

AS Level Chemistry A

H032/01 Breadth in chemistry

Tuesday 22 May 2018 – Morning

Time allowed: 1 hour 30 minutes

You must have:

 the Data Sheet for Chemistry A (sent with general stationery)

You may use:

· a scientific or graphical calculator

First name		
Last name		
Centre number	Candidate number	

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Do **not** write in the barcodes.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document consists of 24 pages.

© OCR 2018 [601/5256/4] DC (ST/CGW) 153962/6 OCR is an exempt Charity

Turn over

SECTION A

You should spend a maximum of 25 minutes on this section.

Answer **all** the questions.

Write your answer to each question in the box provided.

1	The	e electron configuration of element X is: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	
	Wh	at is the formula of a compound formed when sodium reacts with element X?	
	Α	Na X	
	В	Na X ₂	
	С	Na ₂ X	
	D	$Na_2\mathbf{X}_3$	
	You	er answer	[1]
2	Wh	at is the number of oxygen atoms in 88.0 g of CO ₂ ?	
	Α	3.01×10^{23}	
	В	1.20×10^{24}	
	С	2.41×10^{24}	
	D	4.82×10^{24}	
	You	er answer	[1]
3	A co	ompound has the composition by mass:	
		H, 5.00%; N, 35.00%; O, 60.00%.	
	Wh	ich compound has this composition?	
	Α	HNO_3	
	В	NH_4NO_3	
	С	HNO ₂	
	D	NH ₂ OH	
©	You	ar answer	[1]

4	Sodium	reacte	with	water	26	ehown	halo	١٨/
4	Sogium	reacts	WILLI	water	ลร	SHOWIL	Deic) VV.

$$2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$$

Which mass of sodium reacts with water to produce 960 cm³ of hydrogen gas at RTP?

- **A** 0.46g
- **B** 0.92g
- **C** 1.84 g
- **D** 3.68 g

Your answer		[1
-------------	--	----

- 5 Which equation does **not** represent a neutralisation reaction?
 - **A** $\operatorname{Zn} + 2\operatorname{HC} l \rightarrow \operatorname{ZnC} l_2 + \operatorname{H}_2$
 - **B** $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$
 - $\textbf{C} \qquad \text{Na}_2\text{CO}_3 + 2\text{CH}_3\text{COOH} \rightarrow 2\text{CH}_3\text{COONa} + \text{CO}_2 + \text{H}_2\text{O}$
 - $\mathbf{D} \quad \mathrm{CuO} + 2\mathrm{HNO}_3 \rightarrow \mathrm{Cu(NO}_3)_2 + \mathrm{H}_2\mathrm{O}$

Your answer		[1]
-------------	--	-----

- **6** What is the oxidation number of Fe in K₂FeO₄?
 - **A** +4
 - **B** +5
 - **C** +6
 - **D** +7

Your answer [1]

7 Which reaction shows oxidation of sulfur?

$$\mathbf{A} \quad 2 \mathrm{HBr} + \mathrm{H}_2 \mathrm{SO}_4 \rightarrow \mathrm{SO}_2 + 2 \mathrm{H}_2 \mathrm{O} + \mathrm{Br}_2$$

$$\mathbf{B} \quad \mathrm{SO_2} + \mathrm{2NaOH} \rightarrow \mathrm{Na_2SO_3} + \mathrm{H_2O}$$

$$\textbf{C} \quad \text{8HI} + \text{H}_2 \text{SO}_4 \rightarrow \text{4I}_2 + \text{H}_2 \text{S} + \text{4H}_2 \text{O}$$

$$\mathbf{D} \quad \mathsf{H_2S} + \mathsf{C}l_2 \to 2\mathsf{HC}l + \mathsf{S}$$

Your answer		[1]
-------------	--	-----

- 8 What determines the order of elements in the Periodic Table?
 - A first ionisation energy
 - B number of electrons in the outer shell
 - **C** number of protons in the nucleus
 - **D** relative atomic mass

Your answer	[1]

9 The first five successive ionisation energies of an element **Y** are shown below.

1st	2nd	3rd	4th	5th
496	4563	6913	9544	13352

What is the formula of a chloride of Y?

