

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE PHYSICS

F

Foundation Tier Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

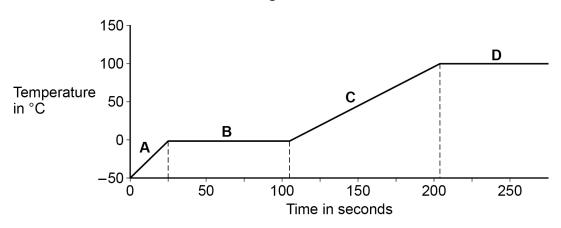
Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
TOTAL			


	Answe	er all questions in the space	ces provided.	
0 1.1	A student investigat	ed the three states of mat	ter.	
		particles in the three state		
	Draw one line from	each particle arrangemen	t to the state of matt	er. [2 marks]
	Particle arrangem	ent	State of matter	
			Solid	
			Liquid	
			Gas	

A large lump of ice was heated and changed state.

Figure 1 shows how the temperature varied with time.

Figure 1

0 1 . 2 Which part of **Figure 1** shows when the ice was melting?

[1 mark]

Tick (✓) one box.

Α

В

С

D

0 1. 3 Which part of **Figure 1** shows when the water was boiling?

[1 mark]

Tick (✓) one box.

A

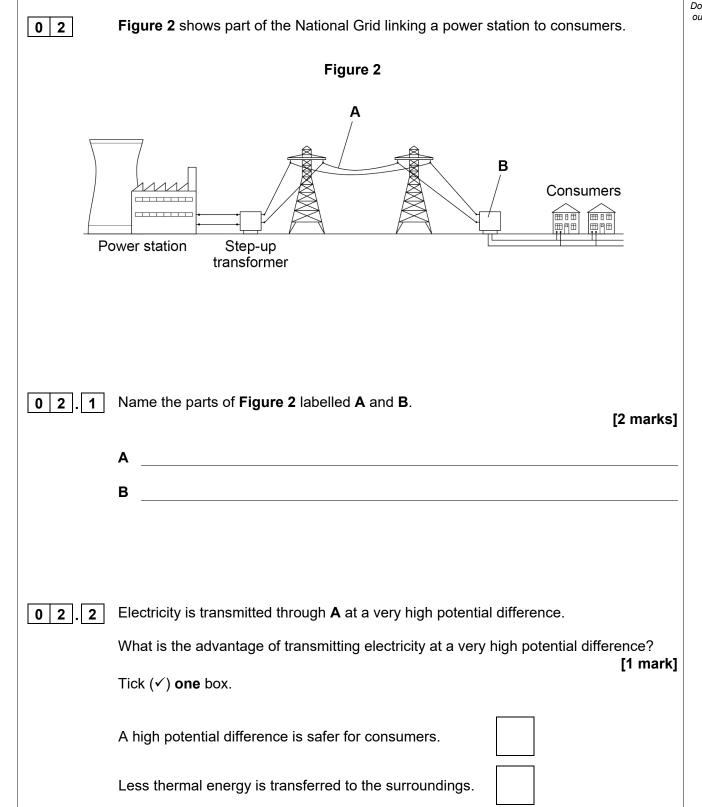
В

o 🗌

Question 1 continues on the next page

0 1.4	Which property of the water particles changes as the temperature of the water increases? Tick (✓) one box.	[1 mark]
	The kinetic energy of the particles	
	The mass of each particle	
	The number of particles	
0 1.5	Calculate the thermal energy needed to melt 0.250 kg of ice at 0 °C.	
	specific latent heat of fusion of water = 334 000 J/kg	
	Use the equation:	
	thermal energy = mass × specific latent heat	[2 marks]
	Thermal energy =	J

Find Personal Tutor from www.wisesprout.co.uk


8

找名校导师,用小草线上辅导(微信小程序同名)

0 1.6	Complete the sentence.		0
	Choose the answer from the box.	[1 mark]	
	condenses evaporates ionises sublimates		
	A substance is heated and changes directly from a solid to a gas.		Γ
	The substance		L

Turn over for the next question

Power transmission is faster.

0 2 . 3	The power station generates electricity at a potential difference of 25 000 V.				
	The energy transferred by the power station in one second is 500 000 000 J.				
	Calculate the charge flow from the power station in one second.				
	Use the equation:				
	charge flow = $\frac{\text{energy}}{\text{potential difference}}$ [2 marks]				
	Charge flow in one second =C				

Question 2 continues on the next page

The electricity supply to a house has a potential difference of 230 V.

