

F

Monday 29 November 2021 – Morning

GCSE (9–1) Combined Science (Chemistry) A (Gateway Science)

J250/04 Paper 4 (Foundation Tier)

Time allowed: 1 hour 10 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Combined Science (Chemistry) A (inside this document)

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write cle	arly in	black	k ink.	Do no	ot writ	te in the barcodes.			
Centre number						Candidate number			
First name(s)									
Last name									

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 60.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

© OCR 2021 [601/8687/2] DC (ST/CT) 301006/7

OCR is an exempt Charity

Turn over

SECTION A

Answer **all** the questions.

You should spend a maximum of 20 minutes on this section.

Write your answer to each question in the box provided.

A C	Carbon monoxide		
3 N	litrogen		
0	Oxygen		
s	Sulfur dioxide		
Γhe ta	Description of element	different elements. Description of reactivity	
Γhe ta			
	Description of element at room temperature	Description of reactivity	
A	Description of element at room temperature colourless gas	Description of reactivity	
A B	Description of element at room temperature colourless gas pale yellow gas	Description of reactivity reactive very reactive	

3 The diagram shows the main stages in a life-cycle assessment of a product.

	m	Raw naterials	\rightarrow	Manufacturing	\rightarrow	Distribution	\rightarrow	Use	\rightarrow	Stage X	
	What is the name of Stage X ?										
	A Disposal										
	B Extraction										
	C Packaging										
	D Production										
	Your answer							[1	1]		
4	The	e Earth's e	early a	atmosphere contain	ed litt	le or no oxygen.					
	Which process produced the oxygen found in the Earth's atmosphere today?										
	Α	Burning	fossil	fuels							
	В	Photosy	nthes	is by plants and alg	ae						
	C Respiration by bacteria										
	D	Volcanio	activ	rity							
	Your answer									['	1]
5	Wh	ich staten	nent a	about the Group 0 e	leme	nts is correct?					

A They exist as simple molecules.

B They exist as single atoms.

C They react to form giant covalent molecules.

D They react to form ionic compounds.

Your answer [1]

6	Many scientists believe that increased levels of methane in the atmosphere are contributing to
	lobal warming.

What causes increased levels of methane in the atmosphere?

- A Cutting down trees
- B Exhaust gases from car engines
- C Incomplete combustion of fossil fuels
- D Waste gases from cows and landfill sites

Your answer	[1]
-------------	-----

7 Octane, C₈H₁₈, is a compound in petrol.

Which statement about octane is correct?

- **A** It is a hydrocarbon with a relative molecular mass of 66.
- ${\bf B} \quad \text{ It is a hydrocarbon with the empirical formula } {\bf C_4}{\bf H_9}.$
- **C** It is extracted from crude oil by filtration.
- **D** It is in the bitumen fraction of crude oil.

8 Sodium reacts with water to form sodium hydroxide and hydrogen.

What is the correctly balanced symbol equation for this reaction?

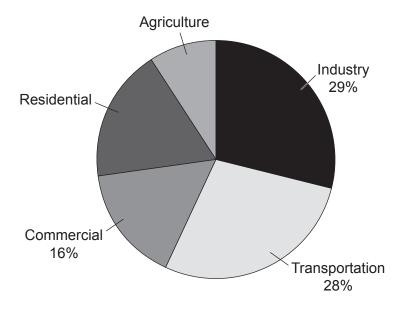
A Na(s) + H₂O(l)
$$\rightarrow$$
 NaOH(aq) + H₂(g)

B Na(s) +
$$2H_2O(I) \rightarrow NaOH(aq) + 2H_2(g)$$

C
$$2Na(s) + H2O(I) \rightarrow 2NaOH(aq) + H2(g)$$

D
$$2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2\text{(g)}$$

Your answer [1]


9 A copper ore contains 66.4% copper. The ore is CuS.

What is the maximum mass of copper that can be extracted from 500 tonnes of the ore?

- A 7.53 tonnes
- B 66.4 tonnes
- C 332 tonnes
- **D** 33 200 tonnes

Your answer [1]

10 The diagram shows the percentage of greenhouse gases made from different sources.

The percentage of greenhouse gases produced from Residential is **twice** that produced from Agriculture.

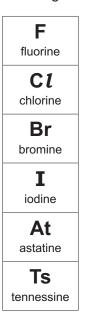
What is the percentage of greenhouse gases produced from Residential?

A 9%

B 18%

C 27%

D 36%


Your answer [1]

SECTION B

Answer all the questions.

11 In 2010, scientists discovered a new Group 7 element called tennessine. Its symbol is Ts.

The diagram shows where tennessine is placed in Group 7 of the Periodic Table.

