

Mark Scheme (Results)

Pearson Edexcel GCE In Physics (8PH0) Paper 02 Core Physics II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2019
Publications Code 8PH0_02_MS_1906
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not be prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.

- 3.4 The use of $g=10~\rm m~s^{-2}$ or 10 N kg $^{-1}$ instead of 9.81 m s $^{-2}$ or 9.81 N kg $^{-1}$ will mean that one mark will not be awarded. (but not more than once per clip). Accept 9.8 m s $^{-2}$ or 9.8 N kg $^{-1}$
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks. then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 **recall** of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.

Mark

Number		
1	C The stress beyond which the steel becomes permanently deformed.	1
	Incorrect Answers:	
	A – The stress at which the steel undergoes an increase in strain with no increase in stress.	
	B – The stress beyond which the stress and strain are no longer proportional.	
	D – The stress at which the steel breaks.	
2	$3.0\times10^8\times t$	1
	$C {2}$	
	Incorrect Answers:	
	A – incorrect factor of 2	
	B – incorrect factor of 2 and speed	
	D – incorrect speed	
3	D	1
	Incorrect Answers:	
	A – absorption of the longest wavelength	
	B – emission with the longest wavelength	
	C – absorption of the shortest wavelength	
4	$\mathbf{A} \text{ kg s}^{-2}$	1
	Incorrect Answers:	
	B – base units for N	
	C – incorrect units and not base units	
	D – correct units but not base units	
5	$\mathbf{B} \qquad \qquad v_1 < v_2 \qquad \qquad n_1 > n_2$	1
	Incorrect Answers:	
	A – incorrect equality for speed	
	C – incorrect equality for speed and refractive index	
	D – incorrect equality for refractive index	
6	$\mathbf{B} 2\pi t f$	1
	Incorrect Answers:	
	A – incorrect expression	
	C- incorrect expression	
	D – incorrect expression	
7	$\mathbf{B} f d$	1
	Incorrect Answers:	
	A – incorrect expression	
	C – incorrect expression	
	D – incorrect expression	

Find Personal Tutor from www.wisesprout.co.uk 找名

找名校导师,用小草线上辅导(微信小程序同名)

8	D Transverse waves are always plane polarised.	1
	Incorrect Answers: A – An unpolarised wave may be polarised on reflection from a surface. B – Longitudinal waves cannot be plane polarised. C – The vibrations in an unpolarised wave are in many directions.	

(Total for Multiple Choice Questions = 8 marks)

Question Number	Acceptable Answers		Additional guidance	Mark
9(a)	• Use of $\sigma = \frac{F}{A}$ and $A = \frac{\pi d^2}{4}$	(1)	$\frac{\text{Example of Calculation}}{\text{Stress} = \frac{14 \text{ N}}{\pi \times \left(\frac{2.5 \times 10^{-3} \text{ m}}{2}\right)^2} = 2.85 \times 10^6 \text{ N m}^{-2}$	
	• Use of $E = \frac{\text{stress}}{\text{strain}}$ with strain = 0.2 %	(1)	· - /	
	• $E = 1.4 \times 10^9 \text{ Pa}$	(1)	$E = \frac{2.85 \times 10^6 \text{ N m}^{-2}}{0.2/_{100}} = 1.4 \times 10^9 \text{ N m}^{-2}$	3
9(b)	• Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$ Or		Example of Calculation $\Delta E_{el} = \frac{1}{2} \times 14 \text{ N} \times (0.002 \times 2.0 \text{ m}) = 0.028 \text{ J}$	
	Use of $F = kx$ and $\Delta E_{el} = \frac{1}{2}k\Delta x^2$ • 0.028 J	(1) (1)		2
9(c)	 (The longer the wire) the larger the extension (for a given force) (So) smaller percentage uncertainty (in measurement) 	(1)		
	of extension)	(1)		2
	Total for Question 9			7

