>P</i> is 12	heir answer	
(b)			
B1: Correc	t expression for the gradient of the chord seen or implied.		
M1: Attem must be h	apts $\frac{\delta y}{\delta x}$, condoning slips, and attempts to simplify the numerator. T	he denomir	nator
A1: cso 12	+3h		
(c)			
B1: Explair gradient of	ns that as $h \rightarrow 0$, $12+3h \rightarrow 12$ and states that the gradient of the che the curve	ord tends to	the

Question	Scheme	Marks	AOs
6 (a)	$3x^{3} - 17x^{2} - 6x = 0 \Longrightarrow x(3x^{2} - 17x - 6) = 0$	M1	1.1a
	$\Rightarrow x(3x+1)(x-6) = 0$	dM1	1.1b
	$\Rightarrow x = 0, -\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^2 = n$ where <i>n</i> is any solution0 to (a)	M1	2.2a
	Two of 2, $2 \pm \sqrt{6}$	A1ft	1.1b
	All three of 2, $2 \pm \sqrt{6}$	A1	2.1
		(3)	
		(6	marks)

Notes

(a)

M1: Factorises out or cancels by *x* to form a quadratic equation.

dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1:
$$x = 0, -\frac{1}{3}, 6$$
 and no extras

(b)

- M1: Attempts to solve $(y-2)^2 = n$ where *n* is any solution ...0 to (a). At least one stage of working must be seen to award this mark. Eg $(y-2)^2 = 0 \Rightarrow y = 2$
- A1ft: Two of 2, $2 \pm \sqrt{6}$ but follow through on $(y-2)^2 = n \Rightarrow y = 2 \pm \sqrt{n}$ where *n* is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of 2, $2\pm\sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs
7 (a)	Sets $50 = 7 \times 14 \sin(SPQ)$ oe	B1	1.2
	Finds $180^\circ - \arcsin\left("\frac{50}{98}"\right)$	M1	1.1b
	=149.32°	A1	1.1b
		(3)	
(b)	Method of finding <i>SQ</i> $SQ^{2} = 14^{2} + 7^{2} - 2 \times 14 \times 7 \cos'' 149.32''$	M1	1.1b
	= 20.3 cm	A1	1.1b
		(2)	
		(5	5 marks)
Alt(a)	States or uses $14h = 50$ or $7h_1 = 50$	B1	1.2
	Full method to find obtuse $\angle SPQ$. In this case it is $90^\circ + \arccos\left(\frac{h}{7}\right)$ or $90^\circ + \arccos\left(\frac{h}{14}\right)$	M1	1.1b
	awrt 149.32°	A1	1.1b
A1: awrt 14 (b) M1: A corr $SQ^2 =$	rect method of finding SQ using their $\angle SPQ$. = $14^2 + 7^2 - 2 \times 14 \times 7 \cos^{-1}149.32$ " scores this mark.		
A1: awrt 20 Alt(a)	0.3 cm (condone lack of units) $S = R$		
	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $		
	or uses $14h = 50$ or $7h_1 = 50$		
	nethod to find obtuse $\angle SPQ$.		
In thi	s case it is $90^\circ + \arccos\left(\frac{h}{7}\right)$ or $90^\circ + \arccos\left(\frac{h_1}{14}\right)$		

8 (a)	(2) $)^8$ (2)	M1	1.1a
	$(2+ax)^8$ Attempts the term in $x^5 = {}^8C_5 2^3 (ax)^5 = 448a^5 x^5$	A1	1.1b
	Sets $448a^5 = 3402 \implies a^5 = \frac{243}{32}$	M1	1.1b
	$\Rightarrow a = \frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^8 or ${}^8C_4 2^4 a^4$	M1	1.1b
	Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$	dM1	2.1
	= 256 + 5670 = 5926	A1	1.1b
		(3)	
		(7 marks)

Notes

(a)

M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${}^{8}C_{5}2^{3}ax^{5}$ and left without the binomial coefficient expanded

A1: $448a^5x^5$ Allow unsimplified but ${}^{8}C_5$ must be "numerical"

M1: Sets their $448a^5 = 3402$ and proceeds to $\Rightarrow a^k = \dots$ where $k \in \mathbb{N}$ $k \neq 1$

A1: Correct work leading to $a = \frac{3}{2}$

(b)