Use your knowledge of the properties and trends of the Group 7 elements to **predict** the answer to the following questions.

(a) How many outer shell electrons are there in an atom of tennessine?

Put a (ring) around the correct answer.

1 7 17

[1]

(b) What is the reactivity of tennessine compared to astatine?

Put a (ring) around the correct answer.

less reactive more reactive the same

[1]

(c) What is the physical state of tennessine at room temperature?

Put a (ring) around the correct answer.

gas liquid solid

[1]

(d) What is the melting point of tennessine compared to astatine?

Put a (ring) around the correct answer.

higher lower the same

[1]

- **12** This question is about the Group 1 metals.
 - (a) A teacher adds a small piece of a Group 1 metal to a trough of water, as shown in Fig. 12.1.

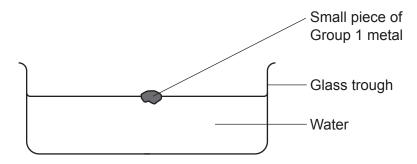


Fig. 12.1

The metal burns with a lilac flame, sparks and explodes.

Which Group 1 metal did the teacher add to the water in Fig. 12.1?

Put a (ring) around the correct answer.

lithium sodium potassium rubidium caesium [1]

(b) Sodium is a soft metal with a dull coating.

It is shiny when it is freshly cut.

After several seconds, the shiny surface goes dull.

(i) Which gas in the air reacts with the sodium as it goes dull?

.....[1]

(ii) What is the name of the chemical compound made as the sodium goes dull?

.....[1]

(iii) How long would it take a piece of freshly cut lithium to go dull compared to sodium?

Give a reason for your answer.

.....[2]

(c) Fig. 12.2 shows the trend in the density of the Group 1 metals from lithium to caesium.

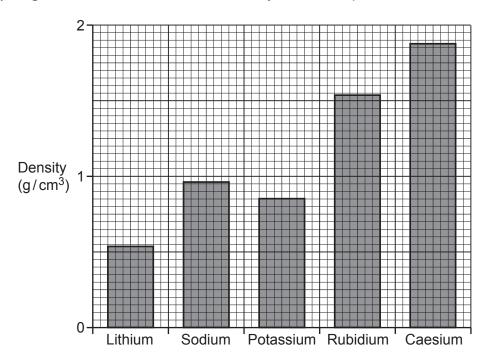


Fig. 12.2

Which Group 1 metal does not fit the general trend?
Give a reason for your answer using information from Fig. 12.2.

The stages are not in the correct order. Stages in the separation of crude oil into fraction W The vapours are piped into the bottom of the fractionating co	s				
	S				
W The vapours are piped into the bottom of the fractionating co					
	umn.				
X The vapours cool and the fractions condense at different temperature					
Y Crude oil is heated and vaporised.					
Z The vapours rise up the column.					
·					

(c) Table 13.2 shows information about the different gases in the LPG (liquefied petroleum gas) fraction separated from crude oil.

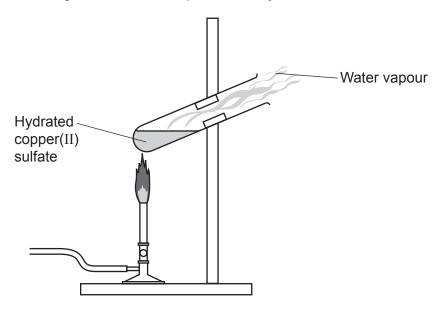

Gas in the LPG fraction	Formula	Boiling point (°C)
Methane	CH ₄	-162
Ethane	C ₂ H ₆	-89
Propane	C ₃ H ₈	-42
Butane	C ₄ H ₁₀	

Table 13.2

	(i)	Write the n	ame of the h	omologous ser	ies of the gase	es in the LPG fraction.				
							[1]			
	(ii)	What is the correct general formula for this homologous series?								
	Put a ring around the correct answer.									
		C_nH_n	C_nH_{2n}	C_nH_{2n+2}	$C_{2n}H_{2n}$	$C_{2n}H_{2n+2}$	[1]			
	(iii)	Use the da	ta in Table 1	3.2 to estimate	the boiling po	int of butane.				
			E	stimated boilin	g point =		C [1]			
(d)	The	equation sh	nows the read	ction for metha	ne burning in a	a limited amount of oxygen.				
	2CH	H ₄ (g) + 3O ₂	$g(g) \rightarrow 2CO$	(g) + $4H_2O(g)$						
	(i) Write down the name of the hazardous gas formed in this reaction.									
							[1]			
	(ii)	State why	the gas ident	ified in (d)(i) is	hazardous to	humans.				
							[1]			

14 A student investigates heating hydrated copper(II) sulfate, CuSO₄.5H₂O.

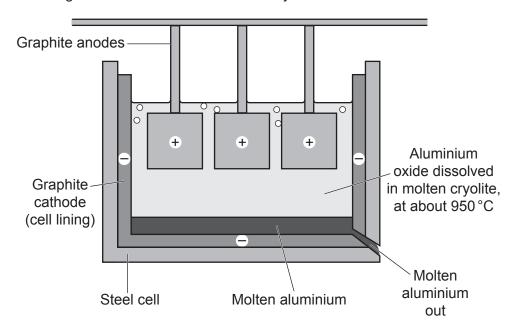
The diagram shows the experiment they do.