- A YCl
- B YCl₂
- **C Y**C*l*₃
- **D Y**C*l*₄

Your answer		[1]
-------------	--	-----

10	Wh	ich element has induced dipole-dipole interactions (London forces) in its solid lattice?						
	Α	boron						
	В	magnesium						
	С	silicon						
	D	sulfur						
	Your answer							
11	The	e equation for the react	ion of aluminiu	m sulfide, A l_2 S	₃ , with oxygen i	s shown below.		
		2Al ₂ S ₃ (s) + 9O ₂ (g) -	→ 2Al ₂ O ₃ (s) + 6	SSO ₂ (g)				
	The	e table shows standard	enthalpy chan	ges of formatio	n, Δ _f H ^o .			
		Substance	$Al_2S_3(s)$	O ₂ (g)	Al ₂ O ₃ (s)	SO ₂ (g)		
		$\Delta_{\rm f} H^{\Phi} / {\rm kJ mol^{-1}}$	-723.8	0	-1675.7	-296.8		
	Wh	at is the standard enth	alpy change of	combustion of	$Al_2S_3(s)$, in kJ \mathfrak{l}	mol ⁻¹ ?		
	Α	-3684.6						
	В	-1842.3						
	С	+1842.3						
	D	+3684.6						
	You	ır answer					[1]	

12 A student carried out an experiment to measure the enthalpy change of combustion of methanol.

The energy from the combustion of methanol was used to heat a beaker containing water.

The student's calculated enthalpy change of combustion was **more** exothermic than the value in data books.

Which error could have caused this difference?

- A Some methanol had evaporated from the wick before the final weighing.
- **B** In the calculation, the student used the molar mass of ethanol instead of methanol.
- **C** There was incomplete combustion.
- **D** The water boiled for 5 minutes before the final temperature was taken.

Your answer	[1]

13 The reversible reaction below is at equilibrium.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

Which changes in pressure and temperature would shift the equilibrium position towards the products?

	Pressure	Temperature
Α	Decrease	Decrease
В	Decrease	Increase
С	Increase	Decrease
D	Increase	Increase

14	The reversible	reaction	below is	at ed	nuilibrium
17		1 Caction	DCIOW IS	at ct	quilibriulii.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

What is the expression for $K_{\rm c}$?

- $\mathbf{A} = \frac{[N_2(g)] \ [H_2(g)]^3}{[NH_3(g)]^2}$
- $\mathbf{B} = \frac{[\mathrm{NH_3(g)}]^2}{[\mathrm{N_2(g)}] \, [\mathrm{H_2(g)}]^3}$
- $\mathbf{C} = \frac{[N_2(g)] + 3[H_2(g)]}{2[NH_3(g)]}$
- $\mathbf{D} = \frac{2[\mathsf{NH}_3(\mathsf{g})]}{[\mathsf{N}_2(\mathsf{g})] + 3[\mathsf{H}_2(\mathsf{g})]}$

Your answer [1]

15 1 mol of a compound reacts with 8 mol O_2 for complete combustion.

What is the formula of the compound?

- A C_4H_8
- B C₄H₉OH
- **C** C₅H₁₁OH
- $D C_5H_{12}$

Your answer [1]

- **16** How many structural isomers of C₆H₁₄O are tertiary alcohols?
 - **A** 1
 - **B** 2
 - **C** 3
 - **D** 4

Your answer [1]

17 The structure of naphthalene is shown below.

What is the molecular formula of naphthalene?

- **A** $C_{10}H_8$
- **B** C₁₀H₁₀
- **C** C₁₂H₁₀
- **D** C₁₂H₁₂

Your answer [1]

18 A student reacts pent-2-ene with bromine in the laboratory.

Which compound is formed?

- A 1,1-dibromopentane
- **B** 1,2-dibromopentane
- C 2,2-dibromopentane
- **D** 2,3-dibromopentane

Your answer [1]

19 The molecule below has two double bonds, labelled 1 and 2.

The arrangement around each double bond can be identified as *E* or *Z*.

Which row in the table is correct for double bond 1 and double bond 2?

