

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			_
Forename(s)			
Candidate signature			

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Physics Paper 2F

Friday 14 June 2019 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use Question Mark 1 2 3 4 5 6 7 TOTAL

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Do not write outside the box

0 1	Magnetic force is a non-contac	t force.		
0 1.1	Which two of these are also no	on-contact forces?		[2 marks]
	Tick (✓) two boxes.			[Z marko]
	Air resistance			
	Electrostatic			
	Friction			
	Gravitational			
	Tension			
0 1.2	Figure 1 shows a bar magnet.			
		Figure 1		
		Α		
	В	N	S	D
			С	
	Which letter shows the position is strongest?	where the magnetion	c field around the ba	r magnet
	Tick (✓) one box.			[1 mark]
	A B	С	D	

0 1.3	When two magnets are brought close to each other they exert a force on each other.
	Describe how two bar magnets can be used to demonstrate a force of attraction and a force of repulsion. [2 marks]
	Force of attraction
	Force of repulsion
	Figure 2 shows some paper clips that are attracted to a permanent magnet.
	Figure 2
	S N
0 1 . 4	The paperclips become magnetised when they are close to the permanent magnet.
	What is the name of this type of magnetism?
	Tick (✓) one box.
	Forced magnetism
	Induced magnetism
	Strong magnetism
0 1.5	Label the north and south poles of the two magnetised paper clips in Figure 2 . [2 marks]

Turn over ▶

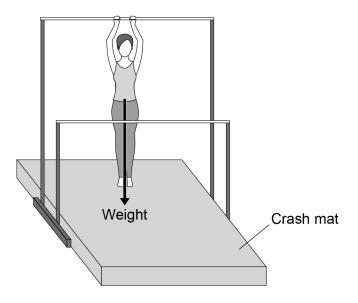

8

Figure 3 shows a gymnast on a piece of gymnastic equipment.

The equipment consists of two bars at different heights.

Figure 3

0 2 . 1	The gymnast exerts a downward force on the bar.			
	What is the size of the upward force acting on the gymnast from the bar?			
	Tick (✓) one box.			
	It is greater than the downward force.			
	It is less than the downward force.			
	It is the same size as the downward force.			

it.co.uk
找名校导师,
用小草线上辅导(
(微信小程序同名)

0 2.2	Why is the weight of the gymnast represented by an arrow? [1 material to the gymnast represented by an arrow? [1 material to the gymnast represented by an arrow?		
	Weight is a constant.		
	Weight is a scalar.		
	Weight is a unit.		
	Weight is a vector.		
0 2.3	Figure 3 shows the weight of the	ne gymnast acting from a point.	
	What name is given to this poin	t?	[1 mark]
	Tick (✓) one box.		[
	Centre of force		
	Centre of mass		
	Centre of tension		
	Centre of weight		
	Question 2 con	tinues on the next page	

0 2.4	The gymnast has a mass of 45 kg				
	gravitational field strength = 9.8 N/kg				
	Calculate the weight of the gymnast.				
	Use the equation:				
	weight = mass × gravitational field strength [2 marks]				
	Weight =N				
0 2.5	The gymnast swings from one bar to the other bar several times.				
	Describe how the gravitational potential energy store and the kinetic energy store of the gymnast change as she moves between the bars. [4 marks]				

0 2 . 6	Falling on the crash mat reduces the average deceleration of the gymnast compared with falling on a hard surface.				
	Explain why reducing the deceleration is important to the gymnast.	[2 marks]			

Turn over for the next question

Turn over ►

Figure 4 shows two children playing table tennis.

The boy hits the ball from one end of the table.

Figure 4

0 3.1	Why does the velocity of the ball change when the boy hits it?		
	Tick (✓) one box.	[1 mark	
	The direction of the ball does not change.		
	There is a resultant force on the ball.		
	The mass of the ball increases.		
	The speed of the ball is constant.		

0 3.2	The ball has an average speed of 11 m/s	
	The ball takes 0.25 s to travel the same distance as the length of the table.	
	Calculate the length of the table.	
	Use the equation:	
	distance travelled = speed × time	[2 marks]
	Length of table =	m

Question 3 continues on the next page

0 3 . 3

A table tennis ball should only be used if it bounces to at least 75% of the height it was dropped from.

A manufacturer tested a table tennis ball.

Table 1 shows the results.

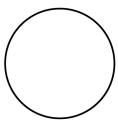
Table 1

Height ball was dropped from in cm	Height of bounce in cm	
30.0	25.1	

Determine whether the ball can be used.