Table 1 shows the current in some appliances in the house.

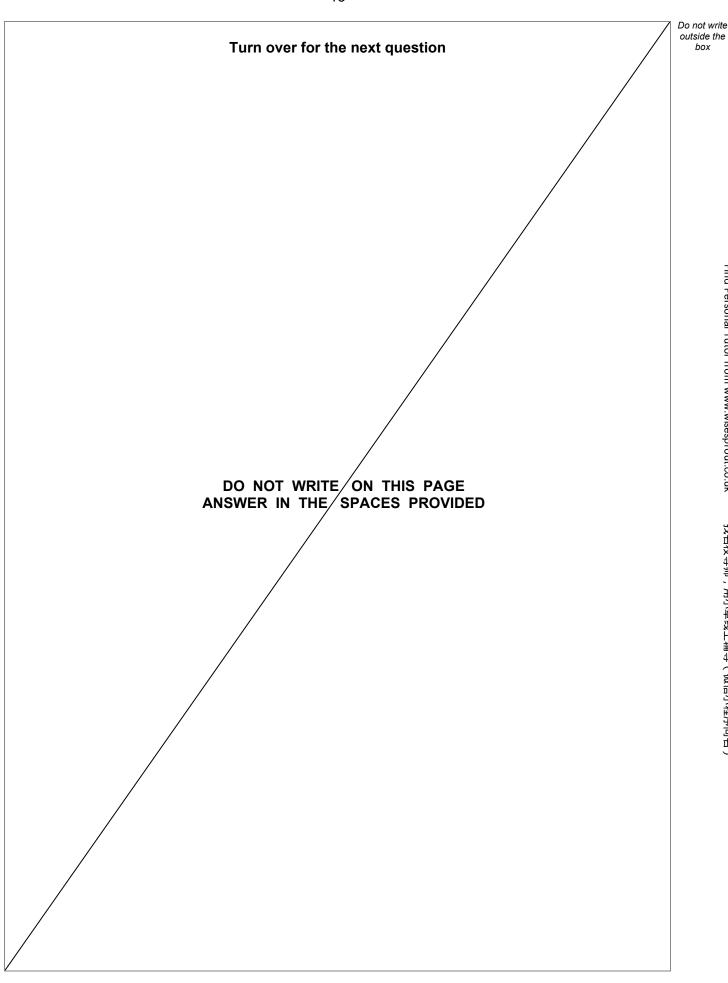
Table 1

Appliance	Current in amps
Dishwasher	6.50
DVD player	0.10
Lamp	0.40
TV	0.20

0 2 . 4	Calculate the total power of all the appliances in Table 1 .	
	Use the equation:	
	power = potential difference × current	[3 marks]
	Total nower -	W

		Do not week
0 2.5	Each appliance in Table 1 is switched on for 2 hours.	Do not writ outside the box
	Which appliance will transfer the most energy?	
	Give a reason for your answer. [2 marks]	
	Appliance	
	Reason	
0 2.6	The average energy transferred from the National Grid every second for each person in the UK is 600 J.	
	There are 32 000 000 seconds in one year.	
	Calculate the average energy transferred each year from the National Grid for each	
	person in the UK. [2 marks]	
	Average energy transferred = J	12
	Turn avantantha naut susation	
	Turn over for the next question	

0 3 A student investigated the density of different fruits. To determine the density of each fruit, the student measured the volume of each fruit. Figure 3 shows the equipment the student could have used. Figure 3 Beaker Displacement can Measuring cylinder Lime (a fruit) Describe a method the student could have used to measure the volume of the lime. 0 3 [4 marks]



0 3.2	The student measured the volume of each fruit three times and then calculated a mean value.			
	The three measurements for a grape were			
	2.1 cm ³ 2.1 cm ³ 2.4 cm ³			
	Calculate the mean value.	[2 marks]		
	Mean value =	cm ³		
0 3 . 3	What are the advantages of taking three measurements and calculating a			
0,0,0	mean value?			
	Tick (✓) two boxes.			
	Allows anomalous results to be identified and ignored.			
	Improves the resolution of the volume measurement.			
	Increases the precision of the measured volumes.			
	Reduces the effect of random errors when using the equipment.			
	Stops all types of error when using the equipment.			
	Question 3 continues on the next page			

0 3.4	The mass of an apple was 84.0 g.	Do not write outside the box
	The volume of the apple was 120 cm ³ .	
	Calculate the density of the apple.	
	Give your answer in g/cm ³ .	
	Use the equation: $\mbox{density} = \frac{\mbox{mass}}{\mbox{volume}} \label{eq:density}$ [2 marks]	
		THO PERSONAL
	$Density = q/cm^3$	10

Turn over ▶

0 4

A student investigated how the current in a circuit varied with the number of lamps connected in parallel in the circuit.

