

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCE In Physics (9PH0) Paper 01: Advanced Physics I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or <a

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71915A
Publications Code 9PH0_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not be prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.

- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will mean that one mark will not be awarded. (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks. then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 **recall** of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.

Question Number	Acceptable answers	Additional guidance	Mark
1	The only correct answer is C A is not the correct answer, as there are 8 protons and 9 neutrons. B is not the correct answer, as there are 8 protons and 9 neutrons. D is not the correct answer, , as there are 8 protons and 9 neutrons.		1
2	The only correct answer is C A is not the correct answer, as a baryon has three quarks. B is not the correct answer, as leptons are fundamental particles D is not the correct answer, as a nucleon is a proton or neutron		1
3	The only correct answer is D A is not the correct answer, as $-\frac{t}{T} = \ln \frac{1}{2}$ B is not the correct answer, as $-\frac{t}{T} = \ln \frac{1}{2}$ C is not the correct answer, as $-\frac{t}{T} = \ln \frac{1}{2}$		1
4	The only correct answer is A B is not the correct answer, as both mass and lifetime both increase. C is not the correct answer, as both mass and lifetime both increase. D is not the correct answer, as both mass and lifetime both increase.		1
5	The only correct answer is D A is not the correct answer, as centripetal force keeps car moving with circular motion B is not the correct answer, as centripetal force keeps car moving with circular motion C is not the correct answer, as this would keep car moving with circular motion		1
6	The only correct answer is D A is not the correct answer, as efficiency = useful output/input = 40/44		1

	B is not the correct answer, as efficiency = useful output/input = 40/44 C is not the correct answer, as efficiency = useful output/input = 40/44	
7	The only correct answer is D A is not the correct answer, as change in momentum is the same. B is not the correct answer, as change in velocity is the same. C is not the correct answer, as force decreases.	1
8	The only correct answer is C A is not the correct answer, as P,E. increases and speed decreases as particle approaches nucleus B is not the correct answer, as P,E. increases and speed decreases as particle approaches nucleus D is not the correct answer, as P,E. increases and speed decreases as particle approaches nucleus	1
9	The only correct answer is D A is not the correct answer, as electrons will not deflect particle. B is not the correct answer, as neutral atom will not deflect particle. C is not the correct answer, as this cannot be concluded from observing just one particle.	1
10	The only correct answer is B A is not the correct answer, as the gradient of the velocity graph must increase. C is not the correct answer, as the gradient of the velocity graph must increase. D is not the correct answer, as as the gradient of the velocity graph must increase.	1

Question Number	Acceptable answers		Additional guidance	Mark
11(a)	An explanation that makes reference to the following points: • current (in coil) produces a magnetic field/flux	(1)		4
	• (a.c.) leads to changing (magnetic) field/flux through pan	(1)	MP2 – 4 must relate to the pan	
	• <u>induces</u> an <u>emf</u> in pan	(1)		
	leads to current (in pan because it is an electrical conductor) MP4 dependent on MP2	(1)		
11(b)	An explanation that makes reference to the following points: • high frequency means that flux/field is changing quickly Or increases rate of change of flux/field			2
		(1)		
	 leads to increased (induced) emf (in pan) Or leads to increase in (induced) current (in pan) MP2 dependent on MP1 	(1)		

(Total for Question 11 = 6 marks)

Question Number	Acceptable answers		Additional guidance	Mark
12(a)	A vector has magnitude and direction	(1)		1
12(b)	An explanation that makes reference to the following points: • States $I = nqvA$ Or n and q stated as constant Or $v \propto \frac{1}{A}$	(1)		2
	• v must increase (if A decreases) MP2 dependent on MP1	(1)		
12(c)	Either • j has units A m ⁻²	(1)		4
	• E has units V m ⁻¹ or N C ⁻¹	(1)	Example: Units of $\frac{E}{i} = \frac{\text{Vm}^{-1}}{\text{Am}^{-2}} = \Omega \text{m}$ and these are the units	
	• ρ has units of Ω m	(1)	of ρ	
	Algebra to show units the same on both sides	(1)	Or find agreements for both sides using options shown below:	
	 Or If formulas have been used: Substitution using ρ = RA/l Substitution using E = V/d Substitution using R = V/I The equations above and j = I/A need to be rearranged and simplified with Ω (or R) appearing on either side 	(1)(1)(1)	Units of $\frac{E}{J}$ are $\frac{N C^{-1}}{Am^{-2}} = \frac{Nm^2}{AC} = \frac{Jm}{AC} = \frac{kgms^{-2} m^2}{A^2s} = \frac{kgm^3 s^{-3}}{A^2}$ Units of $\rho = \Omega m = \frac{V}{A} m = \frac{Nm^2}{CA} = \frac{Jm}{CA}$ $= \frac{kgms^{-2}m^2}{A^2s} = \frac{kgm^3 s^{-3}}{A^2}$	

