AQAFE

A-LEVEL
COMPUTER SCIENCE
7517/1

Paper 1

Mark scheme
June 2019

196A75171/MS

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
guestions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’'s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download
from www.aqga.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

2

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’'s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

A-level Computer Science
Paper 1 (7517/1) — applicable to all programming languages A, B, C, D and E

June 2019

The following annotation is used in the mark scheme:

- means a single mark

Il - means an alternative response

/ - means an alternative word or sub-phrase
A - means an acceptable creditworthy answer
R - means reject answer as not creditworthy

NE - means not enough

I - means ignore

DPT - means "Don't penalise twice". In some guestions a specific error made by a candidate,
if repeated, could result in the loss of more than one mark. The DPT label indicates that
this mistake should only result in a candidate losing one mark, on the first occasion that
the error is made. Provided that the answer remains understandable, subsequent
marks should be awarded as if the error was not being repeated.

Page 3 contains ‘Level of Response marking instructions’.
Pages 6 to 19 contain the generic mark scheme.

Pages 20 to 52 contain the ‘Program Source Code’ specific to the programming languages for
guestions 05.1, 10.1, 11.1, 12.1 and 13.1

pages 20 to 24 — VB.NET
pages 2510 28 - PYTHON 3
pages 29 to 32 - PYTHON 2
pages 33 to 37 — PASCAL
pages 38 to 44 — C#

pages 45 to 52 — JAVA

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Examiners are required to assign each of the candidate’s responses to the most appropriate
level according to its overall quality, and then allocate a single mark within the level. When
deciding upon a mark in a level examiners should bear in mind the relative weightings of the
assessment objectives

eg
In question 5.1, the marks available for the AO3 elements are as follows:

AO3 (design) — 4 marks
AO3 (programming) — 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can
receive will be restricted accordingly.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks

01 1 | All marks AO2 (analyse) 4

Have a flag variable that is set to True if a swap is made and reset to False at the
start of each pass / the outer loop // Have a flag variable that is set to True at the
start of each pass to indicate that the list is in order and set to False if a swap is
made;

change the outer loop so that it would stop repeating if no swaps have been made;

After the inner loop; subtract 1 from N; // alter inner loop (for) upper limit;
by subtracting Countl from N;

01 2 | All marks AO1 (understanding) 2

Sorting a list is (always) a tractable problem // sorting a list is always polynomial
time (or better);

A problem does not change from being tractable to intractable / polynomial to
exponential as the problem size grows (an intractable problem is one that is not
solvable in a reasonable amount of time as the size of the problem grows);

01 3 | All marks AO1 (understanding) 2
Use of heuiristic;

An algorithm that makes a guess/estimate based on experience;
N.E. algorithm that uses previous knowledge/experience

That provide a close-to-optimal solution/approximation // that only works in some
cases; A. non-optimal

Relax some of the constraints on the solution; A. solve simpler version of problem
A. Reduce the size of the search space

Max 2 marks

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks
02 1 | All marks AO2 (apply) 5
Tape Current
state
- 0 # 1 0> 1 0 0 Soc S3
S 0 # 1* 0 1 0 0 .- S4
S 0 #* 1 0 1 0 0 .- S4
S 0 # 1* 0 1 0 0 .- SO
S 0 # # 0* 1 0 0 .- S1
S 0 # # 0 1* 0 0 .- S2
S 0 # # 0 1 o* 0 .- S2
S 0 # # 0 1* 1 0 .- S3
S 0 # # 0* 1 1 0 .- S3
S 0 # #* 0 1 1 0 .- S4
S 0 # # o* 1 1 0 .- SO
S 0 # #* 0 1 1 0 .- S5
S 0 #* 1 0 1 1 0 .- S5
-.. | O* 1 1 0 1 1 0 .- S5
S 0 1* 1 0 1 1 0 .- S6
Mark as follows:
1 mark: first row of tape is correct
1 mark: current state and read/write head position correct for first row of tape
1 mark: second and third rows of tape and current state are correct
1 mark: last row of tape is correct
1 mark: all other rows of current state are correct and read/write head in correct
position for row two onwards
A. alternative, unambiguous, ways of representing read/write head position
I. inclusion of shaded rows/columns

02 2 | Mark is for AO2 (analyse) 1
Make a copy of a string of 1s;

A. double the number of 1s on the tape

02 3 | Mark is for AO2 (analyse) 1
Moves the read/write head to the start of the (original) string of 1s // moves the
read/write head back to where it started from;

02 4 | All marks AO1 (knowledge) 2
A Turing machine that can execute/simulate the behaviour of any other Turing
machine // can compute any computable sequence;

Faithfully executes operations on the data precisely as the simulated TM does;
(Note: must have idea of same process)

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Description of/Instructions for TM (and the TM's input) are stored on the
(Universal Turing machine's) tape // The UTM acts as an interpreter; A. take
any other TM and data as input

Alternative definition:

A UTM, U, is an interpreter that reads the description <M> of any arbitrary
Turing machine M;

and faithfully executes operations on data D precisely as M does.;

The description <M> is written at the beginning of the tape, followed by D.;

Max 2 marks

Question Marks
03 1 | Markis for AO2 (analyse) 1

I | E

C|lA

G|D
03 2 | Mark is for AO1 (knowledge) 1

Removing (unnecessary) details;

03 3 | Mark is for AO1 (knowledge) 1

Grouping by common characteristics // a hierarchical / ‘kind-of’ relationship;

03 4 | Mark is for AO2 (analyse) 1

(If there is a relationship between two cells is still represented but) if the
relationship is because two cells are in the same row/column/two-by-two block is
no longer represented // the nature of the link between the two cells is not
represented; A. the location of a cell is not represented

03 5 | All marks for AO1 (understanding) 2
Adjacency matrix appropriate when there are many edges between vertices //
when graph/matrix is not sparse; when edges frequently changed; when
presence/absence of specific edges needs to be tested frequently;

Max 2 marks

A Alternative words which describe edge, eg connection, line

03 6 | Mark is for AO1 (understanding) 1

Directed (graph) // digraph;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks

04 1 | Mark for AO1 (knowledge) 1
Zero or more (of the preceding element/character/value);
A. any number of the preceding element/character/value

04 2 | Mark for AO1 (knowledge) 1
Zero or one (of the preceding element/character/value) // (the preceding
element/character/value is) optional;

04 3 | All marks AO2 (apply) 3

String | Belongs to language (Y/N)?
1

11
01
0111
0101
111
0011

21212 [K¥K|Z2|<

Mark as follows:

1 mark: four rows correct
2 marks: five rows correct
3 marks: all seven rows correct

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks

05 1 | 4 marks for AO3 (design) and 8 marks for AO3 (programming) 12

Mark Scheme

Level Description Mark
Range
4 A line of reasoning has been followed to arrive at a 10-12

logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

3 There is evidence that a line of reasoning has been 7-9
followed to produce a logically structured program. The
program displays relevant prompts, inputs the two words
and includes one iterative structure and two selection
structures. An attempt has been made to check that all
the characters in the first word are in the second word,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

2 A program has been written and some appropriate, 4-6
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

1 A program has been written and a few appropriate 1-3
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. Itis
unlikely that any of the key design elements of the task
have been recognised.

Guidance
Evidence of AO3 design — 4 points:
Evidence of design to look for in responses:
1. Identifying that a selection structure is needed after all letter counts have been
compared to output a message saying it can be made from the letters in the

2.4 word or that it can’t
2. Identifying that a loop is needed that repeats a number of times based on the

10

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

length of the first word // identifying that a loop is needed that repeats 26 times
/I 'identifying that a loop is needed that repeats a number of times determined
by the number of unique characters in the first word

3. Identifying that the number of times a letter occurs in the first string needs to
be less than or equal to the number of times it occurs in the second string

4. Boolean (or equivalent) variable used to indicate if the first word can be
formed from the letters in the second word // array of suitable size to store the
count of each letter

Note that AO3 (design) points are for selecting appropriate techniques to use to solve
the problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming — 8 points:
Evidence of programming to look for in response:

5. (Suitable prompts asking user to enter the two words followed by) user inputs
being assigned to appropriate variables (R. if inside or after iterative
structure), two variables with appropriate data types created to store the two
words entered by the user

6. lterative structure to look at each letter in first word has correct syntax and

start/end conditions // iterative structure to look at each letter in the alphabet

has correct syntax and start/end conditions

Correctly counts the number of times that a letter occurs in one of the words

Selection structure that compares the count of a letter in the first word with the

count of that letter in the second word A. incorrect counts A. incorrect

comparison operator

9. Correctly counts the number of times each letter in one of the two words
occurs

10. Program works correctly if the two words entered are the same

11. Program works correctly when first word contains more instances of a letter
than there are in the second word (i.e. says that it cannot be formed from the
second word)

12. Program works correctly for all word pairs consisting of just upper case letters

© ~N

Alternative mark scheme
(based on removing an instance of a letter from the 2,4 word each time it appears in
the 14 word)

1. Identifying that a selection structure is needed after all the letters that appear

in both words have been removed from the first word to output a message
saying it can be made from the letters in the second word or that it can't

3. Identifying that a letter can be removed from the second word if it appears in
the first word

7. Selection structure that checks if letter in first word appears in the second
word

8. Removes a letter from the second word if it appears in the first word.

9. Sets indicator to false if a letter does not appear in the second word

05

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 05.1, including prompts on screen capture matching

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

11

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

those in code.
Code for question 05.1 must be sensible.