Figure 4 shows the circuit with three identical lamps connected in parallel.

Figure 4

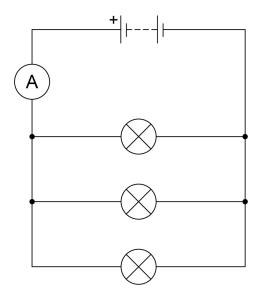
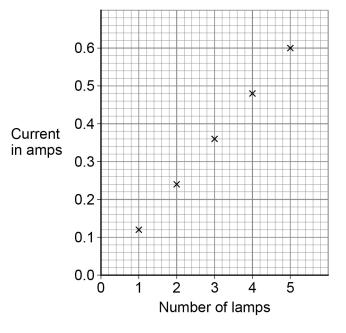
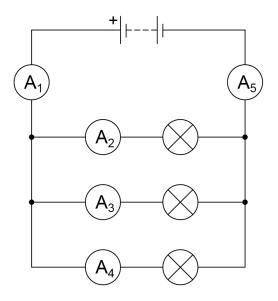



Figure 5 shows the results.

Figure 5



0 4.1	Complete the	e sentences.			
	Choose answers from the box.				
	Each answer can be used once, more than once or not at all.				
		decreased	stayed the same	increased	
	L				[3 marks]
	As the numb	er of lamps incr	reased, the current		
		-	reased, the total resistance	e of the	
		•	reased, the potential differ	ence across the	
0 4.2		were three lamp 5 A and 0.36 A.	os in the circuit the ammet	er reading kept ch	nanging
	What type of	error would this	s lead to?		[1 mark]
	Tick (✓) one	box.			[1 mark]
	Random erro	or			
	Systematic e	rror			
	Zero error				
		Question 4 o	continues on the next pa	age	

Figure 6 shows a circuit with five ammeters and three identical lamps.

Figure 6

 $\boxed{\mathbf{0} \ \mathbf{4}}$. $\boxed{\mathbf{3}}$ Complete **Table 2** to show the readings on ammeters A₂ and A₅.

[2 marks]

Table 2

Ammeter	A ₁	A ₂	A ₃	A ₄	A ₅
Current in amps	0.36		0.12	0.12	

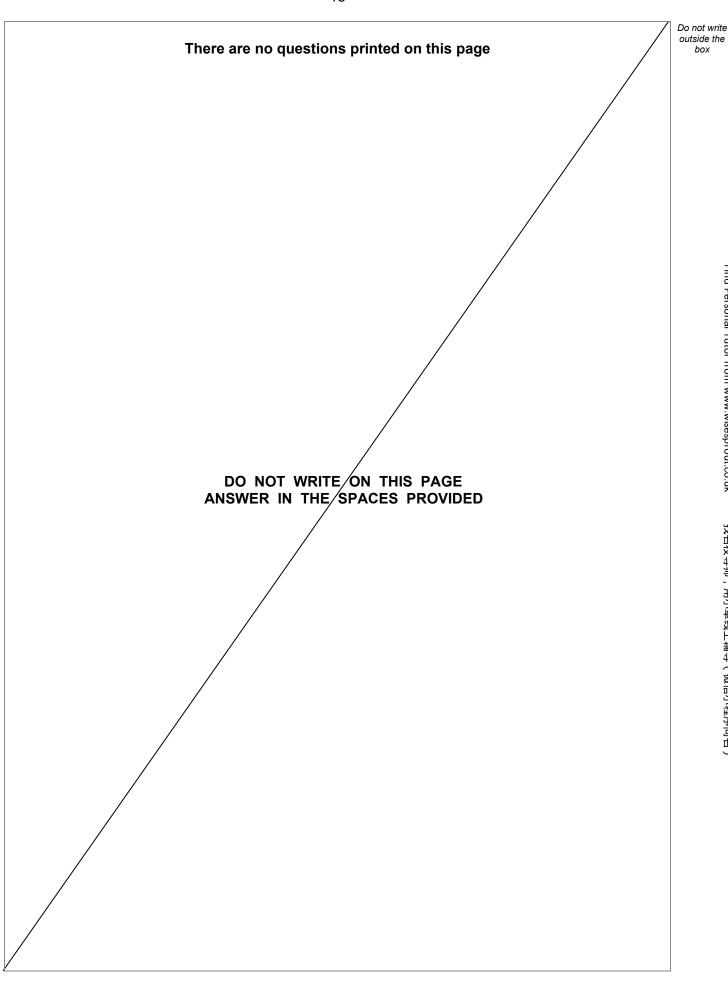
The resistance of one lamp is 15 Ω .