Ш	Se	the	data	from	Table	1
u	30	uic	uala	11 0111	Iabic	

[3 marks]



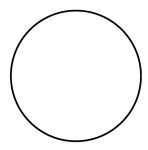

找名校导师,用小草线上辅导(微信小程序同名)

Figure 5 shows two table tennis balls.

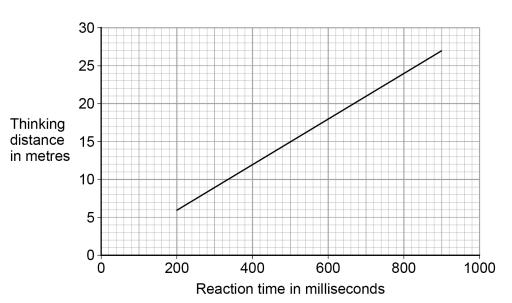
The balls are different sizes but have the same mass.

Figure 5

Both balls were dropped onto the table from the same height.

After they were dropped, the resultant force on the smaller ball was greater than the resultant force on the larger ball.

Explain why.		[2 marks]


Turn over for the next question

The thinking distance of a car depends on the reaction time of the driver.

Figure 6 shows how thinking distance varies with reaction time for a car travelling at 30 m/s

The reaction time of a driver can double if the driver is distracted.Explain the effect doubling the reaction time has on the thinking distance.

Use data from Figure 6.

[2 marks]

Give the reason why there are no values of thinking distance for reaction times less than 200 milliseconds.

[1 mark]

4

A driver measured her reaction time using an online test. She did the test five times.

Table 2 shows the results.

Table 2

Reaction time in milliseconds				
258	265	302	248	327

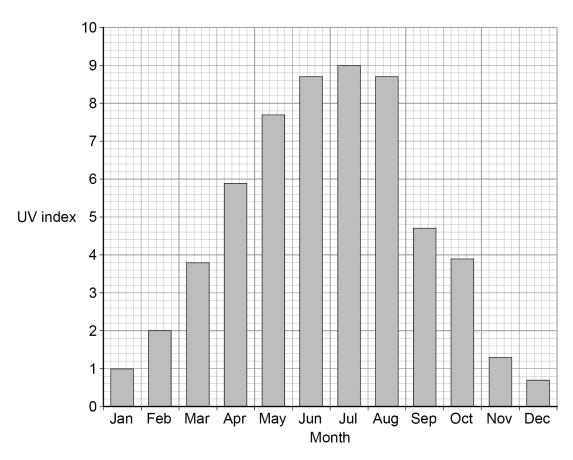
0 4.3	How does the data in Table 2 show that it was import test five times?	ant that the driver did the
	lest live times:	[1 mark]
0 4.4	Calculate the mean reaction time of the driver.	[2 marks]
	Mean reaction time =	ms
0 4.5	The driver is driving her car at 30 m/s Determine the thinking distance.	
	Use Figure 6 and your answer from Question 04.4	[1 mark]
	Thinking distance =	m

Turn over ▶

0 4.6	The driver applies the brakes and the car comes to a stop.
	The force exerted by the brakes affects the braking distance.
	Give two other factors that affect the braking distance.
	[2 marks]
	2
0 4.7	Write down the equation that links distance, force and work done. [1 mark]
0 4.8	When the driver applies the brakes, there is a constant resultant force of 6.0 kN on the car.
	The car travels a distance of 75 m before stopping.
	Calculate the work done in stopping the car.
	[3 marks]
	Work done = J

t.co.uk
找名校导师
,用小草线上辅导
异 (微信小程序同名)
[小程序同名)

0 5	The Sun emits all types of electromagnetic waves.								
	Fig	Figure 7 shows the electromagnetic spectrum.							
	Figure 7								
		Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays	
0 5.1	Cor	nplete the	e sentences.						
	Cho	ose ansv	vers from the b	OOX.				[3 mar	ks]
		fre	quency		mass	3		power	
			velocity				wavelen	gth	
	Gar	mma wav	all electromages have the group	eatest					
	Rac	no waves	have the grea	test		·			
0 5.2		lain why he Sun.	it is important t	hat the Ea	arth's atm	osphere abs	orbs gam	ıma rays emitte	d
	Буι	ne Sun.						[2 mar	ks]
0 5.3	Son	ne microv	vaves are not	absorbed	by the Ea	arth's atmosp	here.		
	Wh	y is this u	seful?					[1 ma	ırk]



Some ultraviolet (UV) radiation from the Sun passes through the atmosphere and reaches the surface of the Earth.

The amount of UV radiation that reaches the surface of the Earth can be measured on a scale called the UV index.

Figure 8 shows the average midday UV index in the UK for 1 year.