The student:

- Measures the mass of a boiling tube.
- Puts about 5 g of hydrated copper(II) sulfate in the boiling tube and measures the mass.
- Gently heats the boiling tube for one minute.
- Lets the boiling tube cool down and measures the mass.

During the experiment the hydrated copper (II) sulfate turns from blue to white and water vapour is produced.

Look at the student's results.


Mass of boiling tube (g)	69.1
Mass of boiling tube and copper(II) sulfate before heating (g)	74.2
Mass of boiling tube and copper(II) sulfate after heating (g)	73.4

(a) Calculate the mass of water produced in the experiment.

			Mass of	water =		g [1]
(b)	The	student expected a gre	ter mass of wat	er to be produced	i.	
	Hov	v could they improve the	experiment so a	greater mass of	water vapour is prod	duced?
(c)	Loo	k at the equation for the	eaction.			
		CuSO ₄ .5H ₂ O(s)	⇌	(s) +		H ₂ O(g)
		blue solid	wh	nite solid		
	(i)	Complete and balance	the symbol equ	ation.		[2]
	(ii)	The student adds a fer solid.	drops of water	to a boiling tube	e containing some o	of the white
		Describe what the stud	nt observes ha	opening to the wh	ite solid.	
		Give a reason for your	nswer.			
		Observation				
		Reason				
						[2]
	(iii)	As water reacts with th	white solid, the	temperature of the	ne boiling tube incre	ases.
		What name is given to	is type of reacti	on where heat is t	ransferred to the sur	rroundings?
						F41

15 Aluminium is produced from aluminium oxide by electrolysis.

The diagram shows the industrial electrolysis of aluminium oxide.

1	(a)	Lookat	the ed	nuation t	for the	electroly	sis of	aluminium	oxide
۱	a	LOUR at	uie ec	Jualion	וטו נוופ	election:	515 UI	aiuiiiiiiiiiiiiii	UXIUE.

$Al_2O_3 \rightarrow$	Al +		02
-----------------------	------	--	----

Complete the balanced symbol equation for the reaction.

[2]

(b) Molten aluminium oxide contains Al^{3+} and O^{2-} ions.

(i)	Explain	why the	aluminium	oxide	must be	molten	during	electrolys	is
-----	---------	---------	-----------	-------	---------	--------	--------	------------	----

.....[2]

(ii) Explain why aluminium is produced at the cathode.

.....[1]

((c)	Aluminium	melts	at	650	°C
١.		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1110113	αı	000	\sim

												[2
Reason 2												
Reason 1												
electrolysi		10000110	vviiy	10 10	опоарог	ιο	100,010	aiaiiiiiaiii	triari	10	produce	101
L)escribe	two	reasons	whv	it is	cheaper	tο	recycle	alumınıum	than	to	produce	it troi

16* Fig. 16.1 shows how the atmospheric carbon dioxide concentration changed between 1970 and 2010.

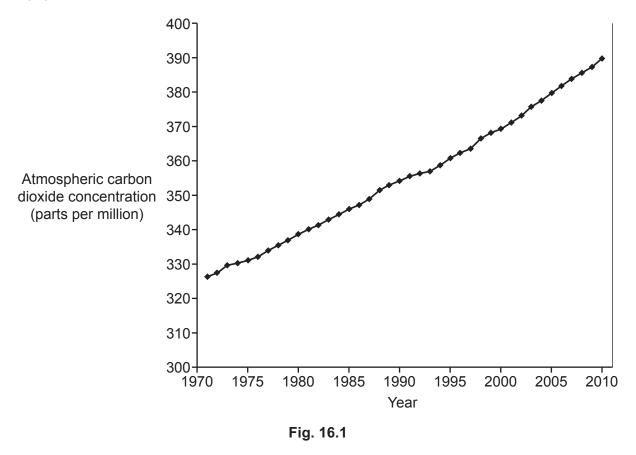
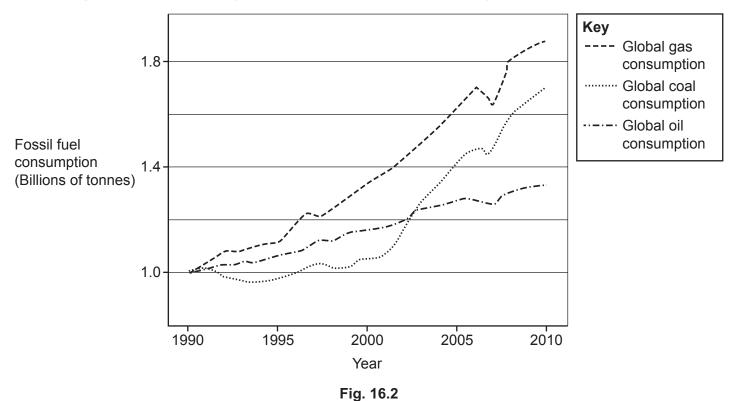
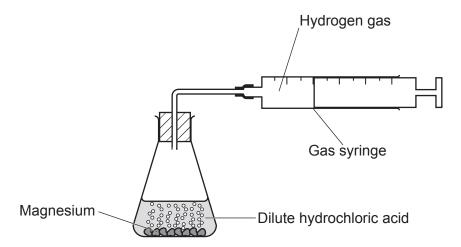