Calculate the power output of the lamp.

The current in the lamp is 0.12 A.

Use the equation:

	Do not write outside the box
[2 marks]	

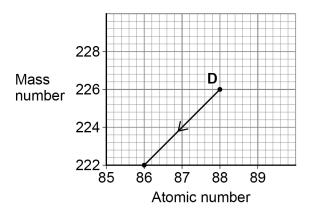

Turn over for the next question

Power =

power = $(current)^2 \times resistance$

0 4 . 4

0 5	Atoms of different elements have different properties.	
0 5 . 1	Which of the following is the same for all atoms of the same element? Tick (✓) one box. Atomic number Mass number Neutron number	1
0 5.2	Which of the following is different for isotopes of the same element? Tick (✓) one box. Number of electrons Number of neutrons Number of protons	1
	Question 5 continues on the next page	


Do not write

0 5. 3 A nucleus emits radiation.

Figure 7 shows how the mass number and the atomic number change.

The nucleus is labelled **D**.

Figure 7

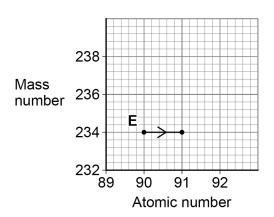
Which type of radiation is emitted when nucleus **D** decays?

[1 mark]

Tick (✓) one box.

Alpha

Beta


Neutron

0 5 . 4 Nucleus E also emits radiation.

Figure 8 shows how the mass number and the atomic number change for nucleus **E**.

Figure 8

Which type of radiation is emitted when nucleus **E** decays?

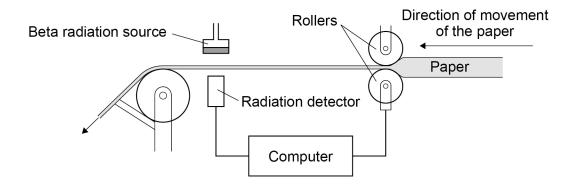
[1 mark]

Tick (✓) one box.

Alpha

Beta

Neutron


Question 5 continues on the next page

Beta radiation can be used to monitor the thickness of paper during production.

Figure 9 shows how the radiation is used.

Figure 9

The computer uses information from the radiation detector to change the size of the gap between the rollers.

0 5 . 5 Complete the sentences.

Choose answers from the box.

Each answer can be used once, more than once or not at all.

decrease stay the same increase

The thickness of the paper between the beta source and the detector increases.

[2 marks]

The reading on the detector will .

This is because the amount of radiation absorbed by the paper

will .

找名校导师,用小草线上辅导(微信小程序同名)

0 5 . 6 All radioactiv	e elements have a half-life.			Do not write outside the box
What is mea	nt by 'half-life'?			
Tick (✓) one	box.		[1 mark]	
The time it ta	kes for all the nuclei in a radioactive san	nple to split in half.		
The time it ta	kes for the count rate of a radioactive sa	imple to halve.		
The time it ta	kes for the radiation to travel half of its ra	ange in air.		riild re
				rind reisonal Lutol Hom www.wisesprout.co.uk
0 5. 7 Why should t	he radiation source used in Figure 9 ha		[1 mark]	WWW.WIS
Tick (✓) one	box.		[1	esprout.
So the activit	y of the source is approximately constan	it.		
So the amou	nt of radiation decreases quickly.			7 1 2 1 1 1 1
So the radiat	on has a long range in air.			8 第 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Turn over for the next question			上湘寺(城市少年から右)

