

GCE

Chemistry A

Unit H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question	Answer	Marks	Guidance
1	A	1	
2	С	1	
3	В	1	
4	С	1	
5	В	1	
6	В	1	ALLOW 4 (This is the number of peaks in the NMR spectrum)
7	С	1	
8	D	1	
9	В	1	
10	С	1	
11	В	1	ALLOW 2 (This is the number of straight chain isomers with a chiral C atom)
12	С	1	
13	Α	1	
14	В	1	
15	В	1	
	Total	15	

Question		Answer Marks	Guidance		
16 (a)	(i)	3-methylbutan-2-ol ✓	1	IGNORE lack of hyphens or addition of commas ALLOW 3-methylbutane-2-ol DO NOT ALLOW 2-methylbutan-3-ol OR 3-methylbut-2-ol OR 3-methbutan-2-ol OR 3-methybutan-2-ol OR 3-methybutan-2-ol	
	(ii)	(CH ₃) ₂ CHCHOHCH ₃ ✓	1	ALLOW brackets around OH e.g. (CH ₃) ₂ CHCH(OH)CH ₃ ALLOW any unambiguous structural formula e.g. CH ₃ CH(CH ₃)CHOHCH ₃ CH ₃ CH(CH ₃)CH(CH ₃)OH	
	(iii)	One mark for each correct structure.	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order	

Question	Answer	Marks	Guidance
(iv)	OH + NaCI + H₂SO₄ + NaHSO₄ + H₂O Correct haloalkane ✓ Correctly balanced equation ✓	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H ⁺ for H ₂ SO ₄ ALLOW equations forming Na ₂ SO ₄ ALLOW equations with HCl OH + HCl + H ₂ O DO NOT ALLOW equations that form NaOH
(b)	CH ₃ H H H H ₃ C C C C C C C C C C C C C C C C C C C	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any vertical bond to the tertiary OH group e.g. ALLOW CH3 CH3 CH3 CH3 H3C CH OH HO

Question	Answer	Marks	Guidance
(c)	Product from excess CH ₃ OH/H ₂ SO ₄ COOCH ₃	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous e.g COO IGNORE connectivity in each product ALLOW the E or Z isomer as product from excess CH ₃ OH/H ₂ SO ₄
	Product from steam, H ₃ PO ₄ HOOC OH OH		
	Repeat unit of polymer C H COOH HOOC COOH C C HOOC H OR H H		'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n ALLOW more than one repeat unit but has to be a whole number of repeat units
	Tota	11	

C	uestio	Answer	Marks	Guidance
17	(a)	Correct groups attached to chiral C of cysteine seen once e.g. CH ₂ SH OR H ₂ N COOH H	2	Each structure must have four central bonds with at least two wedges. For bond into paper accept: ALLOW bond to any part of the CH ₂ of the CH ₂ SH group e.g. ALLOW CH ₂ SH CH ₂ SH OR
		Two 3D structures of cysteine that are mirror images with correct connectivity in both CH ₂ SH CH ₂ SH CH ₂ SH H ₂ N COOH		ALLOW two 3D structures with 2 groups swapped e.g. CH ₂ SH CH ₂ SH CH ₂ SH HOOC CH ₂ NH CH ₂ NH
				IF CH ₂ SH is shown as 'R' ALLOW 1 mark for two 3D structures with correct connectivity that are mirror images e.g. COOH COOH R COOH R COOH R

Question	Answer	Marks	Guidance
(b)	Correct salt of lysine with both amine groups protonated	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	CI- H		Note : C <i>t</i> is required (question asks for salt)
	H_3 $\stackrel{+}{N}$ $\stackrel{-}{C}$ $\stackrel{-}{C}$		ALLOW NH ₃ C1 i.e charges not required
	(CH ₂) ₄ OH		ALLOW 1 mark for
	CI - + NH ₃		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			(CH ₂) ₄ OH + NH ₃ <i>i.e. no</i> C <i>t</i>
			IF there is a small slip in the structure ALLOW 1 mark for diammonium salt e.g CI - H ₃ N - C - C OH
			Cl ⁻ + NH ₃ (incorrect number of CH₂ in R group)