Screen captures showing:
¢ the string NINE being entered followed by the string ELEPHANTINE and then
a message displayed saying that the first word can be formed from the
second.
e the string NINE being entered followed by the word ELEPHANT and then a
message displayed saying that the first work cannot be formed from the
second.

Question

Marks

06

Marks are for AO1 (understanding)

The binary file cannot be easily read by a person (so the game data is hidden more
from the user);

No need for string / data type conversion routines;

File size likely to be smaller (as not all the stored data is text);

A. Might make the program code easier to understand (as less need for string
conversion routines);

N.E. binary file cannot be read

Max 2 marks

Question

Marks

07

1

Mark is for AO2 (analyse)

The item is not in 1tems/the list/the array
I
The item does not exist;

07

Mark is for AO2 (analyse)

It searches by name if the ID parameter has a value of -1 // it searches by name if
ItemIDToGet is -1;

It searches by ID if the ID parameter is not -1 // it searches by ID if I'temIDToGet is
not-1 (A.>=0 R. >0);

Max 1 mark

07

Mark is for AO2 (analyse)

Linear // n // O(n);

07

Marks are for AO3 (evaluation)

When looking for an item by name and there are two/multiple items in 1tems with
the same name; A. more than one item by implication
and the item being sought is not the first item in 1tems with that name;

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Alternative answer

When looking for an item by ID and there ar two/multiple iterms in Iltems with the
same ID;

and the item being sought is not the first item in 1'tems with that ID;

Alternative answer
When looking for an item by name and there is an item with ID of -1 in 1tems;
and the item with ID -1 is before the item being searched for in the list;

07

One mark for AO2 (analyse) and three marks for AO1 (understanding)

Mark for AO2
Apply a hash function to the specified ID // apply a hash function to the value in
ItemlDToGet;

Marks for AO1
This will give the position in the array where that item has been stored;

If another item is in that position then use a method to check if a collision (occurred
when adding items to hash table) A. description of specific method for checking if a
collision had occurred when adding items to the table // if another item is in that
position then use a method to check related locations;

If the location is empty (and any positions used to deal with collisions are empty or
do not contain the item) then the item does not exist;

07

Mark is for AO2 (analyse)

The hash function can only be applied to the ID (not the name) // hash functions can
only be applied to one piece of data;

Would need two hash tables (one based on IDs and one based on names);
Because searches need to be done based on two different properties of an item;
A. there are not many items in the game (so the benefit of using hashing is minimal);

Max 1 mark

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

13

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks

08 |1 All marks for AO2 (analyse) 3

The intersection of B with the union of D and E
/!
The union of E with the intersection of B and D

Alternative answer

BN (DUE)
I
E U (D N B)

Mark as follows

1 mark for using the sets B, D and E R. if answer also uses set C

1 mark for the union of set E with another set

1 mark for using the intersection operation with set B and another set

Max 2 marks if any errors

A. answers using alternative set notations
I. intersection with set A

08 |2 Mark is for AO2 (analyse) 1
A and B;
08 |3 Mark is for AO2 (analyse) 1

Because there could also be items in a container object (that is in the current
location);

A. explanation that uses an example eg if player is in the cellar the black die is
getable even though it is in a container (the shelf) not the cellar.

08 |4 Mark is for AO1 (understanding) 1

A set is a subset of itself but not a proper subset of itself //
There will be at least one value in a set that is not in a proper subset of that set (that
does not have to be case for a subset);

14

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question

Marks

09

1

Mark is for AO2 (analyse)
Main;

I. case

I. spacing

R. if any additional code
R. if spelt incorrectly

09

Mark is for AO2 (analyse)
PlayGame;

I. case

I. spacing

R. if any additional code
R. if spelt incorrectly

09

Mark is for AO2 (analyse)

LoadGame;
IsNumeric (Java only);

Max 1

I. case

I. spacing

R. if any additional code
R. if spelt incorrectly

09

Mark is for AO1 (understanding)

Local variables have more limited scope;

Global variables exist throughout the entire program;

Local variables only exist in a part/block/subroutine of the program;

Local variables can only be accessed in a part/block/subroutine of the program;
Global variables can be accessed from any part of the program;

Max 1 mark

09

Mark is for AO1 (knowledge)

Modularisation of a program;
Allows reuse of subroutines;
Less chance of side-effects;

A. advantages resulting from modularisation eg easier to test each subroutine

independently

Max 1 mark

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

15

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks
10 1 | All marks for AO3 (programming) 4
1. Creates a random number;
2. Selection structure with random number used in condition;
3. Selection structure with one message in then part and one message in else part
— one of the messages must be the original message “Sorry, you don’t know
how to ***_.” and one must be the new message “Sorry, 1 don”t know
what *** means.”;
R. other messages R. if spacing incorrect I. case |. punctuation
A. answers that use two selection structures as long as they are equivalent to
using an if...then...else structure
4. Each message has probability of being displayed 50% of the time; A. any
suitable message A. answers with value between 0 and just less than 1lis
generated where 0.5 is rounded incorrectly
Max 3 if code contains errors
Max 2 if both error messages could be displayed sometimes
10 2 | Mark is for AO3 (evaluate) 1
*** SCREEN CAPTURE ****
Must match code from question 10.1, including prompts on screen capture
matching those in code.
Code for question 10.1 must be sensible.
Screen captures showing the command eat being entered (l. any text after the
eat command) followed by one of the two messages — this should be done at
least twice and there must be evidence that both messages can be displayed;

16

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks
11 1 | All marks for AO3 (programming) 7
1. Ilterative structure to loop through each item in Items;
2. Selection structure inside iterative structure with valid syntax and correct
condition for selection structure that compares player’s ID (1001) /
Inventory with location of an item;
3. One added to appropriately-named variable used to count number of
objects in inventory; R. if not inside selection structure inside iterative
structure
4. Selection structure, after attempt at iterative structure, that compares count
of items in inventory (A. incorrect count) with the number 5 (A. alternative
logic e.g. > 4); R. if incorrect logic
5. Message inside attempt at selection structure from mark point 4 saying that
player can't carry any more; A. selection structure in wrong place in code
6. If the number of items in the inventory is fewer than five then code added
does not prevent item from being added to inventory; Note for examiners:
this mark can only be awarded if mark points 1 and 4 have been awarded
7. If the number of items in the inventory is five (or more) then the item is not
added to the inventory, the item stays in its current location and the result
of getting the item is not executed; A. other values to five for number of
items in inventory based on incorrect answer for mark point 4
Max 6 marks if code contains errors
11 2 | Mark is for AO3 (evaluate) 1
*xx SCREEN CAPTURE ****
Must match code from question 11.1, including prompts on screen capture
matching those in code.
Code for question 11.1 must be sensible.
Screen capture(s) showing that the red die and torch are picked up by the player
but not the book;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

17

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks
12 1 | All marks for AO3 (programming) 12

1. Creating a new subroutine called Dropltem; R. other names for
subroutine I. case

2. Adding new option to the selection structure in PlayGame for the drop
command;

3. Callto Dropltem inside the option added for mark point 2; R. if name
does not match name of created subroutine R. if parameter list for
subroutine call does not match parameter list for new subroutine

4. Parameter list for the new subroutine and contains 1tems, the item to drop
and the current location of the player; |. additional parameters that are not
needed A. alternatives to these parameters as long as evidence of attempt
to get them to be usable is in code eg passing Characters instead of
just the location of the player as long as some code to extract the location
is included in the new subroutine
The following all relate to the Drop 1 tem subroutine:

5. Gets the index of the item to drop;

6. Selection structure that checks if the item to drop does exist and results in
appropriate error message being displayed if it doesn't;

7. Selection structure that checks if the item to drop is in the player’s inventory
and results in appropriate error message being displayed if it isn't;

8. Selection structure that checks if item to drop is fragile;

9. Ifiitem is in player’s inventory and is fragile an appropriate message is
displayed; A. incorrect conditions for mark points 7 and/or 8

10. If item is in player’s inventory and is fragile then item is removed from
I tems // if item is in player’s inventory and is fragile then the location of
the item is changed to a location that does not exist; A. incorrect conditions
for mark points 7 and/or 8

11. Location of item to drop is changed to the current location if it is in the
player’s inventory and is not fragile and an appropriate message is
displayed; A. incorrect conditions for mark points 7 and/or 8 A. no attempts
for mark points 7 and/or 8

12. Logic for mark points 6 —11 is correct, program won't display any incorrect
messages and does not try to access position -1 in 1tems if item does not
exist;

Max 11 if code contains errors
12 2 | Mark is for AO3 (evaluate) 1
*** SCREEN CAPTURE ****
Must match code from question 12.1, including prompts on screen capture
matching those in code.
Code for question 12.1 must be sensible.
Screen capture(s) showing that the player’s inventory contains just the flask and
that the contents of the room are the apple, torch and red die;

18

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Question Marks
13 1 | All marks for AO3 (programming) 8
1. Code modified to roll the player’s die three times;
2. Appropriate data structure(s) / variables to store the results of the player’'s
dice rolls;
3. Code identifies the highest/smallest of the three numbers rolled by the
player;
4. Code multiplies one of the results of the player’s dice rolls by 100, another
by 10 and adds the results of these two multiplications to the result of the
other die roll;
5. Correct calculation of the player’s score;
6. Code modified to roll the other character’s die three times;
7. Correct calculation of the other character’s score;
8. All expected messages, including messages showing the result of each die
roll, displayed under the expected circumstances
Max 7 if code contains errors or if other parts of the subroutine no longer work
correctly
13 2 | Mark is for AO3 (evaluate) 1
*xx SCREEN CAPTURE ****
Must match code from question 13.1, including prompts on screen capture
matching those in code.
Code for question 13.1 must be sensible.
Screen capture(s) showing two tests with correct scores calculated for both player
and other character and correct result displayed; A. missing results of individual
die rolls not displayed