M1: Finds either term required. So allow for 2^8 or ${}^8C_4 2^4 a^4$ (even allowing with *a*)

dM1: Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$

A1: cso 5926

Scheme	Marks	AOs
$\int_{k}^{9} \frac{6}{\sqrt{x}} dx = \left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20 \Longrightarrow 36 - 12\sqrt{k} = 20$	M1 A1	1.1b 1.1b
Correct method of solving Eg. $36-12\sqrt{k} = 20 \Longrightarrow k =$	dM1	3.1a
$\Rightarrow k = \frac{16}{9}$ oe	A1	1.1b
	(4)	
	(4 n	narks)
$\lim_{k \to \infty} \left[a x^{\frac{1}{2}} \right]_{k}^{9} = 20$		
ct equation involving p Eg. $36-12\sqrt{k} = 20$		
	1	g both
	$\int_{k}^{9} \frac{6}{\sqrt{x}} dx = \left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20 \Rightarrow 36 - 12\sqrt{k} = 20$ Correct method of solving Eg. $36 - 12\sqrt{k} = 20 \Rightarrow k =$ $\Rightarrow k = \frac{16}{9} \text{ oe}$ ing $\left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20$ ct equation involving <i>p</i> Eg. $36 - 12\sqrt{k} = 20$ whole strategy to find <i>k</i> . In the scheme it is awarded for setting $\left[ax^{\frac{1}{2}}\right]_{k}^{9} =$ and proceeding using correct index work to find <i>k</i> . It cannot be scored if	$\int_{k}^{9} \frac{6}{\sqrt{x}} dx = \left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20 \Rightarrow 36 - 12\sqrt{k} = 20$ $M1$ A1 Correct method of solving Eg. $36 - 12\sqrt{k} = 20 \Rightarrow k = dM1$ $\Rightarrow k = \frac{16}{9} \text{ oe}$ A1 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)

t strategy. E.g uses an odd number is $2k \pm 1$ plify $(2k \pm 1)^3 - (2k \pm 1) =$ torise $8k^3 \pm 12k^2 \pm 4k = 4k(2k^2 \pm 3k \pm 1) =$ rrect work with statement $4 \times$ is a multiple of 4	B1 M1 dM1	3.1a 2.1
torise $8k^3 \pm 12k^2 \pm 4k = 4k(2k^2 \pm 3k \pm 1) =$		
	dM1	
rrect work with statement $4 \times$ is a multiple of 4		1.1t
	A1	2.4
	(4)	
ample with correct statement. which is not a multiple of 4	B1	2.4
	(1)	
	(5 m	narks
t strategy. Factorises $k^3 - k = k(k-1)(k+1)$	B1	3.1a
is odd then both $k-1$ and $k+1$ are even	M1	2.1
multiplied by $k+1$ is therefore a multiple of 4	dM1	1.1t
$k^3 - k$ is a multiple of 4 as it is odd × multiple of 4	A1	2.4
	(4)	
		1
	e (condone use of n)	e (condone use of <i>n</i>)

B1: Selects a correct strategy. E.g uses an odd number is $2k \pm 1$

M1: Attempts $(2k \pm 1)^3 - (2k \pm 1) = ...$ Condone errors in multiplying out the brackets and invisible brackets for this mark. Either the coefficient of the *k* term or the constant of $(2k \pm 1)^3$ must have changed from attempting to simplify.

dM1: Attempts to take a factor of 4 or 4*k* from their cubic

A1: Correct work with statement $4 \times ...$ is a multiple of 4

(b)

B1: Any counter example with correct statement.

Find Personal Tutor from www.wisesprout.co.uk 找名校导师,用小草线上辅导(微信小程序同名)