Question	Answer	Marks	Guidance
			OR CI^{-} $H_{3}\overset{+}{N} - C - C$ $(CH_{2})_{4}$ $CI^{-} + NH_{3}$ $(H \textit{ missing from } \alpha \textit{ C atom})$
(c)	HO CH ₂ CH O (Na ⁺) N CH C O (Na ⁺) O OR	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE NH ₃ (question asks for organic products) ALLOW -COO ⁻ OR -COONa DO NOT ALLOW negative charge on C atom DO NOT ALLOW -COO-Na (covalent bond) BUT ALLOW ECF if seen in subsequent structures DO NOT ALLOW COOH in this structure DO NOT ALLOW (sodium) salt of alcohol group i.e.

Question	Answer	Marks	Guidance
	H_2N C CH_2 CH_2 (Na^+) C		ALLOW COOH groups in this structure i.e. award 2 marks for OH CH
		_	IGNORE small slip in carbon chain
	Total	7	

Question		Answer	Marks	Guidance
18 (a) (i)	Number of peaks 2-nitrophenol AND 3-nitrophenol have six peaks/environments/types of carbon ✓ 4-nitrophenol has four peaks/environments/types of carbon ✓ Statement 1 mark 4-nitrophenol can be distinguished OR 2-nitrophenol and 3-nitrophenol cannot be distinguished ✓	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/types of carbon IGNORE chemical shifts
	ii)	(In phenol) a (lone) pair of electrons on O is(partially) delocalised/donated into the π-system / ring ✓ Electron density increases/is higher (than benzene) ✓ ORA (phenol) is more susceptible to electrophilic attack OR (phenol) attracts/accepts electrophile/HNO₃ more OR (phenol) polarises electrophile/HNO₃ more ✓ ORA	3	DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π-system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π-system / ring IGNORE activating IGNORE charge density IGNORE electronegativity IGNORE phenol reacts more readily (no reference to electrophile) ALLOW NO ₂ ⁺ for electrophile

Question	Answer	Marks	Guidance
(b)	Answer Curly arrow from π-bond to S in SO ₃ AND curly arrow from the S=O bond to O atom ✓	Marks 3	ANNOTATE WITH TICKS AND CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the S of SO ₃ AND • start from, OR close to circle of benzene ring 2nd curly arrow must start from, OR be traced back to, any part of S=O bond and go to O SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
			Intermediate must have correct SO ₃ ⁻ structure fully displayed

Question	Answer	Marks	Guidance
Question	Correct intermediate ✓ Curly arrow from C-H bond to reform π-ring ✓ CH ₃ + - CH ₃ - CH	Warks	The correct orientation, <i>i.e.</i> gap towards C with SO ₃ . ALLOW + sign anywhere inside the 'hexagon' of the intermediate. DO NOT ALLOW mark for intermediate if CH ₃ is missing curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon'
	To	otal 9	

Q	uestion	Answer	Marks	Guidance
19	(a)	Links rate of reaction to strength of bond/bond enthalpy e.g. the weaker the bond the faster the reaction stronger bond takes longer to break lower bond enthalpy reacts faster	2	Each marking point must be a comparison
		Correct comparison of rate of reaction for at least two C–Hal bonds e.g. C–F bond is hydrolysed slowest C–I bond is hydrolysed faster than C–Br C–Br has shorter reaction time than C–CI OR		IGNORE references to halogens as elements: <i>i.e.</i> chlorine is less reactive than bromine etc. DO NOT ALLOW chloride, bromide and iodide
		Correct comparison of C–Hal bond strength/enthalpy of at least two of C–Hal bonds e.g. C–I bond is the weak est C–I has lower bond enthalpy than C–Br C–Br is broken more easily/readily than C–Cl C–Hal bond strength decreases down group (7) ✓		IGNORE references to bond length, polarity and electronegativity