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

19

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

VB.Net

051 Dim Wordl, Word2 As String 12
Dim CanBeMadeFromSecondWord As Boolean = True
Dim Pos As Integer
Console.Write("Enter the Ffirst word: ')
Wordl = Console.ReadlLine
Console_Write("Enter the second word: ')
Word2 = Console.ReadlLine
For Pos = O To Wordl.Length - 1
IT Wordl.Split(Word1l(Pos)).Length - 1 >
Word2.Split(Word1(Pos)).Length - 1 Then
CanBeMadeFromSecondWord = False
End IF
Next
It CanBeMadeFromSecondWord Then
Console._WriteLine('Yes™)
Else
Console _WriteLine('No')
End IF
Console.ReadLine()

Alternative answer

Dim Wordl, Word2 As String
Dim CanBeMadeFromSecondWord As Boolean = True
Dim Pos As Integer
Dim Loc As Integer
Console._Write("Enter the first word: ')
Wordl = Console.ReadLine
Console.Write("Enter the second word: ')
Word2 = Console.ReadLine
For Pos = 0 To Wordl.Length - 1
IT Word2.Contains(Word1(Pos)) Then
Loc = Word2. IndexOFf(Word1(Pos))
Word2 = Word2.Remove(Loc, 1)
Else
CanBeMadeFromSecondWord = False
End IF
Next
I ¥ CanBeMadeFromSecondWord Then
Console.WriteLine("Yes"™)
Else
Console_WriteLine("'No™)
End IF
Console.ReadLine()

Alternative answer

Dim Wordl, Word2 As String

Dim CanBeMadeFromSecondWord As Boolean = True
Dim Pos As Integer

Dim Counts(25, 1) As Integer
Console_Write("Enter the first word: ')

Wordl = Console.ReadLine

Console._Write("Enter the second word: ')
Word2 = Console.ReadLine

For Each ch In Wordl

20

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Counts(Asc(ch) - 65, 0) +=1
Next
For Each ch In Word2
Counts(Asc(ch) - 65, 1) += 1
Next
Pos = 0
While Pos <= 25
IT Counts(Pos, 0) > Counts(Pos, 1) Then
CanBeMadeFromSecondWord = False
End If
Pos +=1
End While
I CanBeMadeFromSecondWord Then
Console._WriteLine('Yes™)
Else
Console_WriteLine(''No'™)
End If
Console.ReadLine()

10

Sub PlayGame(ByVal Characters As ArrayList, ByVal ltems As
ArrayList, ByVal Places As ArrayList)

Case "quit"
Say("'You decide to give up, try again another time.")
StopGame = True
Case Else
Dim Rno As Integer = Int(Rnd(Q) * 2)
IT Rno = 1 Then
Console _WriteLine('Sorry, you don"t know how to ' &
Command & ".")
Else
Console_WriteLine("Sorry, 1 don®"t know what ' & Command
& " means.')
End If
End Select
End While
Console.ReadLine()
End Sub

Alternative answer

Case Else
IT GetRandomNumber(0, 1) = 0 Then
Console._WriteLine("'Sorry, you don*"t know how to " & Command
& ")
Else
Console.WriteLine("Sorry, 1 don"t know what " & Command & "
means.')
End If
End Select

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

21

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

11

Sub Getltem(ByVal ltems As ArrayList, ByVal ltemToGet As String,
ByVal CurrentLocation As Integer, ByRef StopGame As Boolean,
ByVal Places As ArrayList)
Dim ResultForCommand As String
Dim SubCommand As String = '
Dim SubCommandParameter As String = "'
Dim IndexOfltem, Position As Integer
Dim CanGet As Boolean = False
IndexOfltem = GetlndexOfltem(ltemToGet, -1, ltems)
IT IndexOfltem = -1 Then
Console._WriteLine(''You can"t find " & ltemToGet & ".")
Elself ltems(IndexOfltem).Location = Inventory Then
Console._WriteLine("'You have already got that!™)
Elself Not Items(IndexOfltem).Commands.contains('get'™) Then
Console._WriteLine("You can"t get " & ltemToGet & "."™)
Elself Items(IndexOfltem).Location >= MinimumlDForltem AndAlso
Items(GetIndexOfltem("', Items(IndexOfltem).Location,
Items)).Location <> CurrentLocation Then
Console._WriteLine("'You can®t find " & ltemToGet & ".™)
Elself Items(IndexOfFltem).Location < MinimumliDForlitem And
Items(IndexOfltem).Location <> CurrentLocation Then
Console_WriteLine("You can"t find " & ItemToGet & ".")
Else
CanGet = True
End If
I CanGet Then
Dim NoOFfltems As Integer = 0
For Each Thing In ltems
IT Thing.Location = Inventory Then
NoOfltems += 1
End If
Next
IT NoOFltems >= 5 Then
Console.WriteLine("'You can™"t carry anything else.™)
Else
Position =
GetPositionOfCommand(ltems(IndexOfltem) . Commands, '‘get')
ResultForCommand =
GetResultForCommand(ltems(IndexOfltem).Results, Position)
ExtractResultForCommand(SubCommand, SubCommandParameter,
ResultForCommand)
IT SubCommand = "'say" Then
Say(SubCommandParameter)
Elself SubCommand = "win'" Then
Say("'You have won the game')
StopGame = True
Exit Sub
End If
IT Items(IndexOfltem).Status.contains('gettable’™) Then
ChangelLocationOfltem(ltems, IndexOfltem, 1001)
Console_WriteLine("You have got that now.'™)
End If
End If
End If
End Sub

Alternative answer

Dim IndexOfltem, Position As Integer
Dim CanGet As Boolean = False

22

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Dim ItemsCount As Integer = 0
For Each Thing In Items
IT Thing.Location = Inventory Then
ItemsCount += 1
End If
Next
IndexOfltem = GetlndexOfltem(ltemToGet, -1, Items)
IT ItemsCount >= 5 Then
Console.WriteLine("You already have five items, you cannot
carry any more')
Elself IndexOfltem = -1 Then
Console_WriteLine("You can"t find " & ItemToGet & ".")
CanGet = False

12

Sub PlayGame(ByVal Characters As ArrayList, ByVal Items As
ArrayList, ByVal Places As ArrayList)

Instruction = Getlnstruction()
Command = ExtractCommand(lInstruction)
Select Case Command
Case "drop"
Dropltem(ltems, Instruction,
Characters(0) .CurrentLocation)
Case "'get”
Getltem(ltems, Instruction,
Characters(0) .CurrentLocation, StopGame, Places)

Case Else
Console.WriteLine('Sorry, you don®t know how to ™ &
Command & ™.™)
End Select
End While
Console.ReadLine()
End Sub

Sub Dropltem(ByVal Items As ArraylList, ByVal ItemToDrop As
String, ByVal Location As Integer)

Dim IndexOfltem As Integer

Dim CanDrop As Boolean = True

IndexOfltem = GetlndexOfltem(ltemToDrop, -1, ltems)

IT IndexOfltem = -1 OrElse ltems(IndexOfltem)._Location <> 1001

Then
Console._WriteLine("You don"t have that!')
CanDrop = False
End If
IT CanDrop Then
IT Items(IndexOfltem).status.contains(*'fragile') Then
I tems.RemoveAt(IndexOfltem)
Console_WriteLine("It brokel")
Else
ChangeLocationOFltem(ltems, IndexOfltem, Location)
Console.WriteLine(""You have dropped it.")
End If
End If
End Sub

12

13

Sub PlayDiceGame(ByVal Characters As ArrayList, Byval Items As
ArrayList, ByVal OtherCharacterName As String)

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

23

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

IT Not DiceGamePossible Then
Console_WriteLine("You can"t play a dice game.")
Else
Position =
GetPositionOfCommand(ltems(IndexOfPlayerDie).Commands, '‘use'™)
ResultForCommand =
GetResultForCommand(ltems(IndexOfPlayerDie) .Results, Position)
Dim Results(2) As Integer
For count = 0 To 2
Results(count) = RollDie(ResultForCommand(5),
ResultForCommand(7))
Console_WriteLine("You rolled a " & CStr(Results(count)) &
")
Next
Dim largest As Integer = Results(0)
Dim smallest As Integer = Results(0)
Dim middle As Integer = Results(0)
For count = 1 To 2
IT Results(count) > largest Then
middle = largest
largest = Results(count)
Elself Results(count) < smallest Then
middle = smallest
smallest = Results(count)

Else
middle = Results(count)
End If
Next
PlayerScore = largest * 100 + middle * 10 + smallest
Position =
GetPositionOfCommand(Items(IndexOfOtherCharacterDie).Commands,
"use™)
ResultForCommand =
GetResultForCommand(ltems(IndexOfOtherCharacterDie) .Results,
Position)

For count = 0 To 2
Results(count) = RollDie(ResultForCommand(5),

ResultForCommand(7))
Console._WriteLine("'They rolled a " & CStr(Results(count))
& .M
OtherCharacterScore += Results(count) * 10 N count
Next
Console._WriteLine("Your score: " & CStr(PlayerScore))
Console._WriteLine("Their score: " &