Question	Scheme	Marks	AOs
11 (a)	$35 (km^2)$	B 1	3.4
		(1)	
(b)	Sets their $60 = 80 - 45e^{14c} \implies 45e^{14c} = 20$	M1	1.1b
		A1	1.1b
	$\Rightarrow c = \frac{1}{14} \ln\left(\frac{20}{45}\right) = \dots = 0.0579$ $A = 80 - 45e^{-0.0579t}$	dM1	3.1b
	$A = 80 - 45e^{-0.0579t}$	A1	3.3
		(4)	
(c)	 Gives a suitable answer The maximum area covered by trees is only 80km² The "80" would need to be "100" Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a log of a negative number 	B1	3.5b
		(1)	
		(6	marks
	Notes		
(a)	Notes		
B1: Uses the	Notes he equation of the model to find that $35 (km^2)$ of the reserve was cov 05. Do not accept eg. $35 m^2$	vered on 1 st	
B1: Uses the	he equation of the model to find that $35 (\text{km}^2)$ of the reserve was cov	vered on 1 st	
B1: Uses the January 20 (b)	he equation of the model to find that $35 (\text{km}^2)$ of the reserve was cov	vered on 1 st	
B1: Uses the January 20 (b) M1: Sets the Sets th	he equation of the model to find that $35 (\text{km}^2)$ of the reserve was cov 05. Do not accept eg. 35m^2	vered on 1 st	
 B1: Uses the set of the	the equation of the model to find that 35 (km ²) of the reserve was cover 05. Do not accept eg. 35 m ² their $60 = 80 - 45e^{14c} \Rightarrow Ae^{14c} = B$		
 B1: Uses the January 20 (b) M1: Sets the A1: 45e^{14c} dM1: A further and lnx are 	the equation of the model to find that $35 (\text{km}^2)$ of the reserve was cover 05. Do not accept eg. 35m^2 their $60 = 80 - 45 e^{14c} \Rightarrow A e^{14c} = B$ = 20 or equivalent. Il and careful method using precise algebra, correct log laws and a known of the second secon		
 B1: Uses the January 20 (b) M1: Sets the A1: 45e^{14c} dM1: A further and lnx are 	the equation of the model to find that $35 (\text{km}^2)$ of the reserve was cover 05. Do not accept eg. 35m^2 their $60 = 80 - 45 e^{14c} \Rightarrow A e^{14c} = B$ = 20 or equivalent. Il and careful method using precise algebra, correct log laws and a known inverse functions and proceeds to a value for <i>c</i> .		

	Scheme	Marks	AOs
12 (i)	Uses $\cos^2 \theta = 1 - \sin^2 \theta$	M1	1.2
	$5\cos^2\theta = 6\sin\theta \Longrightarrow 5\sin^2\theta + 6\sin\theta - 5 = 0$	A1	1.1b
	$\Rightarrow \sin \theta = \frac{-3 + \sqrt{34}}{5} \Rightarrow \theta = \dots$	dM1	3.1a
	$\Rightarrow \theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$	A1	1.1b
		A1 (5)	1.1b
(ii) (a)	 One of They cancel by sin x (and hence they miss the solution sin x = 0 ⇒ x = 0) They do not find all the solutions of cos x = 3/5 (in the given range) or they missed the solution x = -53.1° 	B1	2.3
	Both of the above	B1	2.3
		(2)	
(ii) (b)	Sets $5\alpha + 40^\circ = 720^\circ - 53.1^\circ$	M1	3.1a
	$\alpha = 125^{\circ}$	A1	1.1b
		(2)	
		(9) marks
(i)	Notes		
M1. Llooc			
A1: Correc	$\cos^2 \theta = 1 - \sin^2 \theta$ to form a 3TQ in $\sin \theta$ et 3TQ=0 $5\sin^2 \theta + 6\sin \theta - 5 = 0$ es their 3TQ in $\sin \theta$ to produce one value for θ . It is dependent upo	n having u	sed
A1: Correc	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon	on having u	sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm$	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon		sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm$ A1: Two o	et 3TQ=0 $5\sin^2 \theta + 6\sin \theta - 5 = 0$ es their 3TQ in $\sin \theta$ to produce one value for θ . It is dependent upon $1 \pm \sin^2 \theta$		sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm$ A1: Two o	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon $1\pm\sin^2\theta$ f awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ (or if in radians two of awrt 0.60, 2)		sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm$ A1: Two of A1: All the	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon $1\pm\sin^2\theta$ f awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ (or if in radians two of awrt 0.60, 2 even of awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ and no other values		sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm$ A1: Two of A1: All the (i) (a)	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon $1\pm\sin^2\theta$ f awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ (or if in radians two of awrt 0.60, 2 even of awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ and no other values		sed
A1: Correct dM1: Solv $\cos^2 \theta = \pm 1$ A1: Two of A1: All thr (i) (a) See schem (ii)(b)	et $3TQ=0$ $5\sin^2\theta + 6\sin\theta - 5 = 0$ es their $3TQ$ in $\sin\theta$ to produce one value for θ . It is dependent upon $1\pm\sin^2\theta$ f awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ (or if in radians two of awrt 0.60, 2 even of awrt $\theta = 34.5^\circ, 145.5^\circ, 394.5^\circ$ and no other values		sed