Question Answer Marks	Guidance
Curly arrow from HO⁻ to carbon atom of C−Cl bond ✓ Dipole shown on C−Cl bond, C⁵⁺ and Cl⁵⁻ AND curly arrow from C−Cl bond to Cl atom ✓ IGNORE presence of Na⁺ but OH⁻ needed i.e. Na⁺OH⁻can be allowed if criteria met Correct organic product AND Cl⁻ ✓	Guidance ANNOTATE ANSWER TICKS AND CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C-Cl AND • start from, OR be traced back to any point across width of lone pair on O of OH • OR start from - charge on O of OH • OR start from - charge on O of OH ion (Lone pair NOT needed if curly arrow shown from OT) 2nd curly arrow must start from, OR be traced back to, any part of C-Cl bond and go to Cl

Question	Answer	Marks	Guidance
			ALLOW S _N 1 mechanism First mark Dipole shown on C–Cl bond, C ^{δ+} and Cl ^{δ-} , AND curly arrow from C–Cl bond to Cl atom ✓ Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus on O of HO ⁻ ion (no need to show lone pair if curly came from negative charge) ✓ Third mark Correct organic product AND Cl ⁻ ✓

Question		Answer	Marks	Guidance
•	(i)	Diagram Diagram showing round bottom/pear shaped flask AND upright condenser ✓ Water out ← Condenser Water in	2 2	DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottom/pear shaped flask DO NOT ALLOW distillation DO NOT ALLOW stopper/bung on top of condenser IGNORE a thermometer in condenser IGNORE a small gap between flask and condenser
		Labels (Round-bottom/pear-shaped) flask AND condenser AND water in at bottom and out at top AND heat (source) ✓		ALLOW diagram of heating apparatus as an alternative to heat label

Question	Answer	Marks	Guidance		
(c) (ii)	Precipitate G 1 m silver bromide/AgBr AND $M = 1.88/0.01 = 188 \text{ (g mol}^{-1})$ $188 - 107.9 = 80.1 \text{ (so halide is Br}^{-})$	nark 3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Note: working is required for first mark ALLOW use of 108 as A _r of Ag		
	Alcohol F and Haloalkane E 2 ma	arks			
	E and F clearly identified F/alcohol: butan-2-ol H OH H ₃ C — C — C — CH ₃ H H		Note: E and F can be identified by correct name or structure BUT IGNORE incorrect names		
	 E/haloalkane: E is haloalkane of C₄H₉X with same halogen as G AND same carbon chain as F ✓ 				
		Total 10			

(Questio	n	Answer	Marks	Guidance
20	(a)		priority groups/atoms are on different/opposite sides ✓ High(est) priority groups are C ₆ H ₅ AND CHO OR Lowest priority groups are H and CH ₃ ✓	2	ALLOW suitable alternatives to 'priority' e.g. groups with highest atomic number or more important groups etc. ALLOW high priority groups are diagonal(ly across) IGNORE references to relative mass of groups, A _r , M _r , ALLOW identification by name e.g aldehyde for CHO phenyl/benzene group for C ₆ H ₅ alkyl for CH ₃ ALLOW response in terms that O has higher
	(b)	(i)	Bromine/ Br ₂ AND goes colourless/decolourised ✓	1	priority than H in context of –CH ₃ and –CHO IF 'priority' is not mentioned ALLOW 1 mark for 'C ₆ H ₅ and CHO are on different sides' OR H and CH ₃ are on different sides Note: both reagent and observation are required ALLOW bromine water/ Br ₂ (aq)
		(ii)	Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) ✓	1	Note: both reagent and observation are required for the mark. ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt