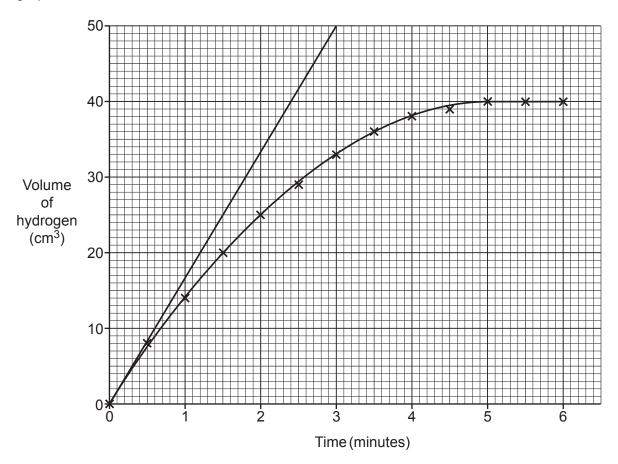
Fig. 16.2 shows how the global consumption of fossil fuels changed between 1990 and 2010.



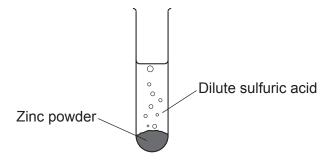
A student thinks that the increase in atmospheric carbon dioxide is because of the increased consumption of fossil fuels.

Describe and explain if the graphs in Fig. 16.1 and Fig. 16.2 support this statement.						
Use information from Fig. 16.1 and Fig. 16.2 in your answer.						
[6]						

17 A student investigates the rate of reaction between magnesium and an **excess** of dilute hydrochloric acid.


The diagram shows the equipment they use.

The student measures the total volume of hydrogen gas produced every 30 seconds.


The student plots a graph of their results.

They want to calculate the rate of reaction at the start of the reaction. They draw a tangent on the graph at the start of the reaction.

	(ii)	Write down the volume of hydrogen gas that is produced at the end of this reaction. Volume =
		Tick () one box. Decrease Increase Stay the same Give a reason for your answer.
		ey increase the concentration of the dilute hydrochloric acid. They keep everything else in experiment the same. Does the gradient of the graph at the start of this student's reaction decrease, increase or stay the same compared to the first student's experiment?
(c)		other student repeats the experiment.
	Ехр	lain your answer using ideas about particles and collisions.
(b)	Wha	Rate of reaction = cm ³ / minute [3] at happens to the rate of reaction as the reaction progresses?
	Give	e your answer to 1 decimal place.
` ,		e gradient of the tangent gives the rate of reaction. Use the tangent to calculate the rate of ction at the start of the reaction.

18 A student investigates the reaction between zinc and dilute sulfuric acid.

The student observes that bubbles are produced slowly during the reaction.

They want to find a catalyst for the reaction. They repeat the experiment, but each time they add a small piece of a different metal, **R**, **S** and **T**.

Look at the student's results.

Metal	Appearance of metal at start of reaction	Observations	
В	o il vom v vde ito	fast bubbling	
R	silvery-white	the silvery-white metal disappears	
6	raddiah braun	fast bubbling	
S	reddish-brown	the metal remains reddish-brown	
_		slow bubbling	
Ţ	dark grey	the metal remains dark grey	

State if the metals, **R**, **S** and **T** are catalysts or not.

Explain your answers using the information in the table and your knowledge of catalysts.

END OF QUESTION PAPER

21

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s must be clearly shown in the margin(s).

© OCR 2021

,		 	
	,	 	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2021