	Double bond 1	Double bond 2
Α	E	Z
В	Z	E
С	E	E
D	Z	Z

Your answer		[1]
-------------	--	-----

- 20 Which alcohol is likely to have a fragment ion at m/z = 31 in its mass spectrum?
 - A CH₃CH₂CH(OH)CH₃
 - $\mathbf{B} \quad \mathsf{CH_3CH_2CH_2C}(\mathsf{OH})(\mathsf{CH_3})_2$
 - C CH₃CH(OH)CH₂CH₂CH₃
 - \mathbf{D} $(CH_3)_2CHCH_2OH$

Your answer		[1]
-------------	--	-----

10

SECTION B

Answer all the questions.

- 21 This question is about elements from the p-block of the periodic table.
 - (a) Silicon exists as a mixture of three isotopes, ²⁸Si, ²⁹Si and ³⁰Si.
 - (i) Complete the table to show the atomic structure of ³⁰Si.

	Protons	Neutrons	Electrons
³⁰ Si			

[1]

(ii) A sample of silicon is analysed by mass spectrometry.

The mass spectrum shows peaks with the relative abundances below.

- ²⁸Si 92.23%
- ²⁹Si 4.68%
- ³⁰Si 3.09%

Calculate the relative atomic mass of silicon in the sample.

Give your answer to **two** decimal places.

relative atomic mass =[2]

(b) Phosgene, ${\rm COC}\,l_2$, exists as simple molecules.

The displayed formula of a phosgene molecule is shown below.

(i) Draw a 'dot-and-cross' diagram of a phosgene molecule.

Show outer electrons only.

	(ii)	Name the shape of a phosgene molecule and explain why it has this shape.	
		Name of shape	
		Explanation	
			[3]
(c)	Why	y are silicon, carbon, oxygen and chlorine all classified as p-block elements?	
			6.3

© OCR 2018 Turn over

[1]

22	This	auestion	ic	ahout	compounds	Ωf	magnesium	and	nhosni	horus
~~	11113	question	10	about	COITIDOUTIUS	UΙ	IIIauli c siulli	anu	DITOSDI	าบานจ

(a)	A student plans to prepare magnesium phosphate using the redox reaction of magnesium
	with phosphoric acid, H ₃ PO ₄ .

$$3\text{Mg(s)} + 2\text{H}_3\text{PO}_4(\text{aq}) \rightarrow \text{Mg}_3(\text{PO}_4)_2(\text{s}) + 3\text{H}_2(\text{g})$$

(i)	In terms of the number of electrons transferred, explain whether magnesium is being oxidised or reduced.
	[1]
(ii)	The student plans to add magnesium to 50.0 cm ³ of 1.24 mol dm ⁻³ H ₃ PO ₄ .
	Calculate the mass of magnesium that the student should add to react exactly with the phosphoric acid.

Give your answer to **three** significant figures.

	mass of Mg =	g [3]
(iii)	How could the student obtain a sample of magnesium phosphate after read magnesium with phosphoric acid?	cting

	(iv)	Magnesium phosphate can also be prepared by reacting phosphoric acid with a compound of magnesium.
		Choose a suitable magnesium compound for this preparation and write the equation for the reaction.
		Formula of compound
		Equation[2]
(b)	Pho	sphine, PH_3 , is a gas formed by heating phosphorous acid, H_3PO_3 , in the absence of air.
		$4H_3PO_3(s) \rightarrow PH_3(g) + 3H_3PO_4(s)$
	(i)	$3.20 \times 10^{-2} \mathrm{mol}$ of $\mathrm{H_3PO_3}$ is completely decomposed by this reaction.
		Calculate the volume of phosphine gas formed, in $\text{cm}^3,$ at 100 kPa pressure and 200 $^{\circ}\text{C}.$
		volume of PH ₃ = cm ³ [4]
	(ii)	When exposed to air, phosphine spontaneously ignites, forming P ₄ O ₁₀ and water.
		Construct an equation for this reaction.
		[1]

- This question is about energy changes and rate of reaction.
 - (a) Magnesium reacts with aqueous silver nitrate, AgNO₃(aq), as in equation 23.1.

$$Mg(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Mg(NO_3)_2(aq)$$
 Equation 23.1

A student carries out an experiment to determine the enthalpy change of this reaction, $\Delta_r H$.

- The student adds 25.0 ${\rm cm^3~of~0.512\,mol\,dm^{-3}\,AgNO_3}$ to a polystyrene cup.
- The student measures the temperature of the solution.
- The student adds a small spatula measure of magnesium powder, stirs the mixture and records the maximum temperature.