(Total for Question 12 = 7 marks)

Question Number	Acceptable answers		Additional guidance	Mark
13(a)	• 30 lux corresponds to 3000 Ω	(1)	Example of calculation	6
	Use of ratio of resistances	(1)	$\frac{V}{7.0} = \frac{333}{333 + 3000}$	
	Use of corresponding ratio of p.d.s	(1)	7.0 333 + 3000	
	• To a p.d. of 0.7 (V)	(1)	V = 0.70 V	
	if light goes above this level then resistance of LDR decreases	(1)	Alternative for MP2 and MP3 • Use of $I = V/R$ for whole circuit	
	so p.d. to transistor increases so does perform as required	(1)	• Use of $V = IR$ for 333 Ω resistor	
	MP6 dependent on MP5		Example of calculation	
			$I = 7.0 \text{ V/} (333 + 3 \times 10^3) \Omega$ = $2.1 \times 10^{-3} \text{ A}$	
			$V = 2.1 \times 10^{-3} \mathrm{A} \times 333 \Omega$ = 0.7 V	
13(b)	 An explanation that makes reference to the following points: more electrons move into a conduction band Or more electrons become free 	(1)		2
	with (increased light level) so resistance decreases MP2 dependent on MP1	(1)		
			(Total for Question 12 – 9	

(Total for Question 13 = 8 marks)

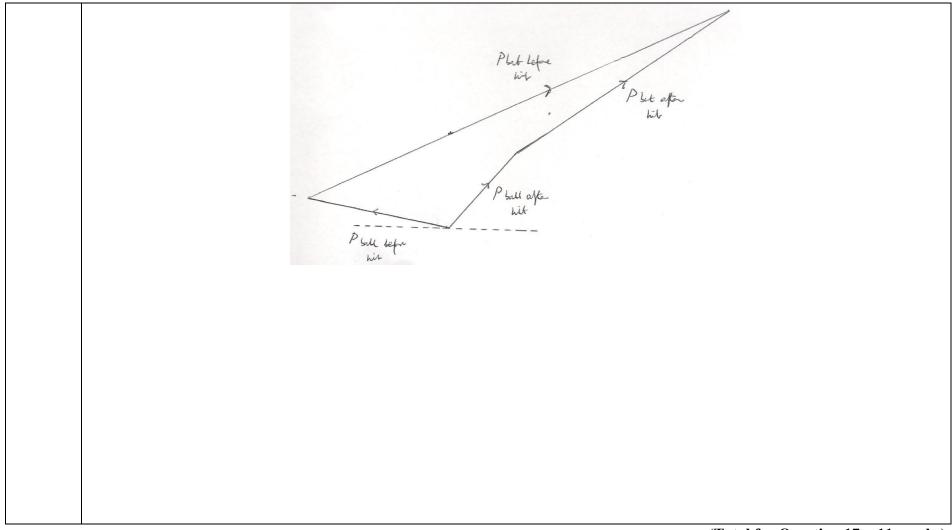
Question Number	Acceptable answers		Additional guidance	Mark
14(a)(i)	Attempt to take moments around right hand end of X	(1)	distance of 1.5 m used with 45 Or 1.3 m used with T	4
	 Use of W = mg Correct component of T or perpendicular distance to T T = 890 N 	(1)(1)(1)	Example of calculation $45 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 1.5 \text{ m} = T \times 1.3 \text{ m} \times \sin 35$ $T = 888 \text{ N}$	
14(a)(ii)	 (thrust) arrow approx 35° to horizontal to the upper left arrow direction capable of balancing opposite pair 	(1)(1)	Do not penalise whether force from column is above/below/on the horizontal Force from rod Y Force from column	2
14(b)	 Use of E = constant / r² Calculates at least one value of the constant Calculates a second value and states that the field is not inverse square law 	(1) (1) (1)	eg writes $Q = 4\pi\epsilon_0 Er^2$ Or $Q/4\pi\epsilon_0 = Er^2$ Or $Er^2 = k$ Example of calculation $1200 \text{ N C}^{-1} \times 3^2 \text{ m}^2 = 10800 \text{ V m}$ $100 \text{ N C}^{-1} \times 25^2 \text{ m}^2 = 62500 \text{ V m}$ Or $1200 \text{ N C}^{-1} \times 3^2 \text{ m}^2 \times 4\pi\epsilon_0 = 1.2 \times 10^{-6} \text{ C}$ $100 \text{ N C}^{-1} \times 25^2 \text{ m}^2 \times 4\pi\epsilon_0 = 6.9 \times 10^{-6} \text{ C}$ Or $1200 \text{ N C}^{-1} \times 3^2 \text{ m}^2 = 10800 \text{ V m}$ $\frac{10800 \text{ V m}}{100 \text{ N C}^{-1}} = 108 \text{ m}^2 \text{ and } \sqrt{108} = 10.4 \text{ not } 25$	3

