

Friday 19 November 2021 – Morning GCSE (9–1) Chemistry B (Twenty First Century Science)

J258/03 Breadth in Chemistry (Higher Tier)

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Chemistry B (inside this document)

You can use:

- an HB pencil
- · a scientific or graphical calculator

Please write clearly in black ink	Do not write in the barcodes.	
Centre number	Candidate number	
First name(s)		
Last name		

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- This document has 28 pages.

ADVICE

· Read each question carefully before you start your answer.

© OCR 2021 [601/8605/7] DC (NF/CB) 301232/5

OCR is an exempt Charity

Turn over

Answer all the questions.

Chi	orine is used to make water safe to drink.	
(a)	How does chlorine make water safe to drink?	
(b)	James has a solution of chlorine in water.	
	He tests the solution with blue litmus paper.	
	State two colour changes that James will see.	
	1	
	2	
		[2]
(c)	Mia adds a solution of chlorine to a solution of sodium bromide.	
	This is the equation for the reaction that happens:	
	$Cl_2(aq) + 2NaBr(aq) \rightarrow Br_2(aq) + 2NaCl(aq)$	
	The solution changes colour.	
	(i) State the colour of the solution at the end of the experiment.	
		[1]
	(ii) What causes the colour change?	
		[1]
(d)	Potassium reacts with chlorine. Sodium also reacts with chlorine.	
	Is the reaction of sodium with chlorine faster or slower than the reaction of potassium vechlorine?	with
	Faster	
	Slower	
	Explain why the rate of reaction is different.	
		[1]

1

(e)	Calcium also reacts with chlorine. Calcium forms Ca^{2+} ions and chlorine forms Cl^{-} ions.					
	What is the correct formula of calcium chloride?					
	Put a ring a	round the corre	ct answer.			
	CaC1	Ca ₂ Cl ₂	CaCl ₂	C <i>I</i> Ca ₂	C <i>I</i> Ca	[4]
						[1]
(f)	The element	astatine, At, is b	pelow iodine in	Group 7 of t	he Periodic Table.	
	Which two p	roperties of asta	itine are correc	t?		
	Tick (✓) two	boxes.				
	It reacts with	Na ⁺ ions to form	n NaAt ₂ .			
	Its atoms are	larger than ato	ms of iodine.			
	It is a solid at	t room temperat	ure.			
	It is colourles	SS.				
	It reacts with	sodium iodide i	n solution to gi	ve iodine.		[2]

2 Alex reacts zinc with excess hydrochloric acid.

Fig. 2.1 shows the apparatus Alex uses:

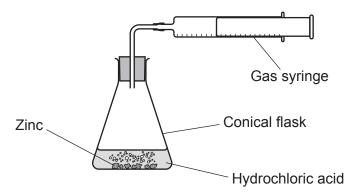


Fig. 2.1

(a) Alex measures the volume of gas made at the start and then again after every minute for 7 minutes.

Fig. 2.2 shows a graph of his results:

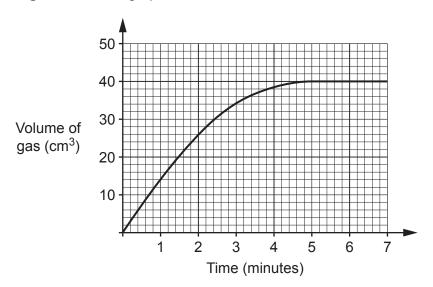


Fig. 2.2

(i) What is the gradient of the curve at 5 minutes?

	Gradient =
(ii)	What happens to the reaction after 5 minutes?
	[1]

© OCR 2021

(b)	Which value is a correct estimate for the rate at which the reaction starts?				
	Use Fig. 2.2 .				
	Tick (✓) one box.				
	0.08 cm ³ /minute				
	0.1 cm ³ /minute				
	10 cm ³ /minute				
	14 cm ³ /minute				
	40 cm ³ /minute	- 4 -			
		[1]			
(c)	2.0 g of zinc makes a total of 800 cm ³ of gas.				
	Calculate the mass of zinc Alex used in his experiment.				
	Use the total volume of gas produced in Fig. 2.2.				
	Mass of zinc =g	[2]			
(d)	Alex repeats the experiment with different metals and excess acid. He wants to compare the rate of reaction for the different metals.				
	State two factors that he should control in these experiments to get valid results.				
	1				
	2				
		[2]			

(e) Fig. 2.3 shows Alex's results for zinc, magnesium and iron:

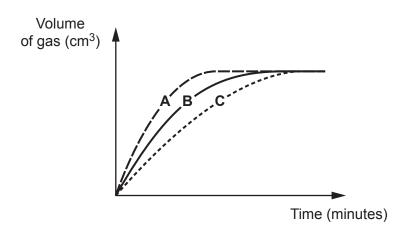


Fig. 2.3

Which metal makes each curve in Fig. 2.3?