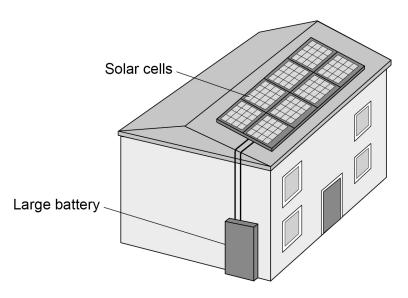

0 6

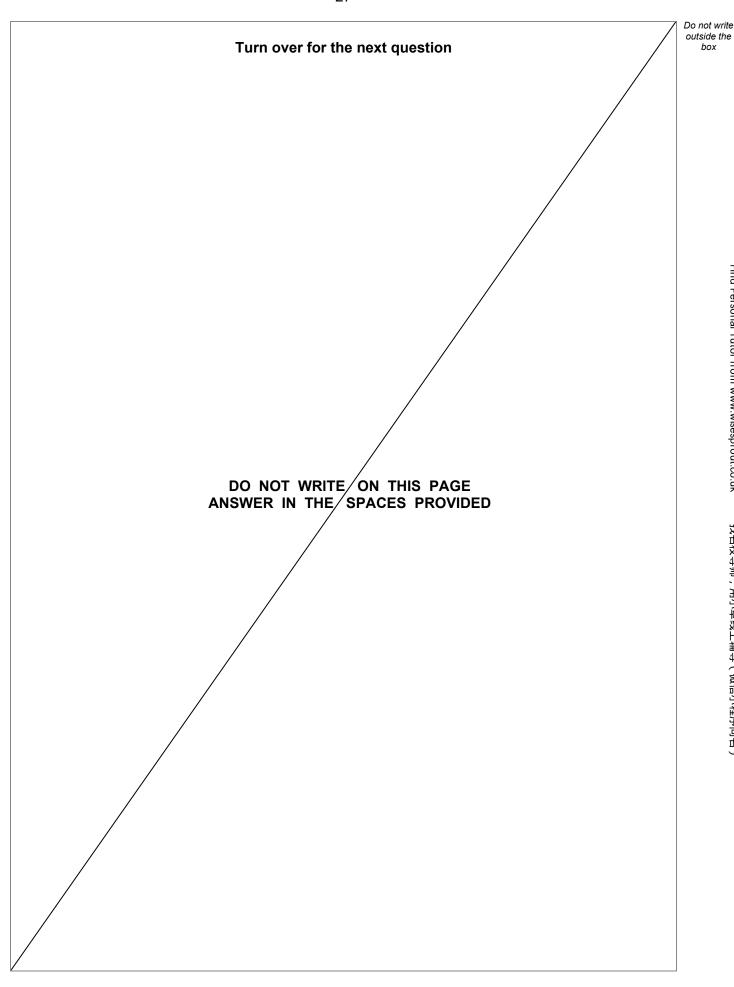
Figure 10 shows a house with a solar power system.

The solar cells generate electricity.

When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

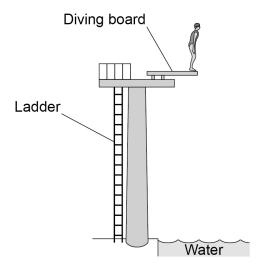
Figure 10

0 6 . 1	The solar cells on the roof of the house always face in the same direction.
	Explain one disadvantage caused by the solar cells only facing in one direction. [2 marks]



0 6.2	The mean current from the solar cells to the battery is 3.5 A.	
	Calculate the charge flow from the solar cells to the battery in 3600 seconds	
	Use the equation:	
	charge flow = current × time	[2 marks]
	Charge flow =	C
0 6.3	Write down the equation which links efficiency, total power input and useful power output.	[1 mark]
		[Timulk]
0 6.4	At one time in the day, the total power input to the solar cells was 7500 W.	
	The efficiency of the solar cells was 0.16	
	Calculate the useful power output of the solar cells.	[3 marks]
	Useful power output =	W
	Question 6 continues on the next page	

0 6 . 5	The wasted energy that is not usefully transferred by the solar cells is dissipated.	Do not write outside the box
	What happens to energy that has been dissipated?	
	Tick (✓) one box.	
	The energy becomes less useful.	
	The energy is destroyed.	
	The energy is used to generate electricity.	- - - -
		r ei soil ai
0 6.6	Why is it unlikely that all the UK's electricity needs could be met by solar power systems?	WW.W
	Tick (✓) one box.	www.wasabiodi.co.do
	A very large area would need to be covered with solar cells.	3 1 2
	Solar power is a non-renewable energy resource.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	The efficiency of solar cells is too high.	10
		## 4 (]%.
		꾰
		<u> </u>



Turn over ▶

Figure 11 shows a diver about to dive off a diving board.