(Total for Question 14 = 9 marks)

Question Number	Acceptable answers		Additional guidance	Mark
15(a)(i)	Leaves no track Or the tracks present are opposite curvatures	(1)		1
15(a)(ii)	 proton is positive conservation of charge means pion is negative Or opposite curvature to proton means pion is negative 	(1) (1)	both marks can be given for $0 = +1$ -1 with pion identified as negative.	2
15(a)(iii)	$\bullet (\Delta^0) \rightarrow p^{(+)} + \pi^-$	(1)	Allow ecf if pion was stated as positive in (ii)	1
15(a)(iv)	baryon number conserved Or baryon number is +1 on both sides of equation Or proton is baryon and the pion is not a baryon	(1)		1
15(a)(v)	 An explanation that makes reference to the following points: The radius of the proton path is (very) large (compared with the pion) According to p = BQr The momentum of the proton is larger than the momentum of the pion. (dependent on MP2 or MP1) 	(1) (1) (1)	Allow proton path is less curved $ Allow \ p \propto r $	3
15(b)(i)	• Converts eV to J • use of $\Delta m = \Delta E / c^2$ • mass = 2.19×10^{-27} (kg)	(1) (1) (1)	Example of calculation $m = \frac{1232 \text{ V} \times 1.6 \times 10^{-19} \text{C} \times 10^{6}}{(3 \times 10^{8})^{2} (\text{ms}^{-1})^{2}}$ $m = 2.19 \times 10^{-27} \text{ kg}$	3

15(b)(ii)	•	Calculates mass difference			3
		Or states (total) mass of decay products is less than mass of		Example of Calculation	
		delta particle	(1)	939 + 139 = 1078	
				$1232 - 1078 = 154(MeV/c^2)$	
	•	According to $\Delta E = \Delta mc^2$	(1)	Or	
				1232 is more than $1078(MeV/c^2)$	
	•	becomes (extra) E_k (between decay products)	(1)		
		· · · · · · · · · · · · · · · · · · ·			

(Total for Question 15 = 14 marks)


Question Number	Acceptable answers			Addition	al guidance		Mark
*16(a)	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the		IC points	IC mark	Max linkage mark available	Max final mark	
	answer is structured and shows lines of reasoning.		6	4	2	6	
	The following table shows how the marks should be awarded		5	3	2	5	
	for indicative content.		4	3	1	4	
			3	2	1	3	
			2	2	0	2	
			1	1	0	1	
	Indicative content:		0	0	0	0	
	Current direction is D to C in coil Or Current direction is B to A	(1)	Arrows could	be added to the	ne diagram		6
	There is a force due to current (carrying conductor) within a magnetic field	(1)	Accept F=BII				
	The force is vertically down on side DC Or The force is vertically up on side BA	(1)	allow ecf if cu opposite direc		n is defined/ind	dicated in the	
	Moment of force (around axis) produces rotation (in an anticlockwise direction)	(1)					
	as coil moves through half a turn split ring ensures the current switches direction (for a particular side)	(1)					
	This results in the coil continuing to rotate (in the same direction)	(1)					

16(b)	• Use of $P = W/t$	(1)	Example of calculation Work done by motor = $390 \times 10^3 \text{ W} \times 4.0 \text{ s} = 1.56 \times 10^6 \text{ J}$	3
	• Use of $E_k = \frac{1}{2} mv^2$ Or use of SUVAT, $F = ma$ and $W = Fs$	(1)	$E_k = \frac{1}{2} 1950 \text{ kg} \times 28^2 \text{ (m s}^{-1})^2 = 764400 \text{ J}$	
	• Work done = $8.0 \times 10^5 \mathrm{J}$	(1)	Work done by resistive forces = $1.56 \times 10^6 \text{J} - 764400 = 795600 \text{J}$	
			Second example of MP2 $a = \frac{28 \text{ m s}^{-1} - 0}{4.0 \text{ s}} = 7.0 \text{ m s}^{-2}$ Resultant force = 1950 kg×7.0m s ⁻² =13650 N $s = \frac{0 + 28 \text{ m s}^{-1}}{2} \times 4.0 \text{ s} = 56 \text{ m}$ Work to increase velocity = 13650 N × 56 m $= 764400 \text{ J}$ Work done by resistive forces = 1.56 ×10 ⁶ J –764400 = 795600 J	
16(c)	An explanation that makes reference to the following points: Energy Argument: • More energy transferred in the battery (rather than the motor)	(1)	Accept reference to heating effect in the battery	3
	• The battery/car will be less efficient	(1)		
	Therefore the battery will need charging more often Or journey will be shorter	(1)		
	Force/Power Argument:			
	• Increased internal resistance reduces terminal p.d.	(1)		
	• reduces the current (in the circuit)	(1)		
	So acceleration of car is reduced O r less power O r battery will take longer to charge	(1)	(Total for Overtion 16 – 13	