Curve A		
---------	--	--

[2]

			7	
3			old conditions, hand warmers can be used inside gloves. One type of hand warmer al reaction to give off heat.	uses
		•	der inside the hand warmer reacts with oxygen to make iron oxide. ermic reaction starts when the iron powder comes into contact with the air.	
	(a)	Iron o	oxide, Fe ₂ O ₃ , contains O ^{2–} ions.	
		What	t other ion does iron oxide, Fe ₂ O ₃ , contain?	
	(b)	 Draw	v and label the reaction profile for this reaction.	[1]
	` ,		el the activation energy 'AE'.	
		Energ		
			Progress of the reaction	[3]
	(c)	Carbo	on is used as a catalyst in the hand warmer.	[2]
		(i) S	Suggest why a catalyst is added to the hand warmer.	
				. [1]
			Why does the catalyst have the effect identified in (c)(i)? Use ideas about energy in your answer.	

(d) The iron is in powdered form.

Explain why this makes the reaction go quickly.

Use ideas about particles in your answer.

© OCR 2021

Turn over

4 In the early nineteenth century, a chemist called Dobereiner found some sets of three elements with similar properties.

The table shows an example:

Element	Relative atomic mass
Lithium	6.9
Sodium	23.0
Potassium	39.1

-	(a)	Lithium	sodium an	d potassium	react in a	similar way	, with water
- 1	a	Liuliulli,	, Soululli all	u potassium	i i c aci iii a	Sillillal way	/ Willi Wal e i

(i)	Balance	the symbol	equation	for the	reaction	of lithium	with	water.
-----	---------	------------	----------	---------	----------	------------	------	--------

..... Li +
$$H_2O \rightarrow$$
 LiOH + H_2 [1]

(ii) Potassium is more reactive with water than sodium and lithium.

State two observations that would prove this.

1	
2	
	[2]

(b) Which property is used to arrange the elements in the modern Periodic Table?

Tick (✓) one box.

Atomic number	
Mass number	
Neutron number	
Relative atomic mass	

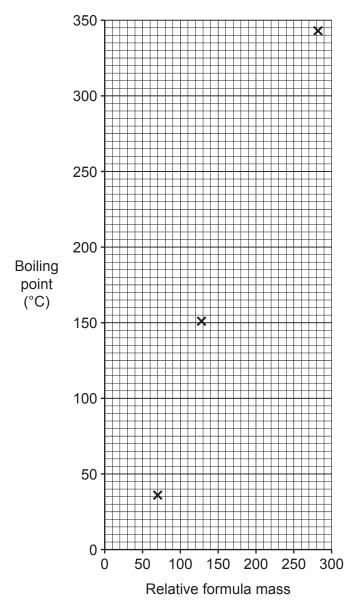
[1]

(c) Dobereiner called his sets of three elements, 'triads'. He
--

'The relative atomic mass of the middle element is approximately equal to the mean of the other two elements.'

The elements nitrogen, phosphorus and arsenic:

- have similar properties
- are found in Group 5 of the modern Periodic Table.


	[2]
Use the Data Sheet and a calculation to help explain your answer.	
Are nitrogen, phosphorus and arsenic a Dobereiner 'triad'?	

5 Crude oil contains many compounds that are used as fuels. The table shows information about some of these compounds:

Name	Formula	Formula Relative formula mass Melting point (°C)		Boiling point (°C)
Methane	CH ₄	16	-182	-162
Pentane	C ₅ H ₁₀	70	-130	36
Nonane	C ₉ H ₂₀	128	-54	151
Dodecane	C ₁₂ H ₂₆	170	-10	
Hexadecane	C ₁₆ H ₃₄	226	18	287
Icosane	C ₂₀ H ₄₂	282	37	343
Benzene	C ₆ H ₆	78	6	80

(a)	All t	ne compounds in the table are alkanes, except benzene.	
	Ехр	lain how the formula of benzene shows it is not an alkane.	
		[
(b)		Name one compound from the table which is a solid at 25 °C.	-,
		[1]
	(ii)	Give one reason for your answer to (b)(i) .	
(-)	D		_
(c)		cribe the relationship between melting point and boiling point for the alkanes in the table	
		[

(d) The graph shows the boiling point and relative formula mass for some alkanes.