Figure 11

0 7 . 1 Complete the sentences.

Choose answers from the box.

[2 marks]

elastic potential	gravitational potential	kinetic	nuclear

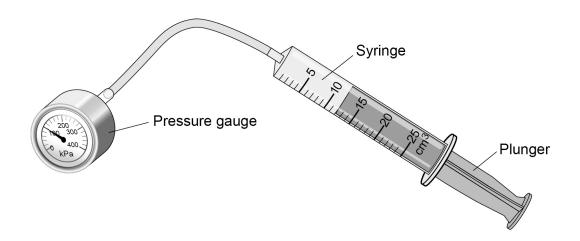
As the diver falls towards the water there is a decrease in

her _____ energy.

As the diver falls towards the water there is an increase in

her _____ energy.

0 7.2	Write down the equation which links kinetic energy (E_k), mass (m) and speed (v). [1 m	Do not write outside the box ark]
0 7.3	At the instant the diver hits the water, the kinetic energy of the diver is 5040 J. The speed of the diver is 12 m/s. Calculate the mass of the diver. [3 ma	rks]
	Mass =	kg kg
0 7.4	Most of the kinetic energy of the diver is transferred to the water. How does this affect the thermal energy of the water? Tick (✓) one box. The thermal energy decreases. The thermal energy stays the same. The thermal energy increases.	4 %
	Turn over for the next question	

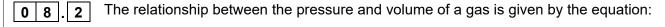

Do not write

0 8

A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

Figure 12 shows the equipment used.

Figure 12



0	8		1	What is the range	of the syringe?
---	---	--	---	-------------------	-----------------

[1 mark]

Tick	(√)	one	box.

From 0 to 1 cm ³	
-----------------------------	--

pressure × volume = constant

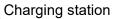
Complete the sentence.

[1 mark]

For this equation to apply, both the mass of gas and the

of the gas must stay the same.

0 8 . 3	The initial volume of the gas in the syringe was 12 cm ³ .	
	The initial pressure of the gas in the syringe was 101 000 Pa.	
	Calculate the constant in the equation below.	
	pressure × volume = constant	
		[2 marks]
	Constant =	Pa cm³
0 8.4	The teacher pulled the plunger slowly outwards and the gas expanded.	
	The new volume of the gas was 24 cm ³ .	
	Calculate the new pressure in the gas.	
	The constant has the same value as in Question 08.3	50 l1
		[3 marks]
	New pressure =	Pa
		-
	Overtion 0 sentimens on the	
	Question 8 continues on the next page	


				,
0 8.5	Which change occurs when the plunger is pulled slowly outward. Tick (✓) one box.	ls? [1 ma	Do not outsid bo	e the
	The gas particles stop moving.			
	There are more frequent collisions between the gas particles.			_
	There is more space between the gas particles.		8	-
				Tild retsolidi futor itolii www.wisesprodi.co.un 3なロなすが,ガウキタ上曲す(Mileウキガリロ)

Power cable

Figure 13 shows an electric car being recharged.