Question	Answer	Marks	Guidance	
	Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate√	3	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternative for precipitate	
	Take melting point (of crystals) ✓ Compare to known values/database ✓		Mark second and third points independently of response for first marking point DO NOT ALLOW 2 nd and 3 rd marks for taking and comparing boiling points OR chromatograms	

Question	Answer	Marks	Guidance
(c)	Marks for each correct structure/reagent shown below reduction of nitrile to form amine hydrogenation of C=C excess H ₂ /Ni OH OH OH CH ₂ NH ₂ reduction of nitrile to form amine hydrogenation of C=C OH OH CH2NH ₂ NaCN/H+ NaCN/H+ OH CN NaCN/H+ OH CN	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For reaction with excess H ₂ /Ni IGNORE hydrogenation of benzene ring i.e. the following structure scores two marks OH CH ₂ NH ₂ ALLOW KCN/H ⁺
	NaBH ₄ OH COOH		ALLOW HCN ALLOW H ₂ SO ₄ or HNO ₃ or HC <i>l</i> for H ⁺

Question	Answer	Marks	Guidance
(d)*	Please refer to marking instructions on page 5 of mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) An outline of the mechanism for the formation of either product which is mostly correct. AND Major and minor products identified with a correct explanation of which product is most/least likely to be formed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) An outline of the mechanism for the formation of either product but with a few omissions/errors. AND Identifies major/minor product correctly OR Explanation of which product is most/least likely to be formed.	6	Please check all of page 23 which is included with this response. If this page is blank please annotate with SEEN Throughout: ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above if unambiguous Indicative scientific points: Mechanism for formation of either product. Curly arrow from C=C to attack the I atom of the I-Cl Correct dipole on I-Cl Curly arrow from I-Cl bond to Cl Carbocation with full positive charge on carbon atom Curly arrow from negative charge on Cl or lone pair on Cl to carbon atom with positive charge
	There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) A basic outline of the mechanism for the formation of either		$C_{e}H_{5} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{H} CHO \xrightarrow{C} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3}$ $C_{e}H_{5} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3}$ $C_{f}B_{-} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3} \xrightarrow{C_{f}B_{-}} CH_{3}$
	product is attempted. OR Basic explanation of which of the products is most/least likely to be formed. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Question	Answer	Mar	ks Guidance
Question	O marks No response or no response worthy of credit.	Mar	Guidance Organic products Major/most likely product $C_6H_5 - C - C - CH_3$ I CI
			Minor/least likely product H CHO C ₆ H ₅ —C—C—CH ₃ CI I
			Major/most likely product is formed from the most stable carbocation intermediate OR – Cl is attached to carbon atom with the least hydrogens attached OR the carbon with the most –C atoms attached OR the – I is attached to the carbon atom with most hydrogens attached
		Total 18	

Q	uestion	Answer	Marks	Guidance
21	(a)	Product from Na ₂ CO ₃	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW -COO OR -COONa DO NOT ALLOW negative charge on C atom DO NOT ALLOW -COO-Na (covalent bond) IGNORE connectivity of phenol OH group (marks are for correct conversions)
		Product from NaOH(aq) O (Na+)-O		ALLOW 1 mark if top two structures are shown in wrong boxes
		Product from Br ₂ Br OH e.g. HO		ALLOW substitution of any H from benzene ring ALLOW multiple substitution, i.e. di-, tri- and tetrabromo products. IGNORE connectivity of phenol OH group (marks are for correct conversions)

Question	Answer	Marks	Guidance
(b)	One mark for each correct structure/reagent as shown below OH SOCI2 HO compound H acyl chloride ester link rest of structure two repeat units of polymer I	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW PCI ₅ OR PCI ₃ for reagent mark. IGNORE references to temperature for reagent mark IGNORE additional reagents shown with SOCI ₂ /PCI ₅ /PCI ₃ e.g. H ₂ O, AlCI ₃ , HCl etc. IGNORE names (question asks for structures of organic compounds and formula of reagent) DO NOT ALLOW more than two repeat units ALLOW 1 mark for one correct repeat unit e.g. 'End bonds' MUST be shown (do not have to be dotted) ALLOW the 'O' at either end i.e. IGNORE brackets IGNORE n