(i) Hexadecane, C₁₆H₃₄, boils at 287 °C. Plot the point for hexadecane on the graph.

Use data from the table.

[1]

(ii) Draw a line of best fit.

[1]

(iii) Estimate the boiling point of dodecane, $C_{12}H_{26}$. Show your working on the graph.

Boiling point =°C [1]

(e)) Fractional distillation is used to separate the compounds in crude oil.		
	Wh	ich property of the compounds is used to separate them?	
			[1]
(f)	(i)	Describe how carbon monoxide forms when alkanes burn in vehicle engines.	
			[1]
	(ii)	Why is it important to decrease the amount of carbon monoxide entering the air?	
	(iii)	The formula of carbon monoxide is CO. One mole of carbon monoxide contains 6.02 × 10 ²³ molecules.	
		Calculate the mass of one carbon monoxide molecule.	
		Use the Data Sheet and the relationship: number of moles = $\frac{\text{mass of substance (g)}}{\text{relative formula mass (g)}}$	
		Give your answer to 3 significant figures.	
		Mass of one carbon monoxide molecule =g	[3]

(9)	Nitrogen oxides are also formed in vehicle engines.	
	Describe how nitrogen oxides form in vehicle engines.	
		[2]

6 Scientists use models to describe things that are too small to be seen.

Fig. 6.1 shows a model of an atom:

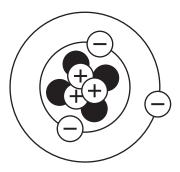
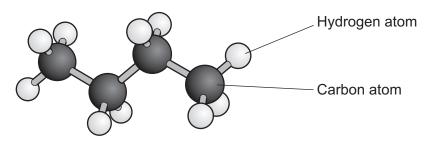
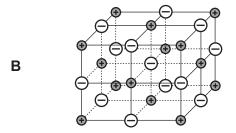


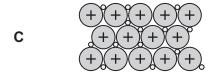
Fig. 6.1

(a)	a) Name the particles represented by black circles in the model.			
			. [1]	
(b)	(i)	Identify the element in Fig. 6.1.		
		Use the Data Sheet.		
			[1]	
	(ii)	How was the element in Fig. 6.1 identified in (b)(i)?		
			[1]	

(c) Fig. 6.2 shows a model of a molecule of butane:






Fig. 6.2

(i)	Which two features are shown by the model in Fig. 6.2 ?		
	Tick (✓) two boxes.		
	The number of electrons in the atoms.		
	The 3D shape of the molecule.		
	The number of atoms in the molecule.		
	The actual size of the atoms.		
	The length of the bonds between the atoms.	[2	1
(ii)	State the empirical formula of butane.		
		[1]	

(d) Fig. 6.3 shows models of four types of giant structure.

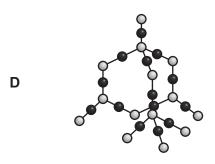


Fig. 6.3

(i) Which two structures contain covalent bonds?

Put a (ring) around the **two** correct answers.

A B C D

[2]

(ii) Which structure only conducts electricity when it is molten?

Put a (ring) around the **one** correct answer.

A B C D

[1]

17

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

- 7 Amaya is given some coloured sweets. She removes the food colour from each sweet. Each food colour contains a mixture of dyes.
 - (a) She uses chromatography to find out the number of dyes in each sweet:
 - She draws a pencil line on a piece of filter paper **1 cm** from the bottom.
 - She puts spots of food colour from each sweet on the pencil line.
 - She places the filter paper in **2 cm** of water in a beaker.
 - She waits for the water to rise to near the top of the filter paper.

There is a mistake in Amaya's method.

(i)	Identify the mistake in Amaya's method.	
		. [1]
(ii)	Why will this mistake stop Amaya from getting useful results?	
		[1]

(b) Amaya corrects her method and does the chromatography correctly.

Her results are shown in the chromatogram:

Solvent front			
OOIVCIII IIOIII			
	• G		• G
		R	
			• Y
	• R	• R	
	● B		B
Start line	•	•	-
	_		
	Sweet	Sweet	Sweet
	1	2	3

B = blue
R = red
Y = yellow
G = green

	(i)	Amaya says, 'The chromatogram shows that there were a total of four different pure dyes used in the three sweets.'
		Explain why this is incorrect.
		[2]
	(ii)	Which dye is the most soluble in water?
		[1]
	(iii)	Give one reason for your answer to (b)(ii) .
	(iv)	Calculate the R _f value for the yellow dye.
	(,	Use the chromatogram and the equation:
		R _f = distance travelled by solute distance travelled by solvent front
		R _f value =[2]
(c)	Ali l	has a mixture of carbon in copper sulfate solution. Carbon is insoluble in water.
	Des	scribe a method Ali can use to obtain pure copper sulfate crystals from the mixture.
		[3]

Plastic bags are made of poly(ethene).