Temperature readings

Initial temperature	= 19.5°C
Maximum temperature	= 47.5°C

(i) Calculate $\Delta_r H$, in kJ mol⁻¹, for the reaction shown in **equation 23.1**.

Give your answer to an appropriate number of significant figures.

Assume that the density and specific heat capacity, c, of the solution are the same as for water and that all the aqueous silver nitrate has reacted.

$$\Delta_{r}H = \dots kJ \, \text{mol}^{-1} \, [4]$$

to the reaction mixture in the polystyrene cup to test whether all the aqueous silver nitrate has reacted.
Explain how the results would show whether all the aqueous silver nitrate has reacted. Include an equation with state symbols in your answer.
[2]

(ii) At the end of the experiment, the student adds a few drops of aqueous sodium chloride

(b) Using the Boltzmann distribution model, explain how the rate of a reaction is affected by temperature.

You are provided with the axes below, which should be labelled.

•																																																	
																									T		I										T				I	I							
	+		+	_			L	L	\perp	-	+	\perp	+	+	\perp	\perp	╀	+	+	+	+	\perp	+	+	\perp	\perp	4	4	4	4	_	4	\perp		4	\perp	4	4	4	+	_	\perp	4				Ц		
\vdash	+		+				┝	-	+	+	+	+	+	+	+	+	╁	+	+	+	+	+	+	+	+	+	+	+	\dashv	+		+	+	_	+	+	+	+	+	+	+	+	\dashv				Н		
H	$^{+}$						H				t	t		t	+		╁	+	t	$^{+}$	+	\dagger	+		+	+	+	1	+		+	+	+		+	t	+	+	+	+	+	+	+				H		
П	†		T	Т			T	T	T	T	t	T	T	T	Ť	T	t	Ť	Ť	Ť	Ť	Ť	Ť	T	Ť	†	†	1	\dashv	T	T	7	\top		\dagger	T	T	T	T	†	T	T	\forall				П		
	I											I				I	Ι		I			I			I		I						\Box			I	I				I	\Box							
Ш	+		_				L		L		╀	\perp		1	\perp	\perp	╀	1	1	_	4	4	1		4	4	4	4	4	4		4	4		4	4	4	4	4	4	_	4	4						
\vdash	+		+	\vdash			H	\vdash	+	+	+	+	+	+	+	+	╀	+	+	+	+	+	+	+	+	+	+	+	\dashv	+	_	+	+		+	+	+	+	+	+	+	+	\dashv				Н		
H	+	+	+	+			⊢	+	+	+	+	+	+	+	+	+	╁	+	+	+	+	+	+	+	+	+	+	+	\dashv	+	+	+	+	+	+	+	+	+	+	+	+	+	\dashv	_	_	\dashv	Н		
H	t						H				t	t		t	t	t	t	+		t	t	Ť	t		t	†	1	1	+		1	\dagger	+		+	t	t	+	1	\dagger	+	\forall	+				Н		
	T		T	Т			Г	T	T	Т	T	T	T	T	T	Т	Ť	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	\exists				П		
	T										Γ	Γ		Γ	Τ	T	Ι	Ι	Τ	I	I	T	T	Ι	Τ	T	1	Ţ		I		Ţ	I		I	T	T	I	T	T	I	I	\Box						
\vdash	+	_	1	_			\vdash	_	1	1	+	\perp	+	+	\perp	\perp	╀	+	+	4	4	\perp	\perp	1	\perp	\perp	4	4	4	4		\perp	\perp		4	4	4	4	4	\perp	4	4	\dashv				Щ		
\vdash	+	+	+	\vdash			\vdash	\vdash	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	\dashv			\dashv	\vdash		
	+		+	\vdash			\vdash	\vdash	+	\vdash	+	$^{+}$	+	+	+	+	†	+	+	+	+	+	+	+	+	+	+	+	\dashv	+		+	+		+	+	†	+	+	+	+	+	\dashv				Н		
	Ť						r				T	T		t	Ť	T	t	T		T	T	T	T		T	Ť	T		1			1	1		1	T	T		T	\dagger	+	T	\neg				П		
														Ι			Ι		I		I	I	I		I		1									\perp	1				I	\Box							
	\perp						L		L		\perp	\perp		1	\perp	\perp	1	1	1	1	1	4	1	1	1	\perp	4	_	\perp	4	_	4	4		4	4	4	4	4	4	_	\perp	\perp						
	+		+	_			┞	\vdash	\perp	-	+	+	+	+	+	+	╀	+	+	+	+	+	+	+	+	+	+	4	\dashv	4	_	+	+		+	+	+	+	+	+	+	+	\dashv			_	Н		
\vdash	+	+	+	\vdash			⊢	\vdash	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_		-	Н		
	+		+				H	\vdash	+	\vdash	+	$^{+}$	+	+	+	+	†	+	+	+	+	+	+	+	+	+	+	+	\dashv	\dashv		+	+		+	+	†	+	+	+	+	+	\dashv				Н		
H	\dagger						T		T		T	T	T	T	T	T	Ť		T		1	T	1		T	\top	Ť		1	1		\top	\top		1	1	†	1	1	\top	T	T	\exists				П		
	I										I	I		I	I	I	I	I	I	I	I	I	I		I	I	I		\Box			\Box	\Box		\Box	I	I	_	1	I	I	\Box	\Box						
Н	1						L				1				1		1	1	1	1		4	1		1	1	4		_	4	4	4	4		1	1	4		4	1	4	4							
Н	+		+	\vdash			┝	\vdash	+	-	+	+	+	+	+	+	╀	+	+	+	+	+	+	+	+	+	+	+	\dashv	+		+	+		+	+	+	+	+	+	+	+	\dashv			-	\dashv		
H					 _		_	_			_			_			_				_		_				_					_		_	_		_	_	_		_	_				_	Ш	-	
					 	 																																								•••			
																																												•••		•••			
					 	 							•••																																				
					 	 •••																•••								•••						•••													 [4