Question Number	Acceptable Answers		Additional guidance	Ma rk
10(a)	• Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ • $f = 8.0 \times 10^{-2} \text{ m}$	(1) (1)	Example of calculation $\frac{1}{f} = \frac{1}{0.09 \text{ m}} + \frac{1}{0.75 \text{ m}}$ $f = 8.00 \times 10^{-2} \text{m}$	2
(b)	Light rays pass through the image Or Light rays converge to a point where the image is formed	(1)		1
(c)	 Use of m = v/u (to calculate m) Use of m = image height object height to calculate distance between dots on screen Uses tan/sin or small angle approximation to calculate the angle 	(1) (1) (1)	Example of calculation $m = \frac{0.75 \text{ m}}{0.09 \text{ m}} = 8.3$ Image height = 8.3 x 0.005 m = 0.042 (m) $\tan(\frac{\theta}{2}) = \frac{0.042/2 \text{ m}}{4.5 \text{ m}}$ $\theta = 0.5^{\circ} = \frac{0.5\pi}{180} \text{ rads} = 0.0092 \text{radians}$	
	Answer consistent with their calculation	(1)	0.009 radians > 0.0003 radians so student can distinguish between the dots	
	• Comparison with 0.0003 radians or 0.017° and conclusion consistent with their value for θ	(1)		5

(Total for Question 10 = 8 marks)

Question Number	Ассер	table Answers		Additional guidance	Mark
i i	logical structured answer wit reasoning. Marks are awarded for indica is structured and shows lines	ent's ability to show a coherent and h linkage and fully-sustained ative content and for how the answ of reasoning. ow the marks should be awarded for Number of marks awarded for indicative points 4 3 2 1 0	er		
	 Superpose / interfere Constructive (interference) Or Constructive (interference) Or destructive (interference) Nodes are formed from (interference) Or anticonstructive (interference) 	rence) if waves in phase erference) if path difference = $n\lambda$ ence) if waves in antiphase ference) if path difference = $(n +$ om points of destructive inodes are formed from points of rence) th min amplitude and antinodes	(1) (1) (1) (1) (1)		6

11(b)	 the thicker string has a greater mass per unit length wavelength is the same in each string 	(1) (1) A shirt	on atrice has a supertar mass On law oth of atrices	
	Valid assumption stated	(1) A thick is the s	ter string has a greater mass Or length of strings ame	
	Either • Equate $v = \sqrt{\frac{T}{\mu}}$ and $v = f\lambda$ • Leading to $f \propto \frac{1}{\sqrt{\mu}}$ or $f = \frac{1}{\lambda} \sqrt{\frac{T}{\mu}}$ so f is lower	(1)		
	·	(1)		
	Or $v = \sqrt{\frac{T}{\mu}} \text{ so } v \text{ is lower (as } T \text{ constant)}$ $v = f\lambda \text{ so } f \text{ is lower}$	(1) (1)		5

(Total for Question 11 = 11 marks)