Question	Scheme		Marks	AOs
13 (a)	$\log_{10} h = 2.25 - 0.235 \log_{10} m$ $\Rightarrow h = 10^{2.25 - 0.235 \log_{10} m}$ $\Rightarrow h = 10^{2.25} \times m^{-0.235}$	$h = pm^{q}$ $\Rightarrow \log_{10} h = \log_{10} p + \log_{10} m^{q}$ $\Rightarrow \log_{10} h = \log_{10} p + q \log_{10} m$	M1	<mark>1.1b</mark>
	Either one of $p = 10^{2.25}$ $q = -0.235$	Or either one of $\log_{10} p = 2.25 q = -0.235$	A1	1.1b
	$\Rightarrow p = 178$	and $q = -0.235$	A1	<mark>2.2a</mark>
/			(3)	
(b)	$h = "178" \times 5^{"-0.235"}$	$\log_{10} h = "2.25" - "0.235" \log_{10} 5$	M1	3.1b
	h=122	h=122	A1	1.1b
	Reasonably accurate (to 2 s	f) so suitable	A1ft	3.2b
()			(3)	
(c)	"p" would be the (restin mammal with a mass o	ng) heart rate (in bpm) of a f 1 kg	B1	3.4
			(1)	
			(7	' marks)
May be A1: For a co	shes a link between $h = pm^{q}$ and e implied by a correct equation in prrect equation in p or q 3 and $q = -0.235$	10 10		
M1: Uses ei	ther model to set up an equation	in <i>h</i> (or <i>m</i>)		
A1 : $h = awr$	t 122. Condone $h = $ awrt 122 bpn	n		
A1ft: Comn	nents on the suitability of the mo	del. Follow through on their answer.		
Require	s a comment consistent with thei	ir answer from using the model.		
Do	s a suitable model as it is only "3 o not allow an argument stating t s an unsuitable model as "122" b			
(c)				
B1: " <i>p</i> " we	ould be the (resting) heart rate of	a mammal with a mass of 1 kg		

Question	Scheme	Marks	AOs
14 (a)	$f(x) = -3x^{2} + 12x + 8 = -3(x \pm 2)^{2} + \dots$	M1	1.11
	$=-3(x-2)^2+$	A1	1.11
	$=-3(x-2)^2+20$	A1	1.1
		(3)	1
	Coordinates of $M = (2, 20)$	B1ft	1.1
(b)	Coordinates of $M = (2, 20)$	B1ft	2.2
		(2)	
(c)	$\int -3x^2 + 12x + 8 \mathrm{d}x = -x^3 + 6x^2 + 8x$	M1	1.11
		A1	1.11
	Method to find R = their $2 \times 20 - \int_0^2 \left(-3x^2 + 12x + 8\right) dx$	M1	3.1
	$R = 40 - \left[-2^3 + 24 + 16\right]$	dM1	1.11
	=8	A1	1.1
		(5)	
		(10 n	narks
Alt(c)		M1	1.11
	$\int 3x^2 - 12x + 12 dx = x^3 - 6x^2 + 12x$	A1	1.1
	Method to find $R = \int_{0}^{2} 3x^{2} - 12x + 12 dx$	M1	3.1
	$R = 2^3 - 6 \times 2^2 + 12 \times 2$	dM1	1.1
	=8	A1	1.1
			<u> </u>
lotes:			

(a)

M1: Attempts to take out a common factor and complete the square. Award for $-3(x\pm 2)^2 + ...$ Alternatively attempt to compare $-3x^2 + 12x + 8$ to $ax^2 + 2abx + ab^2 + c$ to find values of a and b

A1: Proceeds to a form $-3(x-2)^2 + \dots$ or via comparison finds a = -3, b = -2

A1:
$$-3(x-2)^2 + 20$$

(b)

B1ft: One correct coordinate

- **B1ft:** Correct coordinates. Allow as x = ..., y = ...Follow through on their (-b, c)
- (c)

M1: Attempts to integrate. Award for any correct index

A1:
$$\int -3x^2 + 12x + 8 \, dx = -x^3 + 6x^2 + 8x \ (+c)$$
 (which may be unsimplified)

M1: Method to find area of *R*. Look for their $2 \times "20" - \int_{0}^{2} f(x) dx$

dM1: Correct application of limits on their integrated function. Their 2 must be used

A1: Shows that area of R = 8

Juestion	Scheme	Marks	AOs
15 (a)	Deduces the line has gradient " -3 " and point (7,4)	M1	2.2a
	Eg $y-4 = -3(x-7)$		
	y = -3x + 25	A1	1.1b
		(2)	
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) \text{ oe}$	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> using vectors		
	Eg: $\binom{7.5}{2.5} + 2 \times \binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
			(9 marl
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets C via		
	simultaneous equations proceeding to a $3TQ$ in x (or y)	M1	3.1a
	FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$		
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN*