17

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Turn over © OCR 2018

- **24** This question is about saturated hydrocarbons.
 - (a) Compounds A, B and C are saturated hydrocarbons.

 The structures and boiling points of A, B and C are shown below.

	Isomer	Boiling point /°C
A		36
В		28
С		9

 Use the structures to explain what is meant by the term structural isomer. Explain the trend in boiling points shown by A, B and C in the table.

		action.	ne the mechanism for this rea	Name	(i)
					(-)
C ₅ H ₁₁ C <i>l</i> that cou	ral isomers of C		nplete the table to show the		(ii)
		rine with A and B .	ned from the reaction of chlor	forme	
	В	Α			
			Number of		
			structural isomers		
ound D , which	forms a compo	ith excess chlorine	reaction of compound A wi ar mass of 175.5g mol ⁻¹ .		iii)
	te the equation f	mpound D and wri		molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for co	molar Draw	iii)
	te the equation f	mpound D and wri	ar mass of 175.5 g mol ⁻¹ . w a possible structure for conpound A . Use molecular for	molar Draw	iii)

- 25 This question is about reactions involving alcohols.
 - (a) Three reactions of an alcohol E are shown in Fig. 25.1.
 - (i) Complete Fig. 25.1 to show the structures of the organic products formed in the reactions.

Fig. 25.1

[3]

(ii) What is the systematic name of alcohol E?

[1]

(b) An alcohol can be prepared by hydrolysing the haloalkane $\rm C_2H_5CHBrCH_3$ with aqueous sodium hydroxide.

(i) Outline the mechanism for this reaction.

Show curly arrows and relevant dipoles.

[3]

(ii) The infrared (IR) spectrum for C₂H₅CHBrCH₃ is shown in **Fig. 25.2**. The C–Br bond absorption is labelled.

Fig. 25.2

END OF QUESTION PAPER

Outline how IR spectroscopy could be used to show that the bromoalkane function group has reacted and that the alcohol functional group has formed.	nal
	• • • •
	[2]
	r_1

23

ADDITIONAL ANSWER SPACE

If additiona must be cle	al space is required, you should use the following lined page(s). The q early shown in the margin(s).	uestion number(s)

24

ADDITIONAL ANSWER SPACE

If additiona must be cle	I space is required, you should use the following lined page(s). arly shown in the margin(s).	The question number(s
	and the grade of t	
	D	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.