Ethene is an alkene.

(a) (i) Poly(ethene) is made by polymerising ethene, C_2H_4 .

8

		Draw the structure of the repeating unit of poly(ethene).	
	(ii)	What type of polymer is poly(ethene)?	[2]
(b)	(i)	Ethene, $\mathrm{C_2H_4}$, is made by cracking molecules such as decane, $\mathrm{C_{10}H_{22}}$. One other product is made in the reaction.	[1]
		Write a balanced symbol equation for the cracking of decane.	[2

Describe a laboratory test for an alkene and the expected result for ethene.

Test

.....

Result

© OCR 2021

(ii)

[2]

(c) Table 8.1 shows the energy required to make 1000 poly(ethene) bags and transport them to shops:

	Energy per 1000 bags (kJ)
Energy required to make the raw materials	279 000
Energy required in processing the raw materials to make bags	220 000
Energy required to transport the bags	11 000

Table 8.1

(i)	Calculate the percentage of the energy in the table required to transport the bags.
	Give your answer to 1 decimal place.

Percentage =		%	[3]]
--------------	--	---	-----	---

(ii) Sarah estimates the cost of recycling waste bags into new bags.

Table 8.2 shows her estimates:

	Energy per 1000 bags (kJ)
Processing	220 000
Transport	11 000

Table 8.2

	Suggest why Sarah's estimates may be inaccurate.	
	Use data from Table 8.1 and Table 8.2 to support your answer.	
		[2]
(d)	Poly(ethene) is described as 'non-biodegradable'.	
	Define 'non-biodegradable'.	
		[1] Turn over
© OCR 202		i di li Ovci

9 Blue copper sulfate crystals turn white when heated:

'blue copper sulfate' \rightarrow 'white copper sulfate' + water

- Sarah weighs out five different samples of 'blue copper sulfate'.
- She puts each sample in a test tube.
- She heats each test tube.
- She weighs each test tube and its contents after heating.
- She then calculates the mass of 'white copper sulfate'.
- (a) The graph shows the results:

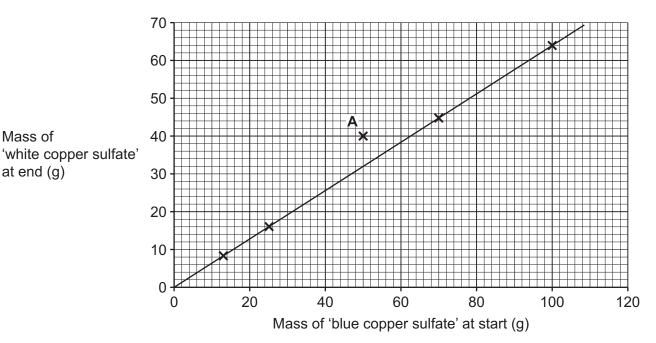


Fig. 9.1

Result **A** does **not** fit the pattern.

Sarah says the test tube was not heated for long enough.

Is Sarah correct? Explain your answer.

© OCR 2021

Mass of

at end (g)

	(11)	The equation for the line in Fig. 9.1 is given by $y = mx + c$.
		Calculate values for m and c , using Fig. 9.1 .
		m =
		c =[3
b)	(i)	25 g of 'blue copper sulfate' gives 16 g of 'white copper sulfate' when heated.
~,	(-)	Calculate the number of moles of water that are made.
		Use the equation: number of moles = $\frac{\text{mass of substance (g)}}{\text{relative formula mass (g)}}$
		Number of moles of water = mol [3]
	(ii)	'Blue copper sulfate' has the formula $CuSO_4 \cdot nH_2O$, where n is a whole number.
		In one experiment, Sarah makes 2.0 mol of water and 0.4 mol of 'white copper sulfate'.
		'White copper sulfate' has the formula CuSO ₄ .
		Calculate the value of n in 'blue copper sulfate', $CuSO_4 \cdot nH_2O$.
		n =[2]
		END OF QUESTION PAPER

24

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).		

© OCR 2021

• • • • • • • • • • • • • • • • • • • •	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2021