CStr(OtherCharacterScore))

IT PlayerScore > OtherCharacterScore Then
Console._WriteLine("'You win!'™)

Takel temFromOtherCharacter(ltems,
Characters(IndexOfOtherCharacter).1D)

Elself PlayerScore < OtherCharacterScore Then
Console.WriteLine("'You losel™)
TakeRandomltemFromPlayer (ltems,

Characters(IndexOfOtherCharacter).1D)

Else
Console_WriteLine("'Draw!'™)

End If

End If
End Sub

24

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Python 3

05

1

Wordl = "
Word2
CanBeMadeFromSecondWord = True
Wordl = input(“Enter the first word: ')
Word2 = input("Enter the second word: ')
for Pos in range(0, len(Wordl)):
it Wordl.count(Wordl[Pos]) > Word2.count(Wordl[Pos]):
CanBeMadeFromSecondWord = False
ifT CanBeMadeFromSecondWord:
print(*'Yes™)
else:
print(*’No™)

Alternative answer

CanBeMadeFromSecondWord = True
Wordl = input(“Enter the first word: ')
Word2 = input(Enter the second word: ')
for Pos in range(0, len(Wordl)):
if Wordl[Pos] in Word2:
Word2 = Word2.replace(Wordl1[Pos], ', 1)
else:
CanBeMadeFromSecondWord = False
if CanBeMadeFromSecondWord:
print('Yes™)
else:
print(*’No™)

Alternative answer

CanBeMadeFromSecondWord = True

Counts = [[0,0], [0,0], [0,0], [0,0], [0,0]1, [0,0], [0,0],
[O,O]’ [0,0]’ [0,0], [0’0]’ [0’0]’ [010]1 [O!O]! [O!O]! [O!O]’
[O,O]’ [0,0]’ [0,0], [0’0]’ [0’0]’ [010]1 [O!O]! [O!O]! [O!O]’

[0.0]1]
Wordl = input(Enter the first word: ')
Word2 = input("Enter the second word: ')

for ch In Wordl:
Counts[ord(ch) - 65][0] +=1

for ch In Word2:
Countsford(ch) - 65][1] += 1

Pos = 0

while Pos <= 25:
if Counts[Pos][0] > Counts[Pos][1]:

CanBeMadeFromSecondWord = False

Pos += 1

if CanBeMadeFromSecondWord:
print('Yes")

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

25

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

else:
print(*'No'™)
10 def PlayGame(Characters, ltems, Places):
elif Command == ""quit":
Say("'You decide to give up, try again another time.')
StopGame = True
else:
RNo = random.randint(0, 1)
if RNo == O:
print(*'Sorry, you don®"t know how to ' + Command + *.')
else:
print(*"Sorry, I don"t know what " + Command + ' means.')
inputQ
Alternative answer
elif Command == "quit":
Say("'You decide to give up, try again another time.")
StopGame = True
else:
if GetRandomNumber(0, 1) == O:
print(*'Sorry, you don"t know how to " + Command + ".')
else:
print(*'Sorry, I don"t know what " + Command + ' means.')
input()
11 def Getltem(ltems, ltemToGet, CurrentLocation):
SubCommand = **
SubCommandParameter = "

CanGet = False
IndexOfltem = GetIndexOfltem(ltemToGet, -1, ltems)
if IndexOfltem == -1:
print("'You can"t find " + IltemToGet + ".")
elif Items[IndexOfltem].Location == INVENTORY:
print(""You have already got that!')
elif not "get" in ltems[IndexOfltem].Commands:
print(""You can"t get " + ItemToGet + ".')
elif Items[IndexOfltem].Location >= MINIMUM_ID_FOR_ITEM and
Items[GetIndexOfltem(*"", Items[IndexOfltem].Location,
Items)].Location != CurrentLocation:
print(""You can"t find " + ItemToGet + ".'")
elif Items[IndexOfltem].Location < MINIMUM_ID_FOR_ITEM and
Items[IndexOfltem].Location !'= CurrentLocation:
print("You can"t find " + ItemToGet + ".')
else:
CanGet = True
if CanGet:
NoOfltems = O
for Thing in ltems:
if Thing.Location == INVENTORY:
NoOfltems += 1
if NoOfltems >= 5:
print(*"You can"t carry anything else.™)
else:
Position =
GetPositionOfCommand(ltems[IndexOfltem].Commands, 'get')
ResultForCommand =

26

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

GetResultForCommand(1tems[IndexOfltem].Results, Position)

SubCommand, SubCommandParameter =
ExtractResultForCommand(SubCommand, SubCommandParameter,
ResultForCommand)

ifT SubCommand == "say":
Say(SubCommandParameter)
elif SubCommand == "win":

Say("'You have won the game'™)
return True, ltems
if "gettable" in Items[IndexOfltem].Status:
Items = ChangelLocationOfltem(ltems, IndexOfltem,
INVENTORY)
print(""You have got that now.')
return False, ltems

Alternative answer
SubCommand = """
SubCommandParameter =
CanGet = False
ItemsCount = O
for Thing in ltems:

if Thing.Location == INVENTORY:

ItemsCount += 1

IndexOfltem = GetlndexOfltem(ltemToGet, -1, ltems)
if ItemsCount >= 5:

print(""You already have five items, you cannot carry any

more'™)

elif IndexOfltem == -1:

print("You can"t find " + ItemToGet + ".')

12

def PlayGame(Characters, ltems, Places):

Instruction = Getlnstruction()
Command, Instruction = ExtractCommand(Instruction)
if Command == "get":
StopGame, ltems = Getltem(ltems, Instruction,
Characters[0] -CurrentLocation)
elif Command == "drop':
Items = Dropltem(ltems, Instruction,
Characters[0] .CurrentLocation)
elif Command == "use":
StopGame, ltems = Useltem(ltems, Instruction,
Characters[0] -CurrentLocation, Places)

def Dropltem(ltems, ltemToDrop, Location):
CanDrop = True
IndexOfltem = GetlndexOfltem(ltemToDrop, -1, ltems)
it not(IndexOfltem == -1 or ltems[IndexOfltem].Location ==
1001):
print(""You don"t have that!")
CanDrop = False
if CanDrop:
if "fragile” in ltems[IndexOfltem].Status:
del (l1tems[IndexOfltem])
print('It broke!™)

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

27

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

else:
ChangelLocationOfltem(ltems, IndexOfltem, Location)
print(*"You have dropped it.")
return ltems

13

def PlayDiceGame(Characters, ltems, OtherCharacterName):

PlayerScore = 0

OtherCharacterScore = 0

DiceGamePossible, IndexOfPlayerDie, IndexOfOtherCharacter,
IndexOfOtherCharacterDie = ChecklfDiceGamePossible(ltems,
Characters, OtherCharacterName)

if not DiceGamePossible:

print(*"You can"t play a dice game.")

else:

Position =
GetPositionOfCommand(ltems[IndexOfPlayerDie].Commands, "use'™)

ResultForCommand =
GetResultForCommand(ltems[IndexOfPlayerDie] .Results, Position)

Results = [0, 0, 0]

for Count in range(3):

Results[Count] = RollDie(ResultForCommand[5],
ResultForCommand[7])
print(""You rolled a " + str(Results[Count]) + ".")

Largest = Results[0]

Smallest = Results[0]

Middle = Results[O0]

for Count in range(l1,3):

if Results[Count] > Largest:
Middle = Largest
Largest = Results[Count]
elif Results[Count] < Smallest:
Middle = Smallest
Smallest = Results[Count]
else:
Middle = Results[Count]

PlayerScore = Largest * 100 + Middle * 10 + Smallest

Position =
GetPositionOfCommand(Items[IndexOfOtherCharacterDie].Commands,
"use™)

ResultForCommand =
GetResultForCommand(1tems[IndexOfOtherCharacterDie] .-Results,
Position)

for Count in range(3):

Results[Count] = RollDie(ResultForCommand[5],
ResultForCommand[7])
print(*"They rolled a " + str(Results[Count]) + ".™)
OtherCharacterScore += Results[Count] * 10 ** Count
print(*"Your score:", PlayerScore)
print(""Their score:', OtherCharacterScore)
if PlayerScore > OtherCharacterScore:
print(*’You win!™)
Items = TakeltemFromOtherCharacter(ltems,
Characters[IndexOfOtherCharacter].1D)
elif PlayerScore < OtherCharacterScore:
print(*"You lose!™)
Items = TakeRandomltemFromPlayer(ltems,
Characters[IndexOfOtherCharacter].1D)
else:
print("'Draw!')
return ltems