12(b)(i) • Use of $v = \frac{s}{t}$ (1) • Use of $V = \frac{4}{3}\pi r^3$ • Use of $v = \frac{4}{3}\pi r^3$ • Use of $v = \frac{vg(\rho_S - \rho_I)}{6\pi r\eta}$ • With the large sphere the speed will be greater so Stokes' law won't apply • The flow is turbulent or not laminar 12(b)(iii) Any one • Can eliminate human reaction time • Can playback to measure time more accurately • Can check that terminal velocity is reached	Question Number	Acceptable Answers		Additional guidance	Mark
(covering a large area) in a given time Or (since) at a higher temperature the liquid has a lower viscosity 12(b)(i) • Use of $v = \frac{s}{t}$ Use of $v = \frac{4}{3}\pi r^3$ • Use of $v = \frac{v_B(\rho_S - \rho_I)}{6\pi r \eta}$ • $\eta = 1.1 \text{ (Pa s)}$ 12(b)(ii) • With the large sphere the speed will be greater so Stokes' law won't apply • The flow is turbulent or not laminar 12(b)(iii) Any one • Can eliminate human reaction time • Can playback to measure time more accurately • Can check that terminal velocity is reached	12(a)	1	(1)	MP1 Must be an indication of speed.	
lower viscosity (1) 12(b)(i) • Use of $v = \frac{s}{t}$ (1) • Use of $V = \frac{4}{3}\pi r^3$ (1) • Use of $v = \frac{4}{3}\pi r^3$ (1) • Use of $v = \frac{vg(\rho_s - \rho_t)}{6\pi r \eta}$ (1) • $v = v = v = v = v = v = v = v = v = v $		(covering a large area) in a given time		, , ,	
• Use of $V = \frac{4}{3}\pi r^3$ • Use of $v = \frac{Vg(\rho_S - \rho_I)}{6\pi r \eta}$ • Use of $v = \frac{Vg(\rho_S - \rho_I)}{6\pi r \eta}$ • With the large sphere the speed will be greater so Stokes' law won't apply • The flow is turbulent or not laminar 12(b)(iii) Any one • Can eliminate human reaction time • Can playback to measure time more accurately • Can check that terminal velocity is reached			(1)		2
• Use of $v = \frac{v_B(p_S - p_D)}{6\pi r \eta}$ $\eta = 1.13 \text{ Pa s}$ • $\eta = 1.1 \text{ (Pa s)}$ (1) • With the large sphere the speed will be greater so Stokes' law won't apply (1) • The flow is turbulent or not laminar (1) • Can eliminate human reaction time • Can playback to measure time more accurately • Can check that terminal velocity is reached	12(b)(i)	• Use of $v = \frac{s}{t}$	(1)	Example of Calculation	
• Use of $v = \frac{v_B(p_S - p_D)}{6\pi r \eta}$ $\eta = 1.13 \text{ Pa s}$ • $\eta = 1.1 \text{ (Pa s)}$ (1) • With the large sphere the speed will be greater so Stokes' law won't apply (1) • The flow is turbulent or not laminar (1) • Can eliminate human reaction time • Can playback to measure time more accurately • Can check that terminal velocity is reached		• Use of $V = \frac{4}{3}\pi r^3$		$\eta = \frac{\frac{4}{3}\pi \left(\frac{7.0 \times 10^{-3} \text{ m}}{2}\right)^{3} \times 9.81 \text{ m s}^{-2} \times (7800 - 1430) \text{kg m}^{-3}}{7.0 \times 10^{-3} \text{m} \cdot 0.8 \text{ m}}$	
 η = 1.1 (Pa s) With the large sphere the speed will be greater so Stokes' law won't apply (1) The flow is turbulent or not laminar (1) Any one Can eliminate human reaction time Can playback to measure time more accurately Can check that terminal velocity is reached 		• Use of $v = \frac{Vg(\rho_s - \rho_l)}{6\pi r\eta}$	(1)	$6\pi \times \frac{7.5 \times 10^{-1} \text{ m}}{2} \times \frac{6.6 \text{ m}}{5.3 \text{ s}}$ $\eta = 1.13 \text{ Pa s}$	
Stokes' law won't apply The flow is turbulent or not laminar 12(b)(iii) Any one Can eliminate human reaction time Can playback to measure time more accurately Can check that terminal velocity is reached		• $\eta = 1.1 (\text{Pa s})$	(1)		4
12(b)(iii) Any one Can eliminate human reaction time Can playback to measure time more accurately Can check that terminal velocity is reached	12(b)(ii)		(1)		
 Can eliminate human reaction time Can playback to measure time more accurately Can check that terminal velocity is reached 		• The flow is turbulent or not laminar	(1)		2
 Can playback to measure <u>time</u> more accurately Can check that terminal velocity is reached 	12(b)(iii)	Any one			
Can check that terminal velocity is reached		 Can eliminate human reaction time 			
		* •			
		Can check that terminal velocity is reached	(1)		1

(Total for Question 12 = 9 marks)

Question Number	Acceptable Answers		Additional guidance	Mark
13(a)(i)	 A line/surface/plane along which all the points are in phase 	(1)		1
13(a)(ii)	 A wavelet drawn centred on any point on the line AC Minimum of three wavelets drawn (extending to right hand side) with radii equal (by eye) to distance between incoming wavefronts New wavefront drawn with correct shape and position along leading edge of wavelets 	(1)(1)(1)	Accept curved line, arc, circle or semicircle for wavelets	3

13b(i)	Any one			
	 Monochromatic or small range of wavelength / frequencies 			
	• Coherent			
	Little divergence of wave over a distance			
	 Produces plane wavefronts 			1
13b(ii)	 d = 0.005 mm or use of d = 1/200 mm⁻¹ Use of tan to find θ Use of nλ=dsinθ with n = 3 λ = 5.4 × 10⁻⁷ (m) Concludes that the laser light is green Or conclusion consistent with their value of λ 	(1) (1) (1) (1)	Example of Calculation $d = \frac{1}{200 \text{ mm}^{-1}} = 0.005 \text{ mm}$ $\theta = \tan^{-1} \left(\frac{1.02 \text{ m}}{3.0 \text{ m}}\right) = 18.8^{\circ}$ $\lambda = \frac{(5 \times 10^{-6} \text{m}) \times \sin 18.8^{\circ}}{3} = 5.37 \times 10^{-7} \text{m}$ so light is green	
		(1)		5

(Total for Question 13 = 10 marks)