0 5.4	Why is exposure to UV radiation harmful to humans?	[1 mark

0 5.5	Compare the risk from UV radiation at different times of year in the UK.		
	Use data from Figure 8 .	[2 marks]	

Turn over for the next question

Turn over ►

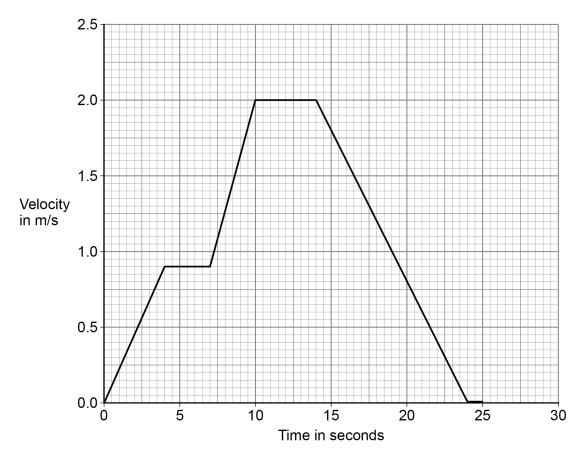

Figure 9 shows a runner using a smart watch and a mobile phone to monitor her run.

Figure 9

Figure 10 is a velocity—time graph for part of the runner's warm-up.

0 6.1	Determine the total time for which the velocity of the runner was increasing.	[2 marks]
	Time =	s
0 6.2	Determine the deceleration of the runner.	[2 marks]
	Deceleration -	
	Deceleration =	m/s ²

Question 6 continues on the next page

	The smart watch and mobile phone are connected to each other by a system called Bluetooth.	า
	Bluetooth is wireless and uses electromagnetic waves for communication.	
0 6.3	Suggest why the phone and watch being connected by a wireless system is advantage when running.	an
		[1 mark]
0 6.4	Write down the equation that links frequency, wave speed and wavelength.	[1 mark]
0 6.5	The electromagnetic waves have a frequency of 2 400 000 000 Hz	
	The speed of electromagnetic waves is 300 000 000 m/s	
	Calculate the wavelength of the electromagnetic waves.	[3 marks]
	Wavelength =	m

0 6 . 6

Table 3 shows some information about four types of Bluetooth.

Table 3

Туре	Power in milliwatts	Range in metres
1	100	100
2	2.50	10.0
3	1.00	1.00
4	0.50	0.50

Mobile phones use type 2 Bluetooth to communicate with other devices.

Suggest two reasons why.

[2 marks]

2_____

Turn over for the next question

Turn over ▶

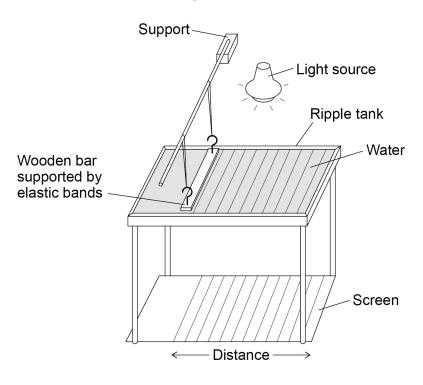


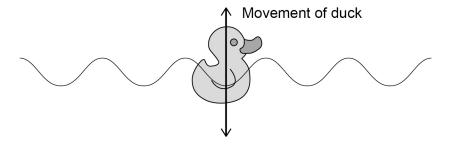
Figure 11 shows the equipment a teacher used to determine the speed of a water wave.

The equipment includes:

- · a ripple tank filled with water
- a wooden bar that creates ripples on the surface of the water
- a light source which causes a shadow of the ripples on the screen.

Figure 11

0 7 . 1	Describe how equipment in Figure 11 can be used to measure the waveleng frequency and speed of a water wave.	
	nequency and speed of a water wave.	[6 marks]



 _	

The teacher put a plastic duck in the ripple tank as shown in Figure 12.

The plastic duck moved up and down as the waves in the water passed.

Figure 12

0 7.2	How does the movement of the plastic duck in Figure 12 demonstrate that waves are transverse?	at water
		[1 mark]

Question 7 continues on the next page

Turn over ▶

找名校导师,
用小草线上辅导
(微信小程序同名)

0 7 . 3 The teacher measured the maximum height and the minimum height of the plastic duck above the screen as the wave passed.

The teacher repeated his measurements.

Table 4 shows the teacher's measurements.

Table 4

Maximum height in mm	509	513	511
Minimum height in mm	503	498	499

Calculate the mean amplitude of the water wave.	[3 marks]
Mean amplitude =	mm

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