28

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Python 2
05 1 Wordl = " 12
Word2 =
CanBeMadeFromSecondWord = True
Wordl = raw_input(“Enter the Ffirst word: ")
Word2 = raw_input(“Enter the second word: ')
for Pos in range(0, len(Wordl)):
if Wordl.count(Wordl[Pos]) > Word2.count(Wordl[Pos]):
CanBeMadeFromSecondWord = False
ifT CanBeMadeFromSecondWord:
print Yes"
else:
print "No"
Alternative answer
Wordl = "
Word2 = "
CanBeMadeFromSecondWord = True
Wordl = raw_input("Enter the first word: ')
Word2 = raw_input(“'Enter the second word: ')
for Pos in range(0, len(Wordl)):
if Wordl[Pos] in Word2:
Word2 = Word2.replace(Wordl1[Pos], ', 1)
else:
CanBeMadeFromSecondWord = False
if CanBeMadeFromSecondWord:
print Yes"
else:
print "No"
Alternative answer
Wordl = "
Word2 = "
CanBeMadeFromSecondWord = True
Counts = [[0’0]’ [0,0]1 [010]1 [010]1 [010]! [010]1 [O!O]!
[0’0]’ [0’0]’ [0,0], [010]1 [010]1 [010]1 [010]! [010]1 [O!O]’
[0’0]’ [0’0]’ [0,0], [010]1 [010]1 [010]1 [010]! [010]1 [O!O]’
[0,01]
Wordl = raw_input(*'Enter the Ffirst word: ')
Word2 = raw_input(*'Enter the second word: ™)
for ch in Wordl:
Counts[ord(ch) - 65][0] +=1
for ch in Word2:
Countsford(ch) - 65][1] += 1
Pos = 0
while Pos <= 25:
if Counts[Pos][0] > Counts[Pos][1]:
CanBeMadeFromSecondWord = False
Pos += 1
if CanBeMadeFromSecondWord:
print "Yes"
else:
print "No"
10 1 def PlayGame(Characters, ltems, Places): 4

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

29

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

elif Command == ""quit':
Say("'You decide to give up, try again another time.')
StopGame = True

else:
RNo = random.randint(0, 1)
if RNo == O:
print "Sorry, you don"t know how to "™ + Command + "."
else:

print "Sorry, I don"t know what " + Command + ' means."

raw_input()

Alternative answer

elif Command == ""quit":
Say("'You decide to give up, try again another time.")
StopGame = True
else:
if GetRandomNumber(0, 1) == O:
print "Sorry, you don"t know how to
else:

+ Command + *.™

print "Sorry, | don"t know what " + Command + ' means."

raw_input(Q)

11

def Getltem(ltems, ltemToGet, CurrentLocation):
SubCommand = "
SubCommandParameter = "
CanGet = False
IndexOfltem = GetIndexOfltem(ltemToGet, -1, ltems)
if IndexOfltem == -1:
print "You can"t find " + ltemToGet + "."
elif Items[IndexOfltem].Location == INVENTORY:
print "You have already got that!"
elif not "get" in ltems[IndexOfltem].Commands:
print "You can"t get " + ltemToGet + "."
elif Items[IndexOfltem].Location >= MINIMUM_ID_FOR_ITEM and
Items[GetIndexOfltem(*"", Items[IndexOfltem].Location,
Items)].Location != CurrentLocation:
print "You can"t find " + ltemToGet + "."
elif Items[IndexOfltem].Location < MINIMUM_ID_FOR_ITEM and
Items[IndexOfltem].Location !'= CurrentLocation:
print "You can"t find " + ItemToGet + "."
else:
CanGet = True
if CanGet:
NoOfltems = O
for Thing in ltems:
if Thing.Location == INVENTORY:
NoOfltems += 1
if NoOfltems >= 5:
print "You can"t carry anything else."
else:
Position =
GetPositionOfCommand(ltems[IndexOfltem].Commands, 'get')
ResultForCommand =
GetResultForCommand(1tems[IndexOfltem].Results, Position)
SubCommand, SubCommandParameter =

30

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

ExtractResultForCommand(SubCommand, SubCommandParameter,

ResultForCommand)
if SubCommand == "say":
Say(SubCommandParameter)
elif SubCommand == "win"':

Say(*'You have won the game'™)
return True, ltems
if "gettable”™ in Items[IndexOfltem].Status:
Items = ChangelLocationOfltem(ltems, IndexOfltem,
INVENTORY)
print "You have got that now."
return False, ltems

Alternative answer
SubCommand = "
SubCommandParameter =
CanGet = False
ItemsCount = O
for Thing in ltems:

if Thing.Location == INVENTORY:

ItemsCount += 1

IndexOfltem = GetlndexOfltem(ltemToGet, -1, ltems)
if ItemsCount >= 5:

print "You already have five items, you cannot carry

anymore"

elif IndexOfltem == -1:

print "You can"t find " + ItemToGet + "."

def PlayGame(Characters, ltems, Places): 12

Instruction = Getlnstruction()
Command, Instruction = ExtractCommand(Instruction)
if Command == "get":
StopGame, ltems = Getltem(ltems, Instruction,
Characters[0] -CurrentLocation)
elif Command == "'drop':
Items = Dropltem(ltems, Instruction,
Characters[0] -CurrentLocation)
elif Command == "use":
StopGame, Items = Useltem(ltems, Instruction,
Characters[0] .CurrentLocation, Places)

def Dropltem(ltems, ltemToDrop, Location):
CanDrop = True
IndexOfltem = GetlndexOfltem(ltemToDrop, -1, ltems)
if not(IndexOfltem == -1 or Items[IndexOfltem].Location ==
1001):
print "You don"t have that!"
CanDrop = False
if CanDrop:
if "fragile” in ltems[IndexOfltem].Status:
del (l1tems[IndexOfltem])
print "It brokel!™
else:
ChangeLocationOfltem(ltems, IndexOfltem, Location)

31

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

print "You have dropped it."
return ltems

13

def PlayDiceGame(Characters, ltems, OtherCharacterName):

PlayerScore = 0

OtherCharacterScore = 0

DiceGamePossible, IndexOfPlayerDie, IndexOfOtherCharacter,
IndexOfOtherCharacterDie = ChecklfDiceGamePossible(ltems,
Characters, OtherCharacterName)

if not DiceGamePossible:

print "You can"t play a dice game."

else:

Position =
GetPositionOfCommand(ltems[IndexOfPlayerDie].Commands, '"use'™)

ResultForCommand =
GetResultForCommand(ltems[IndexOfPlayerDie] .Results, Position)

Results = [0, 0, 0]

for Count in range(3):

Results[Count] = RollDie(ResultForCommand[5],
ResultForCommand[7])
print "You rolled a " + str(Results[Count]) + "."

Largest = Results[0]

Smallest = Results[0]

Middle = Results[0]

for Count in range(l1,3):

if Results[Count] > Largest:
Middle = Largest
Largest = Results[Count]
elif Results[Count] < Smallest:
Middle = Smallest
Smallest = Results[Count]
else:
Middle = Results[Count]

PlayerScore = Largest * 100 + Middle * 10 + Smallest

Position =
GetPositionOfCommand(ltems[IndexOfOtherCharacterDie].Commands,
"use™)

ResultForCommand =
GetResultForCommand(1tems[IndexOfOtherCharacterDie] .Results,
Position)

for Count in range(3):

Results[Count] = RollDie(ResultForCommand[5],
ResultForCommand[7])
print “"They rolled a " + str(Results[Count]) + "."
OtherCharacterScore += Results[Count] * 10 ** Count
print "Your score:", PlayerScore
print "Their score:", OtherCharacterScore
if PlayerScore > OtherCharacterScore:
print “You win!"
Items = TakeltemFromOtherCharacter(ltems,
Characters[IndexOfOtherCharacter].1D)
elif PlayerScore < OtherCharacterScore:
print "You lose!"
Items = TakeRandomltemFromPlayer(ltems,
Characters[IndexOfOtherCharacter]. D)
else:
print "Draw!"
return ltems

32

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Pascal

05 |1

{$mode objfpc}{$H+}

Classes, SysUtils;

wordl, word2: string;

characterCount: array["A" .. “Z"] of integer;
character: char;

canBeMade: boolean;

for character = "A" to "Z" do
characterCount[character] := 0;

write("First word: ");

readIn(wordl);

write("Second word: *);

readln(word2);

for character in word2 do
inc(characterCount[character]);

canBeMade := true;

for character in wordl do

begin
dec(characterCount[character]);
if characterCount[character] < 0 then
canBeMade := false

if canBeMade then
writeln(wordl, " can be made with the letters in ", word2)

writeln(wordl, " cannot be made with the letters in ", word2);
readln;

program Projectl; 12

10 |1

--élse if Command = "quit" then
begin
end

begin

else
end;

readln;

procedure PlayGame(Characters: TCharacterArray; ltems: TltemArray; 4
Places: TPlaceArray);

Say("You decide to give up, try again another time");
StopGame := true;

if random < 0.5 then
writeln("Sorry, you don""t know how to

, Command, ".%)

writeIn(*Sorry, 1 don’t know what *, Command, means.");

11 |1

ResultForCommand: string;

procedure Getltem(ltems: TltemArray; ltemToGet: string; 7
CurrentLocation: integer; var StopGame: boolean);