(Total for Question 16 = 12 marks)

Question Number	Acceptable answers		Additional guidance	Mark
17(a)	 Uses correct components of velocity Uses v = d/t in the horizontal plane Or Uses any equation of motion in the horizontal plane Uses s = ut + ½ at² the ut term has the opposite sign to the term at² s = 2.1 m so fielder can catch the ball because it is less than 3 m (allow rounding error in final answer) 	(1) (1)	Example of calculation Initial vertical component velocity = 23.8 sin50 = 18.23 m s ⁻¹ Horizontal component velocity = 23.8 cos50 = 15.30 m s ⁻¹ $t = 55.0 \text{ m} / 15.30 \text{ m s}^{-1} = 3.595 \text{ s}$ $s = 18.23 \text{ m s}^{-1} \times 3.595 \text{ s} - \frac{9.81 \text{ m s}^{-2} \times 3.595^2 \text{ s}^2}{2}$ $s = 65.5 \text{ m} - 63.4 \text{ m} = 2.1 \text{ m}$ Or starts the same with v_{H} and v_{V} $3.0 \text{ m} = 18.23 \text{ m s}^{-1} \times t - \frac{9.81 \text{ m s}^{-2} \times t^2}{2}$ $t = 3.54 \text{ s}$ $s = 15.30 \text{ m s}^{-1} \times 3.54 \text{ s} = 54.2 \text{ m}$ So at $s = 55 \text{ m}$ the ball will be below 3 m and can be caught	5
17(b)(i)	• $p = 3.33 \text{ (Ns)}$	(1)	Example of calculation $p = 0.140 \text{ kg} \times 23.8 \text{ m s}^{-1}$ $p = 3.33 \text{ kg m s}^{-1}$	1
17(b)(ii)	 Draws labelled vector line with a ruler representing pball after at approximately the correct angle (50°) length of line scaled correctly Or recognises the scale is 1 cm = 1 Ns either p ball after line or p bat after line should start at the start of the p ball before line. 	(1) (1)	Accept a label such as "ball after" ie length of $p_{\text{ball after}}$ should be about 3(.3) cm This can only be given if there is a correct arrow and either label	5

• Momentum = $8.3 \text{ (N s)} \mp 0.3 \text{ and angle} = 34^{\circ} \mp 3^{\circ}$	
Plat de H	

(Total for Question 17 = 11 marks)

Question Number	Acceptable answers		Additional guidance	Mark
18(a)(i)	• Vrms = 3.5 V	(1)	Example of calculation $V_{\text{rms}} = \frac{5}{\sqrt{2}} = 3.54 \text{ V}$	1
18(a)(ii)	 An explanation that makes reference to the following points: "5" is the peak value (of pd) Use of T = 1/f Or ω = 2π/T Or ω = 2πf 	(1) (1)	Accept max for peak Alternative MP2: recognises that one period/cycle of the	3
	• Uses $\omega = 100\pi$ to show that the time period should be 0.02 s Or Uses $f = 50$ to show that $\sin 2\pi ft$ is $\sin 100\pi t$ Or Uses $T = 0.02$ to show that $100\pi 0.02 = 2\pi$	(1)	sine wave is an angle of 2π	
18(b)(i)	 Q = CV Or E10 = C10 * C where C = 0.001 (F) MP2 dependent on MP1 	(1) (1)		2
18(b)(ii)	• $I = \Delta Q / \Delta t$ Or G11 = F11 / B11	(1)		1
18(b)(iii)	• Use of $W = \frac{1}{2}CV^2$ Or $W = \frac{1}{2}QV$ Or $W = \frac{1}{2}\frac{Q^2}{C}$ • $W = 0.0125$ J	(1) (1)	Example of calculation $W = \frac{1}{2}0.001 \text{ F} \times 5^2 \text{ V}^2 = 0.0125 \text{ J}$ $W = \frac{1}{2}0.005\text{C} \times 5\text{V} = 0.0125 \text{ J}$	2
18(c)	 States P = IV any two corresponding values of I and V used to calculate a value of P 	(1) (1)	Graph could be marked with values/lines/power curve Alternative MP2: recognise the symmetry of either quarter or half cycles of the graphs	4
	 observation that at different times P is negative or positive Overall power dissipated by capacitor is zero 	(1) (1)	(Total for Question 18 = 13	

(Total for Question 18 = 13 marks)