Answer	Marks	Guidance
FIRST CHECK ANSWER ON ANSWER LINE IF answer = 7.5×10^{-4} award 2 marks [K] in mol dm ⁻³ $\frac{9.13 \times 10^{-2}}{166} = 5.50 \times 10^{-4} \text{ (mol dm}^{-3)} \checkmark$ [L] from peak areas $5.50 \times 10^{-4} \times \frac{5.9}{4.3} \text{ OR } 5.50 \times 10^{-4} \times 1.37$ $= 7.5 \times 10^{-4} \text{ (mol dm}^{-3)} \checkmark$ 2 SF Required	2 2	If there is an alternative answer, Apply ECF Alternative method [K] in g dm ⁻³ with peak area of 5.9 9.13 × $10^{-2} \times \frac{5.9}{4.3}$ OR 9.13 × $10^{-2} \times 1.37$ = 0.125 OR 0.13 (g dm ⁻³) \checkmark Calculator: 0.125272093 [L] in mol dm ⁻³ $\frac{0.125}{166} = 7.5 \times 10^{-4}$ OR $\frac{0.13}{166} = 7.8 \times 10^{-4}$ (mol dm ⁻³) \checkmark Common errors: Award 1 mark for: • 0.099(from $\frac{9.13 \times 10^{-2}}{166} \times 180$) • 6.9 × 10^{-4} (from $\frac{0.125}{180}$) • 7.2×10^{-4} (from $\frac{0.13}{180}$)
	FIRST CHECK ANSWER ON ANSWER LINE IF answer = 7.5×10^{-4} award 2 marks [K] in mol dm ⁻³ $\frac{9.13 \times 10^{-2}}{166} = 5.50 \times 10^{-4} \text{ (mol dm}^{-3}\text{) }\checkmark$ [L] from peak areas $5.50 \times 10^{-4} \times \frac{5.9}{4.3} \text{OR} 5.50 \times 10^{-4} \times 1.37$ $= 7.5 \times 10^{-4} \text{ (mol dm}^{-3}\text{) }\checkmark$	FIRST CHECK ANSWER ON ANSWER LINE IF answer = 7.5×10^{-4} award 2 marks [K] in mol dm ⁻³ $\frac{9.13 \times 10^{-2}}{166} = 5.50 \times 10^{-4} \text{ (mol dm}^{-3)} \checkmark$ [L] from peak areas $5.50 \times 10^{-4} \times \frac{5.9}{4.3} \text{OR} 5.50 \times 10^{-4} \times 1.37$ $= 7.5 \times 10^{-4} \text{ (mol dm}^{-3)} \checkmark$

Question	Answer	Marks	Guidance
(ii)	ester J O CH ₃	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	esters L and M		L and M can be identified either way round
	C CH ₂ CH ₂ CH ₃		IGNORE 'C ₃ H ₇ ' in L and/or M as ambiguous (question requires structures) IGNORE connectivity of phenol OH group (marks are for structures of alkyl groups)
	но		
	C CH(CH ₃) ₂		
	Total	12	