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

33

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

SubCommand: string;
SubCommandParameter: string;
IndexOfltem: integer;
Position: integer;
CanGet: Boolean;
Itemsinlnventory: integer;
Item: Tltem;
begin
SubCommand := "*;
SubCommandParameter = "*";
CanGet := false;
IndexOfltem := GetlndexOfltem(ltemToGet, -1, Items);
if IndexOfltem = -1 then
writeIn(*You can*"t find ", ltemToGet, ".%)
else iIf ltems[IndexOfltem].Location = Inventory then
writeIn("You have already got that!")
else if pos("get”, Items[IndexOfltem].Commands) = 0 then
writeIn(*You can®"t get °, ltemToGet, ".%)
else if (ltems[IndexOfltem].Location >= MinimumlDForltem) and
(1tems[GetIndexOfltem("", Items[IndexOfltem].Location,
Items)].Location <> CurrentLocation) then
writeIn("You can®""t find ", ltemToGet, ".")
else if (Items[INdexOfltem].Location < MinimumlDForltem) and
(1tems[IndexOfltem].Location <> CurrentLocation) then
writeIn("You can""t find ", ItemToGet, "."%)
else
CanGet := true;
if CanGet then
begin
Itemsinlnventory := 0;
for Item in Iltems do
if Item.Location = Inventory then
inc(ltemslnlnventory);
it Itemsinlnventory >= 5 then
writeIn("You have too many items in your inventory to carry
any more.");
else
begin
Position :=
GetPositionOfCommand(ltems[IndexOfltem].Commands, "get");
ResultForCommand :=
GetResultForCommand(ltems[IndexOfltem] .Results, Position);
ExtractResultForCommand(SubCommand, SubCommandParameter,
ResultForCommand) ;
if SubCommand = "say® then
Say(SubCommandParameter)
else if SubCommand = “win® then
begin
say("You have won the game®);
StopGame := true;
exit;
end;
if pos(“gettable”, Items[IndexOfltem].Status) <> 0 then
begin
ChangeLocationOfltem(ltems, IndexOfltem, Inventory);
writeIn(“You have got that now.”);
end;
end;
end;
end;

34

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

12

procedure PlayGame(Characters: TCharacterArray; ltems: TltemArray;
Places: TPlaceArray);

--élse if Command = "quit™ then

begin
Say("You decide to give up, try again another time®);
StopGame := true;

end

else if Command = "drop” then
Dropltem(ltems, Instruction, Characters[0].CurrentLocation)
else
begin
writeln(*Sorry, you don®"t know how to
end;
end;
readln;
end;

, Command, ".%)

procedure Dropltem(ltems: TltemArray; ltemToDrop: string;
CurrentLocation: integer);
var
ResultForCommand: string;
SubCommand: string;
SubCommandParameter: string;
IndexOfltem: integer;
Position: integer;
CanDrop: boolean;
IsFragile: boolean;
begin
SubCommand := "*;
SubCommandParameter := "*°;
CanDrop := true;
IsFragile := false;
IndexOfltem := GetlndexOfltem(ltemToDrop, -1, ltems);
if IndexOfltem = -1 then

begin
writeIn("You can®""t find ", ItemToDrop, ".%);
CanDrop := false
end
else if Items[IndexOFltem].Location <> Inventory then
begin
writeIn("You don" "t have that!");
CanDrop := false;
end
else if pos("fragile®, ltems[IndexOfltem].Status) <> 0 then
IsFragile := true;
if CanDrop then
begin
if IsFragile then
begin
Items[IndexOfltem].Location := -1;
writeIn(® It broke!*")
end
else
begin
Items[IndexOfltem].Location := CurrentLocation;
writeln("You have dropped it.");
end;
end;

end;

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

35

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

13

procedure PlayDiceGame(Characters: TCharacterArray; ltems:
TltemArray; OtherCharacterName: string);

var
PlayerScore: array[l .. 3] of integer;
PlayerScoreTotal: integer;
OtherCharacterScore: array[l .. 3] of integer;

OtherCharacterScoreTotal : integer;
IndexOfPlayerDie: integer;
IndexOfOtherCharacterDie: integer;
Position: integer;
IndexOfOtherCharacter: integer;
PlayerWins: boolean;
ResultForCommand: string;
DiceGamePossible: boolean;

i: integer;

procedure SwaplfNeeded(i, j : integer);

var
temp: integer;
begin
ifT PlayerScore[i] > PlayerScore[j] then
begin
temp := PlayerScore[i];
PlayerScore[i] := PlayerScore[j];
PlayerScore[jJ] := temp;
end;
end;
begin
for i := 1 to 3 do
begin
PlayerScore[i] := O;
OtherCharacterScore[i] := 0;
end;
PlayerWins := false;
DiceGamePossible := ChecklfDiceGamePossible(ltems,

Characters, IndexOfPlayerDie, IndexOfOtherCharacter,
IndexOfOtherCharacterDie, OtherCharacterName);
iT not DiceGamePossible then
writeIn("You can""t play a dice game.")
else
begin
Position :=
GetPositionOfCommand(ltems[IndexOfPlayerDie].Commands, “use®);
ResultForCommand :=
GetResultForCommand(ltems[IndexOfPlayerDie] -Results,
Position);
for 1 := 1 to 3 do
begin
PlayerScore[1] := RollDie(ResultForCommand[6],
ResultForCommand[8]);
writeIn("You rolled a ", inttostr(PlayerScore[i]),
R I

end;
Position :=
GetPositionOfCommand(ltems[IndexOfOtherCharacterdie].Commands,

36

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

"use”);

GetResultForCommand(ltems[IndexOfOtherCharacterDie].Results,
Position);

RollIDie(ResultForCommand[6], ResultForCommand[8]);

inttostr(OtherCharacterScore[1]), "-7);

PlayerScore[2] + PlayerScore[1];

+ 10 * OtherCharacterScore[2] + OtherCharacterScore[l];

Characters[IndexOfOtherCharacter].ID);

Characters|[IndexOfOtherCharacter].ID);

end;

ResultForCommand :=

for 1 :=1 to 3 do
begin
OtherCharacterScore[i1] :=

writeIn("They rolled a -,

end;
SwaplfNeeded(1, 2);
SwaplfNeeded(2, 3);
SwaplfNeeded(1, 2);
PlayerScoreTotal := 100 * PlayerScore[3] + 10 *

OtherCharacterScoreTotal := 100 * OtherCharacterScore[3]

if PlayerScoreTotal > OtherCharacterScoreTotal then
begin
writeIn("You win!*);
TakeltemFromOtherCharacter(ltems,

end
else it PlayerScoreTotal < OtherCharacterScoreTotal then
begin
writelIn("You lose!");
TakeRandoml temFromPlayer (ltems,

end
else
writeIn("Draw!*®);

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

37

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

C#

05

string wordl, word2;

bool CanBeMadeFromSecondWord = true;
Console_Write("Enter the first word: ");
wordl = Console.ReadLine();
Console.Write("Enter the second word: ');
word2 = Console_.ReadLine();

for (int i = 0; 1 < wordl.Length; i++)

{
if (wordl.Split(wordi[i])-Length - 1 >
Word2.Split(wordl[i])-Length - 1)

{
CanBeMadeFromSecondWord = false;
}
}
if (CanBeMadeFromSecondWord)
{
Console._WriteLine("Yes™);
}
else
{
Console._WriteLine("'No'™);
}

Console.ReadLine();

Alternative answer

string wordl, word2;

bool CanBeMadeFromSecondWord = true;

int Loc = O;

Console._Write("Enter the first word: ');
wordl = Console.ReadLine();
Console._Write("Enter the second word: ");
word2 = Console.ReadLine();

for (int i1 = 0; 1 < wordl.Length; i++)

{
it (word2.Contains(wordl[i]))
{
Loc = word2.IndexOf(wordli[i]);
word2 = word2.Remove(Loc, 1);
}
else
CanBeMadeFromSecondWord = false;
}
¥
if (CanBeMadeFromSecondWord)
{
Console._WriteLine("'Yes™);
}
else
{
Console._WriteLine("'No™);
}

Console.ReadLine();

12

38

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Alternative answer

string wordl, word2;

bool CanBeMadeFromSecondWord = true;
int[,] counts = new int[26, 2];
Console.Write("Enter the first word: ");
wordl = Console.ReadLine();
Console._Write("Enter the second word: ");
word2 = Console_.ReadLine();

foreach (var ch in wordl)

{

countsf[ch - 65, 0]++;
by
foreach (var ch in word2)
{

countsf[ch - 65, 1]++;
}

int pos = 0;
while (pos <= 25)

ifT (counts[pos, 0] > counts[pos, 1])
CanBeMadeFromSecondWord = false;
3

pos++;

}
if (CanBeMadeFromSecondWord)

{

Console.WriteLine("'Yes™);
}
else
{

Console._WriteLine("'No™);
}

Console.ReadLine();

10

private static void PlayGame(List<Character> characters,
List<ltem> items, List<Place> places)

case "'playdice™:
PlayDiceGame(characters, items, instruction);
break;
case "quit':
Say("'You decide to give up, try again another
time.™);
stopGame = true;
break;
default:
Random rnd = new Random();
int rno = rnd_Next(0, 2);
if (rno == 1)

{
Console.WriteLine('Sorry, you don®t know how

to " + command + ".");

}

else

{
Console.WriteLine("'Sorry, 1 don"t know what
means.");

}

break;

+ command +

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

39

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Alternative answer

default:

if (GetRandomNumber(0, 1) == 1)
{
Console._WriteLine("Sorry, you don®"t know how to " +

command + ".'™);

}

else

{
Console._WriteLine('Sorry, I don®t know what
+ " means.");

}

break;

+ command

11

private static void Getltem(List<ltem> items, string itemToGet,
int currentLocation, ref bool stopGame)

{

string resultForCommand, subCommand = ,
subCommandParameter = ""';

int indexOfltem, position;

bool canGet = false;

indexOfltem = GetlndexOfltem(itemToGet, -1, items);

if (indexOfltem == -1)
{
Console_WriteLine("You can"t find " + itemToGet + "_");
else if (items[indexOfltem].Location == Inventory)
{

Console.WriteLine("'You have already got that!™);

else if (litems[indexOfltem].Commands.Contains(''get'™))
{

Console._WriteLine("'You can™"t get " + iItemToGet + ".");

else if (items[indexOfltem].Location >= MinimumIDForltem &&
items[GetIndexOFfltem(""", items[indexOfltem].Location,
items)].Location != currentLocation)