Question		Acceptable Answers		Additional guidance	Mark
Number					
14(a)	•	Use of $p = mv$		Example of calculation	
		with m= 9.11×10^{-31} and $v = 0.02 \times 3.0 \times 10^{8}$.)	$6.63 \times 10^{-34} \mathrm{J s}$	
	•	Use of $\lambda = \frac{h}{m}$		$\lambda = \frac{6.63 \times 10^{-34} \text{ J s}}{9.11 \times 10^{-31} \text{ kg} \times 0.02 \times 3.0 \times 10^8 \text{ m s}^{-1}}$	
		p ()		$\lambda = 1.2 \times 10^{-10} \text{ m}$	
	•	$\lambda = 1.2 \times 10^{-10} \text{ m}$.)		3
14(b)	Either				
	•	The wavelength of the electron is less than the			
		wavelength of light (1	.)		
	•	(So) less diffraction (with the electron beam)	.)		
	Or •	The wavelength of the light is greater than the wavelength of the electrons (So) more diffraction (with light beam)			
	•	(So) more diffraction (with light beam)	,		2
14(c)	•	Use of magnification = $\frac{\text{image height}}{\text{object height}}$.)	Example of calculation	
	•	$3.0 \times 10^{-5} \mathrm{m} \tag{1}$.)	$mean = \frac{(0.024 + 0.025 + 0.022)m}{3} = 0.024 m$	
				Size of cell = $\frac{0.024 \text{ m}}{800}$ = 3.0 × 10 ⁻⁵ m	
					2
	I			/m + 10 0 4 44 =	

(Total for Question 14 = 7 marks)

Question Number	Acceptable Answers		Additional guidance	Mark
15(a)	 Energy absorbed in the impact is equal to the change in GPE (between start and end) ΔE = mgΔh and mg constant (so E ∝ Δh) 	(1) (1)		2
15(b)	 Equate E = mgΔh and E=½mv² Use of p=mv p = 50 kg m s⁻¹ 	(1) (1) (1)	Do not accept $v^2 = u^2 + 2as$ (because the hammer does not move in a straight line with constant acceleration) Example of calculation $mg\Delta h = \frac{1}{2}mv^2$ 31 kg × 9.81 ms ⁻² × 0.13 m = $\frac{1}{2}$ × 31 kg × v^2 $v = \sqrt{(2 \times 9.81 \text{ ms}^{-1} \times 0.13 \text{ m})} = 1.6 \text{ m s}^{-1}$ $p = 31 \text{ kg} \times 1.6 \text{ m s}^{-1} = 49.6 \text{ kg m s}^{-1}$	3
15(c)	 Steel had a lower fracture toughness due to the low temperature at low temperatures less energy is absorbed before fracture the (absorbed) energy was sufficient to cause fracture 	(1) (1) (1)		3

(Total for Question 15 = 8 marks)

Question Number	Acceptable Answers		Additional guidance	Mark
16 (a)	 Use of I = P/A Use of 2.4sin 50 or 2.4cos40 P = 400 W 	(1) (1) (1)	Example of Calculation $P = 1100 \text{ W m}^{-2} \times 2.4 \sin 50 \text{ m}^2 \times 0.2 = 404 \text{ W}$	3
16(b)	 Uses ratio of resistances to pd's Or uses I = V/Rtotal and V = IR Output pd =13.7 (V) Compares their answer to 13 (V) with conclusion consistent with their answer 	(1) (1) (1)	R_{total} =1750 Ω Example of Calculation $V_o = V_S \left(\frac{R_1}{R_1 + R_2}\right)$ $V_{LDR} = 24 \text{ V} \left(\frac{1000 \Omega}{750 \Omega + 1000 \Omega}\right) = 13.7 \text{ V}$ 13.7 > 13 so motor is on	3

16(c)	Max 6 Similarities			
	 An electron absorbs a photon 	445		
	Or electrons gain energy from a photon	(1)		
	photons need a minimum amount of energy	(1)		
	So light must be above a certain frequency	(1)		
	 increasing the light intensity increases the number 			
	of electrons (released per sec)	(1)		
	Established	(1)		
	Evidence for the particle model of light			
	Differences			
	In the photoelectric effect electrons are released	(1)		
	from the surface	(1)		
	D (1) C C C C C C C C C C C C C C C C C C	(1)		
	But electrons remain within the LDR			
	Photoelectric effect occurs in metals			
	Or LDR is a semiconductor	(1)		

(Total for Question 16 = 12 marks)