	Question	Answer	Marks	Guidance
22	(a) (b)	$C_7H_{16} + 7^1/_2O_2 \rightarrow 7CO + 8H_2O$ OR $C_7H_{16} + 4O_2 \rightarrow 7C + 8H_2O \checkmark$	1	ALLOW multiples IGNORE state symbols ALLOW equations for incomplete combustion that give CO and/or C with CO ₂ e.g $C_7H_{16} + 9O_2 \rightarrow 4CO + 3CO_2 + 8H_2O$ $C_7H_{16} + 6O_2 \rightarrow 4CO + 3C + 8H_2O$ ANNOTATE WITH TICKS AND CROSSES
		Heptane compared to hexane heptane (has a longer chain so) has more points of contact / more surface interaction (between molecules) ✓		ALLOW ORA throughout
		heptane has stronger/more induced dipole(–dipole) interactions ✓		ALLOW heptane has more electrons IGNORE IDID
		Pentan-1-ol compared to heptane and/or hexane pentan-1-ol has hydrogen bonds that are strong(er than induced dipole–dipole interactions) OR (alcohols have) hydrogen bonds and induced dipole(-dipole)		ALLOW stronger/more London forces IGNORE van der Waals' forces/VDW for induced dipole— dipole interactions (ambiguous as this term refers to both permanent dipole—dipole interactions and induced dipole—dipole interactions)
		 interactions/London forces ✓ Energy required to break forces More energy is required to break induced dipole(–dipole) 		IGNORE 'pentan-1-ol can form hydrogen bonds with water'
		or one one of the interactions in heptane than hexane or		ALLOW 'more energy to break intermolecular forces' if intermolecular forces are not stated. IGNORE it is harder to break the intermolecular forces no reference to energy) IGNORE more energy needed to separate molecules
				IGNORE more energy is needed to break bonds

Questio	n	Answer	Marks	Guidance
(c)	(i)	$n(CO_2) = 2.97/44 = 0.0675 \text{ (mol)} \checkmark$	5	Consult your team leader if an alternative creditworthy approach is seen
		$n(H_2O) = 1.62/18 = 0.0900 \text{ (mol)}\checkmark$ Ratio of C: H 3:8 \		IGNORE ratio of CO ₂ to H ₂ O is 3:4 ALLOW this mark from the correct molecular formula OR a correct structure if not shown in working
		Molecular formula C₃H ₈ O ₂ √		DO NOT ALLOW an incorrect molecular formula
		Structure any correct structure of $C_3H_8O_2$ \checkmark e.g. HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		Mark independently from molecular formula but structure MUST contain 3C, 8H and 2O ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any vertical bond to the OH group e.g. ALLOW OR OH HO DO NOT ALLOW OH—

Question		Answer	Marks	Guidance
(c)	(ii)	OH + H ₂ O + H ₂ O	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Carbonyl compound identified as propanone √		
		Rest of equation ✓		

Question	Answer	Marks	Guidance
Question (d)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Compound is a structure of C ₆ H ₁₂ O ₃ that is consistent with splitting pattern and chemical shifts in NMR spectrum. AND Comprehensive reasoning with most of the data analysed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Compound has a feasible chemical structure that is consistent with the splitting pattern in NMR spectrum but may have incorrect molecular formula.	Marks 6	Indicative scientific points:
	Compound has a feasible chemical structure that is consistent with the splitting pattern in NMR spectrum but		• δ = 4.0 ppm, quartet, 1H, CH ₃ -CH-O • δ = 1.3 ppm, singlet, 6H, (CH ₃) ₂ -C • δ = 1.2 ppm, doublet, 3H, CH ₃ -CH- Without D ₂ O: • Peak at 11.0 ppm COOH or OH • peak at 3.6 ppm OH
	Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses most of the NMR data. OR Attempts to determine empirical and/or molecular formula AND analyses some of the NMR data.		Note: Data Sheet shows O-H chemical shift can occur around 11.0 ppm Structure ALLOW any combination of skeletal OR structural OR
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		displayed formula as long as unambiguous Contains

Question	Answer	Marks	Guidance
	O marks No response or no response worthy of credit.		region that gives doublet and quartet e.g. H C C C C C C C C C C C C C C C C C C

Question	Answer	Marks	Guidance
			OH O CH ₃ H ₃ C
			H_3C $C \longrightarrow C$
			$\begin{array}{c cccc} & CH_3 & OH & & & & & \\ & & & & & & & \\ & & & & & $
			Note: there may be other possible structures that are consistent with the splitting pattern and chemical shifts in NMR – if an alternative structure is seen, please contact your team leader
	Total	18	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