Console._WriteLine("You can"t find " + itemToGet + "_');

}

else if (items[indexOfltem].Location < MinimumlDForltem &&
items[indexOfltem].Location != currentLocation)

{
}

else

{

Console._WriteLine("You can"t find " + itemToGet + "_");

canGet = true;

if (canGet)

{
int noOfltems = 0;

foreach (var thing in items)

{

40

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

if (thing.Location == Inventory)
noOfltems++;
}
}
it (noOfltems >= 5)
{
Console.WriteLine("You can"t carry anything else.™);
}
else
{
position =
GetPositionOfCommand(items[indexOfltem].Commands, '‘get™);
resultForCommand =

GetResultForCommand(items[indexOfltem].Results, position);
ExtractResultForCommand(ref subCommand, ref
subCommandParameter, resultForCommand);
if (subCommand == "say')

{

Say(subCommandParameter);
else if (subCommand == "'win"

Say("'You have won the game™);
stopGame = true;

return;
}
if (items[indexOfltem].Status.Contains('gettable'™))
{
ChangeLocationOfltem(items, indexOfltem,
Inventory);
Console._WriteLine("You have got that now.'™);
}
}
}
}

Alternative answer

int indexOfltem, position;
bool canGet = false;

int itemsCount = O;

foreach (var thing in items)

if (thing.Location == Inventory)

itemsCount++;

}

indexOfltem = GetlndexOfltem(itemToGet, -1, items);
if (itemsCount >= 5)

{
Console.WriteLine("'You already have five items, you cannot
carry any more');

}
else if (indexOfltem == -1)

12

private static void PlayGame(List<Character> characters,
List<ltem> items, List<Place> places)

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

41

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

instruction = Getlnstruction();
command = ExtractCommand(ref instruction);
switch (command)
{
case "drop':
Dropltem(items, instruction,
characters[0] .CurrentLocation);
break;
case ''‘get'':
Getltem(items, instruction,
characters[0] -CurrentLocation, ref stopGame);

break;
default:
Console._WriteLine("Sorry, you don®"t know how to
" + command + ".');
break;

}
}
Console.ReadLine();

}

private static void Dropltem(List<ltem> items, string
itemToDrop, int location)

{
int indexOfltem;
bool canDrop = true;
indexOfltem = GetlndexOfltem(itemToDrop, -1, items);
if (indexOfltem == -1 || items[indexOfltem].Location !=
1001)
{
Console_WriteLine("You don"t have that!™);
canDrop = false;
}
if (canDrop)
{
if (items[indexOfltem].Status.Contains("'fragile'™))
{
items.RemoveAt(indexOfltem);
Console.WriteLine('It broke!™);
}
else
{
ChangeLocationOfltem(items, indexOfltem, location);
Console.WriteLine("'You have dropped it."™);
}
}
}

Note: Incorrect if ‘|’ used instead of ‘|| for the OR operator in the first if
statement.

13

private static void PlayDiceGame(List<Character> characters,
List<ltem> items, string otherCharacterName)

42

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

if (IDiceGamePossible)

Console.WriteLine("You can"t play a dice game.');

}

else

{ L
position =
GetPositionOfCommand(items[indexOfPlayerDie].Commands, "use'™);
ResultForCommand =
GetResultForCommand(items[indexOfPlayerDie] .Results, position);
int[] results = new int[3];
for (int i = 0; 1 < results.Length; i++)

{
results[i] = RollDie(ResultForCommand[5].ToString(),
ResultForCommand[7] -ToString());
Console _WriteLine("'You rolled a " + results[i] +

")

int largest = results[0];
int smallest = results|[0];

int middle = results|[0];
for (int 1 = 1; 1 < results.Length; i++)
{

if (results[i] > largest)
{

middle = largest;
largest = results[i];

else if (results[i] < smallest)

middle = smallest;
smallest = results[i];

}
else
middle = results[i];
}
+
playerScore = largest * 100 + middle * 10 + smallest;
position =

GetPositionOfCommand(items[indexOfOtherCharacterDie].Commands,
"use™);

ResultForCommand =
GetResultForCommand(items[indexOfOtherCharacterDie] .Results,
position);

for (int i = 0; 1 < results.Length; i++)

results[i] = RollDie(ResultForCommand[5].ToString(),
ResultForCommand[7]-ToString());

Console.WriteLine("'They rolled a
")
otherCharacterScore += results[i] *
(int)Math._.Pow(10, 1);
}

+ results[i] +

Console_WriteLine("Your score: + playerScore);

Console_WriteLine("Their score: " +
otherCharacterScore);

if (playerScore > otherCharacterScore)

Console_WriteLine("'You win!');

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

43

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Takel temFromOtherCharacter(items,
characters[indexOfOtherCharacter].1D);

else if (playerScore < otherCharacterScore)

{

Console._WriteLine('You lose!™);
TakeRandomltemFromPlayer (items,
characters[indexOfOtherCharacter].1D);

}

else

Console _WriteLine("'Draw!™);

44

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

Java

05

String wordl, word2;

boolean canBeMadeFromSecondWord = true;

int pos;

Console.write(""Enter the first word: ');

wordl = Console.readLine();

Console.write(""Enter the second word: '™);

word2 = Console.readLine();

for (pos = 0; pos < wordl.length(); pos++) {

if (wordl.split(wordl.substring(pos, pos + 1)).length >

word2.split(wordl.substring(pos, pos + 1)).length) {
canBeMadeFromSecondWord = false;

}

}
if (canBeMadeFromSecondWord) {
Console.writeLine('Yes™);

} else {

Console.writeLine("'"No");
}

Console.readLine();

Alternative answer

String wordl, word2;
boolean canBeMadeFromSecondWord = true;
int pos, loc;
Console.write("Enter the first word: ™);
wordl = Console.readLine();
Console.write(""Enter the second word: '™);
word2 = Console.readLine();
for (pos = 0; pos < wordl.length(); pos++) {
if (word2._contains(wordl.substring(pos, pos + 1))) {
loc = word2.indexOf(wordl.substring(pos, pos + 1));

word2 = word2.replaceFirst(wordl.substring(pos, pos + 1), ");

} else {
canBeMadeFromSecondWord = false;

}

}
if (canBeMadeFromSecondWord) {
Console.writeLine("'Yes™);

} else {

Console.writeLine("'No™);
}

Console.readLine();

Alternative answer

String wordl, word2;

boolean canBeMadeFromSecondWord = true;
int pos;

int[][] counts = new Int[26][2];
Console.write("'Enter the first word: ™);
wordl = Console.readLine();
Console.write("Enter the second word: ");

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

45

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

word2 = Console.readLine();

for (pos = 0; pos < wordl.length(); pos++) {
counts[(int)wordl.charAt(pos) - 65][0]++;

by

for (pos = 0; pos < word2_length(); pos++) {
counts[(int)word2._charAt(pos) - 65][1]++;
}

pos = 0O;
while (pos <= 25) {
if (counts[pos][0] > counts[pos][1]) {
canBeMadeFromSecondWord = false;
s

poSs++;

if (canBeMadeFromSecondWord) {
Console.writeLine(''Yes™);

} else {

Console.writeLine("'No");
}

Console.readLine();

10

void playGame(ArrayList<Character> characters, ArrayList<ltem>
items, ArrayList<Place> places) {

case ''quit':
say("'You decide to give up, try again another time.');
stopGame = true;
break;
default:
Random rnd = new Random();
int rNo = (int)(rnd.nextDouble()*2);
if (rNo == 0) {
Console.writeLine(Sorry, you don*"t know how to " +
command + *".");
} else {

Console.writeLine("Sorry, 1 don"t know what ' + command +

' means.");

}
¥
b
Console.readLine();

}

Alternative answer

default:
if (getRandomNumber(0, 1) == 0) {

)

Console.writeLine("'Sorry, you don"t know how to ' + command +

} else {
Console.writeLine(""Sorry, 1 don"t know what
means.');

}
+

+ command +

11

boolean getltem(ArrayList<ltem> items, String itemToGet, int

46

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

currentLocation) {
boolean stopGame = false, canGet = false;

String resultForCommand, subCommand = , SubCommandParameter =

int indexOfltem, position;
indexOfltem = getlndexOfltem(itemToGet, -1, items);
it (indexOfltem == -1) {
Console.writeLine(""You can"t find " + itemToGet + ".'");

} else if (items.get(indexOfltem).location == INVENTORY) {
Console.writeLine('You have already got that!');

} else if (litems.get(indexOfltem).commands.contains(''get')) {
Console.writeLine("'You can"t get " + itemToGet + ".');

} else if (items.get(indexOfltem).location >=
MINIMUM_ID_FOR_ITEM && items.get(getindexOfltem(™’,
items.get(indexOfltem).location, items)).location I=
currentLocation) {