So sight of y-4=-3(x-7) would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1: Achieves y = -3x + 25

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving their y = -3x + 25 and $y = \frac{1}{3}x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1:
$$P = \left(\frac{15}{2}, \frac{5}{2}\right)$$

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their $P = \left(\frac{15}{2}, \frac{5}{2}\right)$ and (7, 4). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. Eg $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ or its expanded

form. Do not accept $(x-7)^2 + (y-4)^2 = \left(\sqrt{\frac{5}{2}}\right)^2$

(c)

M1: Attempts to find where $y = \frac{1}{3}x + k$ meets *C* using a vector approach

M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$

A1: $k = \frac{10}{3}$ only

Alternative I

M1: For solving $y = \frac{1}{3}x + k$ with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in $b^2 - 4ac$. FYI the correct quadratic is $\frac{10}{9}x^2 + (\frac{2}{3}k - \frac{50}{3})x + k^2 - 8k + \frac{125}{2} = 0$ oe M1: For using the discriminant condition $b^2 - 4ac = 0$ to find *k*. It is not dependent upon the previous M and may be awarded from only one term in *k*. Award if you see use of correct formula but it would be implied by \pm correct roots

A1:
$$k = \frac{10}{3}$$
 only

Alternative II

M1: For solving y = -3x + 25 with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$, creating a 3TQ and solving. M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y = \frac{1}{3}x + k$ and finding k A1: $k = \frac{10}{3}$ only

Question	Scheme	Marks	AOs
16 (a) (i)	Uses $\frac{dy}{dx} = -3$ at $x = 2 \implies 12a + 60 - 39 = -3$	M1	1.1b
	Solves a correct equation and shows one correct intermediate step $12a+60-39 = -3 \Rightarrow 12a = -24 \Rightarrow a = -2*$	A1*	2.1
(a) (ii)	Uses the fact that (2,10) lies on C 10 = 8 a + 60 - 78 + b	M1	3.1a
	Subs $a = -2$ into $10 = 8a + 60 - 78 + b \Longrightarrow b = 44$	A1	1.1b
		(4)	
(b)	$f(x) = -2x^3 + 15x^2 - 39x + 44 \Longrightarrow f'(x) = -6x^2 + 30x - 39$	B1	1.1b
	Attempts to show that $-6x^2 + 30x - 39$ has no roots Eg. calculates $b^2 - 4ac = 30^2 - 4 \times -6 \times -39 = -36$	M1	3.1a
	States that as $f'(x) \neq 0 \Rightarrow$ hence $f(x)$ has no turning points *	A1*	2.4
		(3)	
(c)	$-2x^{3} + 15x^{2} - 39x + 44 \equiv (x - 4)(-2x^{2} + 7x - 11)$	M1 A1	1.1b 1.1b
		(2)	
(d)	Deduces either intercept. $(0, 44)$ or $(20, 0)$	B1 ft	1.1b
	Deduces both intercepts $(0, 44)$ and $(20, 0)$	B1 ft	2.2a
		(2)	
		(11 marks)	

Notes

(a)(i)

M1: Attempts to use $\frac{dy}{dx} = -3$ at x = 2 to form an equation in *a*. Condone slips but expect to see two of the powers reduced correctly

A1*: Correct differentiation with one correct intermediate step before a = -2

(a)(ii)

M1: Attempts to use the fact that (2,10) lies on *C* by setting up an equation in *a* and *b* with a = -2 leading to b = ...

A1: *b* = 44

(b)

B1: $f'(x) = -6x^2 + 30x - 39$ oe

M1: Correct attempt to show that " $-6x^2 + 30x - 39$ " has no roots. This could involve an attempt at

- finding the numerical value of $b^2 4ac$
- finding the roots of $-6x^2 + 30x 39$ using the quadratic formula (or their calculator)
- completing the square for $-6x^2 + 30x 39$

A1*: A fully correct method with reason and conclusion. Eg as $b^2 - 4ac = -36 < 0$, $f'(x) \neq 0$ meaning that no stationary points exist

(c)

M1: For an attempt at division (seen or implied) Eg $-2x^3 + 15x^2 - 39x + b \equiv (x-4)\left(-2x^2...\pm\frac{b}{4}\right)$ A1: $(x-4)\left(-2x^2 + 7x - 11\right)$ Sight of the quadratic with no incorrect working seen can score both marks.

(d)

See scheme. You can follow through on their value for b