Figure 13

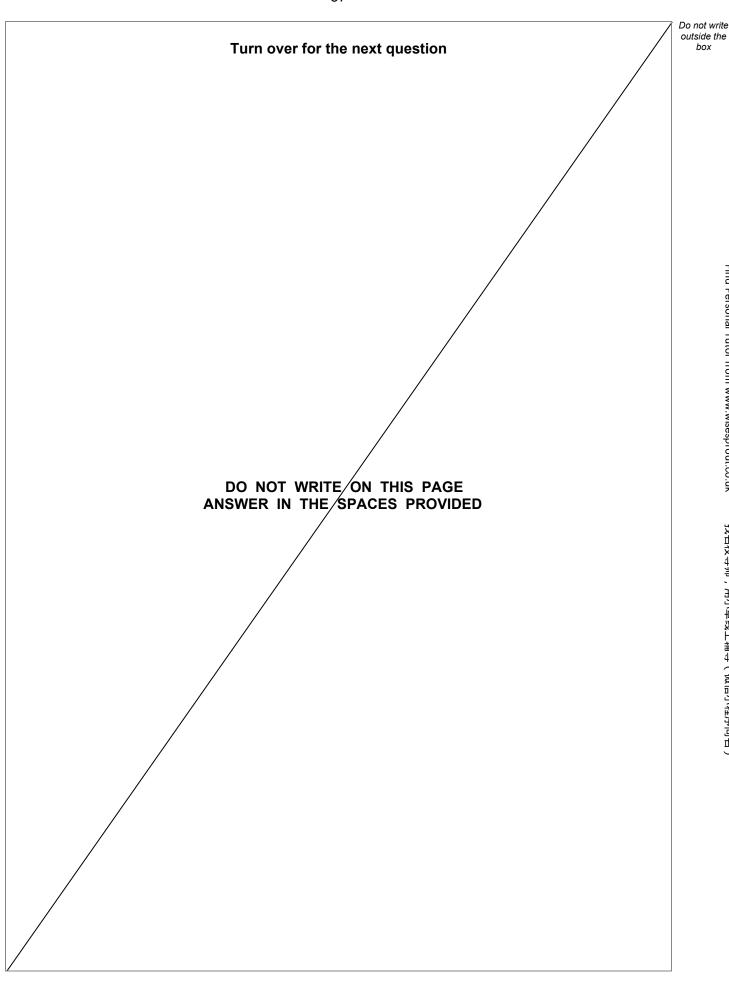
0 9 . 1	The charging station applies a direct potential difference across the battery of	of the car.
	What does 'direct potential difference' mean?	[1 mark

[1 mark]

Question 9 continues on the next page

Turn over ▶

0 9.2	Which equation links energy transferred (E), power (P) and time (t)? Tick (\checkmark) one box. energy transferred = $\frac{power}{time}$ energy transferred = $\frac{time}{power}$ energy transferred = power × time energy transferred = power² × time	[1 mark]
0 9.3	The battery in the electric car can store 162 000 000 J of energy. The charging station has a power output of 7200 W. Calculate the time taken to fully recharge the battery from zero.	[3 marks]
	Time taken =	s



0 9.4	Which equation links current (I) , potential difference (V) and resistance (R) ?	ark1	
	Tick (✓) one box.	41 (
	$I = V \times R$		
	$I = V^2 \times R$		
	$R = I \times V$		
	$V = I \times R$		
0 9 . 5	The potential difference across the battery is 480 V.		
	There is a current of 15 A in the circuit connecting the battery to the motor of the electric car.		
	Calculate the resistance of the motor. [3 mar	·ks]	
	Resistance =	_ Ω	
	Question 9 continues on the next page		

0 9.6	Different charging systems use different electrical currents.	Di O
	Charging system A has a current of 13 A.	
	Charging system B has a current of 26 A.	
	 The potential difference of both charging systems is 230 V. 	
	How does the time taken to recharge a battery using charging system A compare with the time taken using charging system B ? [1 mark] Tick (✓) one box.	
	Time taken using system A is half the time of system B	
	Time taken using system A is the same as system B	
	Time taken using system A is double the time of system B	

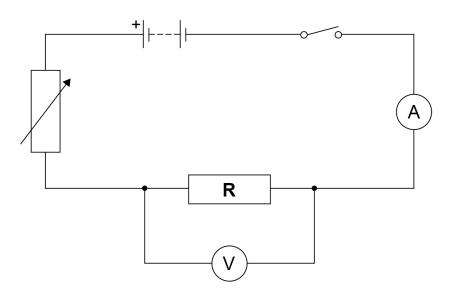
Turn over ▶

1 0	Energy from the Sun is released by nuclear fusion.
10.1	Complete the sentences. [2 marks]
	Nuclear fusion is the joining together of
	During nuclear fusion the total mass of the particles
1 0 . 2	Nuclear fusion of deuterium is difficult to achieve on Earth because of the high temperature needed.
	Electricity is used to increase the temperature of 4.0 g of deuterium by 50 000 000 °C.
	specific heat capacity of deuterium = 5200 J/kg °C
	Calculate the energy needed to increase the temperature of the deuterium by 50 000 000 °C.
	Use the Physics Equations Sheet. [3 marks]
	Energy = J