Console.writeLine("You can"t find " + itemToGet + ".'");
} else if (items.get(indexOfltem).location < MINIMUM_ID_FOR_ITEM
&& items.get(indexOfltem).location = currentLocation) {
Console.writeLine("'You can®t find " + itemToGet + ".');
} else {
canCGet = true;
}

if (canGet) {
int noOfltems = O;
for (ltem thing : items) {
ifT (thing.location == INVENTORY) {
noOfltems++;
}
3
it (noOfltems >= 5) {
Console.writeLine('You can"t carry anything else.");
} else {
position =
getPositionOfCommand(items.get(indexOfltem).commands, "get');
resultForCommand =
getResultForCommand(items.get(indexOfltem).results, position);
String[] returnArray = extractResultForCommand(subCommand,
subCommandParameter, resultForCommand);
subCommand = returnArray[0];
subCommandParameter = returnArray[1];
if (subCommand.equals(*'say™)) {
say(subCommandParameter) ;
} else if (subCommand.equals('win™)) {
say("'You have won the game');
stopGame = true;
return stopGame;
}
if (items_get(indexOfltem)._status.contains(''gettable™)) {
changeLocationOfltem(items, indexOFltem, INVENTORY);
Console.writeLine("'You have got that now.');

s
3
3
return stopGame;

}

Alternative answer

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

47

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

boolean stopGame = false, canGet = false;

String resultForCommand, subCommand = , SubCommandParameter =
int indexOfltem, position, itemCount = O;
for (Item thing : items) {

if (thing.location == INVENTORY) {
itemCount++;
}
}
indexOfltem = getlndexOfltem(itemToGet, -1, items);
it (indexOfltem == -1) {
Console.writeLine("You can"t find " + itemToGet + "_.'");

} else if (items.get(indexOfltem).location == INVENTORY) {
Console.writeLine("'You have already got that!™);

} else if (litems.get(indexOfltem)._ commands.contains(*'get'™)) {
Console.writeLine(""You can"t get " + itemToGet + ".');
} else if (items.get(indexOfltem).location >= MINIMUM_ID_FOR_ITEM
&& items.get(getindexOfltem(", items.get(indexOfltem).location,
items)).location != currentLocation) {
Console.writeLine("'You can"t find " + itemToGet + ".'");
} else if (items.get(indexOfltem).location < MINIMUM_ID_FOR_ITEM
&& items.get(indexOFfltem).location != currentLocation) {
Console.writeLine("'You can®t find " + itemToGet + ".');

} else if (itemCount >=5) {

Console.writeLine(""You already have five items, you cannot carry
any more');
} else {

canGet = true;

b
it (canGet) {

position = getPositionOfCommand(items.get(indexOfltem).commands,
Ilgetll);

Alternative answer (Functional programming used to obtain the count of
items)

boolean stopGame = false, canGet = false;
String resultForCommand, subCommand = "', subCommandParameter =
int indexOfltem, position, itemCount = O;
itemCount = items.stream().filter((thing) -> (thing.location ==
INVENTORY)) .map((_item) -> 1).reduce(itemCount, Integer::sum);
indexOfltem = getlndexOfltem(itemToGet, -1, items);
it (indexOfltem == -1) {
Console.writeLine("'You can"t find " + itemToGet + ".");
} else if (items.get(indexOfltem).location == INVENTORY) {
Console.writeLine("'You have already got that!™);

} else if (litems.get(indexOfltem) . commands.contains(*'get'™)) {
Console.writeLine("'You can"t get " + itemToGet + ".');
} else if (items.get(indexOfltem).location >= MINIMUM_ID_FOR_ITEM
&& items.get(getindexOfltem(™", items.get(indexOfltem).location,
items)).location != currentLocation) {
Console.writeLine("'You can"t find " + itemToGet + ".');
} else if (items.get(indexOfltem).location < MINIMUM_ID_FOR_ITEM
&& items.get(indexOFfltem).location != currentLocation) {
Console.writeLine("'You can®t find " + itemToGet + ".");

} else if (itemCount >=5) {
Console.writeLine("You already have five items, you cannot carry
any more');

48

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

} else {

canGet = true;

b5
if (canGet) {

position = getPositionOfCommand(items.get(indexOfltem).commands,
llgetll);

12

void playGame(ArrayList<Character> characters, ArrayList<ltem>
items, ArrayList<Place> places) {
boolean stopGame = false, moved = true;
String instruction, command;
int resultOfOpenClose;
while (IstopGame) {
if (moved) {

Console.writeLine();

Console.writeLine();
Console.writeLine(places.get(characters.get(0).currentLocation -
1) .description);

displayGettableltemsInLocation(items,
characters.get(0).currentLocation);

moved = false;

¥

instruction = getlnstruction();

String[] returnStrings = extractCommand(instruction);

command = returnStrings[0];

instruction = returnStrings[1];

switch (command)

{

case "'drop":
dropltem(items, instruction,
characters.get(0).currentLocation);
break;
case ''‘get'':
getltem(items, instruction.instruction,
characters.get(0).currentLocation, stopGame);
break;
case ''use'':
useltem(items, instruction.instruction,
characters.get(0).currentLocation, stopGame, places);
break;
case ''go'':
moved = go(characters.get(0), instruction.instruction,
places.get(characters.get(0).currentLocation - 1));
break;
case ''read":
readltem(items, instruction.instruction,
characters.get(0).currentLocation);
break;
case '‘examine':
examine(items, characters, instruction.instruction,
characters.get(0).currentLocation);
break;
case "‘open'':
resultOfOpenClose = openClose(true, items, places,
instruction.instruction, characters.get(0).currentLocation);
displayOpenCloseMessage(resultOfOpenClose, true);
break;
case ''close":

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

49

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

resultOfOpenClose = openClose(false, items, places,
instruction. instruction, characters.get(0).currentLocation);
displayOpenCloseMessage(resultOfOpenClose, false);
break;
case "'move':
moveltem(items, instruction.instruction,
characters.get(0).currentLocation);
break;
case "'say'':
say(instruction.instruction);
break;
case "'playdice’:
playDiceGame(characters, items,
instruction. instruction);
break;
case ''quit':
say("'You decide to give up, try again another time.");
stopGame = true;
break;
default:
if(getRandomNumber (0, 1) == 0) {
Console.writeLine('Sorry, you don"t know how to ' +
command + ".'");
} else {
Console.writeLine('Sorry, 1 don"t know what * +
means.™);

}

command +

}
}

Console.readLine();

}

void dropltem(ArrayList<ltem> items, String itemToDrop, int
currentLocation) {
int indexOfltem;
boolean canDrop = true;
indexOfltem = getlndexOfltem(itemToDrop, -1, items);
it (indexOfltem == -1 || items.get(indexOfltem).location !=
1001) {
Console.writeLine("'You don"t have that!™);
canDrop = false;
}
if (canDrop) {
if (items.get(indexOfltem).status.contains("fragile'™)) {
items.remove(indexOfltem);
Console.writeLine(""'1t broke!™);
} else {
changeLocationOfltem(items, indexOfltem, currentLocation);
Console.writeLine("'You have dropped it.");

}
}
}

Note: Incorrect if ‘|’ used instead of ‘||’ for the OR operator in the first if
statement.

13

void playDiceGame(ArrayList<Character> characters, ArrayList<ltem>

50

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

items, String otherCharacterName) {
int playerScore = 0, otherCharacterScore = O,
indexOfOtherCharacter = 0, indexOfOtherCharacterDie = O,
indexOfPlayerDie = 0, position;
boolean diceGamePossible = false;
String resultForCommand;
int[] returnArray = checklfDiceGamePossible(items, characters,
indexOfPlayerDie, indexOfOtherCharacter, indexOfOtherCharacterDie,
otherCharacterName);
if (returnArray[0] == 1) {
diceGamePossible = true;
}
indexOfPlayerDie = returnArray[1];
indexOfOtherCharacter = returnArray[2];
indexOfOtherCharacterDie = returnArray[3];
if (ldiceGamePossible) {
Console.writeLine("'You can"t play a dice game.');
} else {
position =
getPositionOfCommand(items.get(indexOfPlayerDie).commands, "use');
resultForCommand =
getResultForCommand(items.get(indexOfPlayerDie) .results,
position);
//playerScore = rollDie(resultForCommand.substring(5, 6),
resultForCommand.substring(7, 8));
//Console._writeLine("You rolled a
int[] results = new int[3];
for (int count = 0; count < 3; count++) {
results[count] = rollDie(resultForCommand.substring(5, 6),
resultForCommand.substring(7, 8));
Console.writeLine("'You rolled a " + results[count] + ".');
}

int largest = results[0];
int smallest = results|[0];
int middle = results[0];
for (int count = 0; count < 3; count++) {
if (results[count] > largest) {
middle = largest;
largest = results[count];
} else if (results[count] < smallest) {
middle = smallest;
smallest = results|[count];

+ playerScore + ".");

} else {
middle = results[count];
}
}
playerScore = largest * 100 + middle * 10 + smallest;
position =
getPositionOfCommand(items.get(indexOfOtherCharacterDie).commands,
"'use');
resultForCommand =

getResultForCommand(items.get(indexOfOtherCharacterDie) .results,
position);
for (int count = 0; count < 3; count++) {
results[count] = rollDie(resultForCommand.substring(5, 6),
resultForCommand.substring(7, 8));
Console.writeLine("'They rolled a " + results[count] + ".");
otherCharacterScore += results[count] * Math.pow(10, count);
}
Console.writeLine("'Your score:
Console.writeLine("They rolled a

+ playerScore + ".'")
" + otherCharacterScore +

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

51

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2019

iR
if (playerScore > otherCharacterScore) {
Console.writeLine(""You win!'™);
takeltemFromOtherCharacter(items,
characters.get(indexOfOtherCharacter).id);
} else if (playerScore < otherCharacterScore) {
Console.writeLine('You lose!™);
takeRandoml temFromPlayer(items,
characters.get(indexOfOtherCharacter).id);
} else {
Console.writeLine("'Draw!');
}
¥

52

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