	心中发土错中、
	(回)
	J\作王/丁
_	791
	<u>-</u>

		[
1 0 . 3	The idea of obtaining power from nuclear fusion was investigated using models.	
	The models were tested before starting to build the first commercial nuclear fusion power station.	
	Suggest two reasons why models were tested.	
	[2 marks]	
	1	
	2	
1 0 . 4	Generating electricity using nuclear fusion will have fewer environmental effects than generating electricity using fossil fuels.	
	Explain one environmental effect of generating electricity using fossil fuels.	
	[2 marks]	
		 [
		L

Turn over for the next question



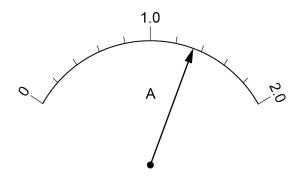
Student **A** investigated how the current in resistor **R** at constant temperature varied with the potential difference across the resistor.

Student A recorded both positive and negative values of current.

Figure 14 shows the circuit Student A used.

Figure 14

1 1 . 1	Describe a method that Student A could use for this investigation.	[6 marks]



		Do not writ
		outside the box
1 1 . 2	Student B repeated the investigation.	
	During Student B 's investigation the temperature of resistor R increased.	
		[2 marks]
	Explain how the increased temperature of resistor R would have affected Student B 's results.	
		[2 marks]
	Question 11 continues on the next page	

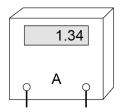
Figure 15 shows the scale on a moving coil ammeter at one time in the investigation.

Figure 15

1 1.3 What is the resolution of the moving coil ammeter?

[1 mark]

Resolution = _____A

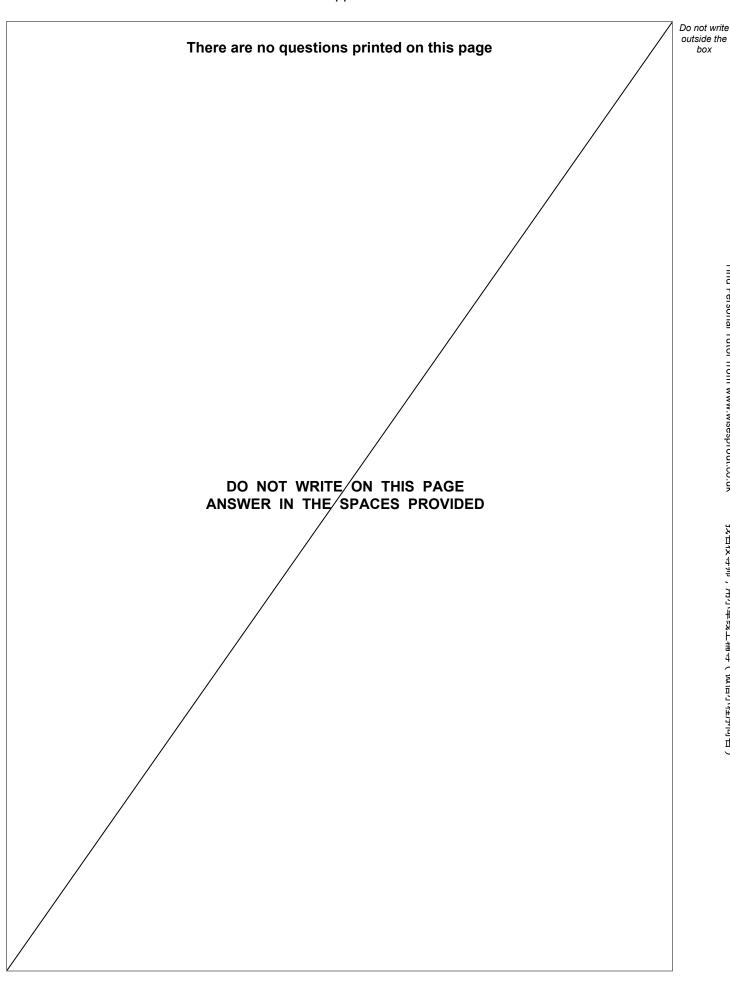

10

1 1 . 4

Student **B** replaced the moving coil ammeter with a digital ammeter.

Figure 16 shows the reading on the digital ammeter.

Figure 16


The digital ammeter has a higher resolution than the moving coil ammeter.

Give **one** other reason why it would have been better to use the digital ammeter throughout this investigation.

[1 mark]

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

