Find Personal Tutor from www.wisesprout.co.uk

@ Pearson

Edexcel

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In

Computer Science (1CP2/02)

Paper 2: Application of Computational
Thinking

Find Personal Tutor from www.wisesprout.co.uk

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body.
We provide a wide range of qualifications including academic, vocational, occupational
and specific programmes for employers. For further information visit our qualifications
websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with

us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress
in their lives through education. We believe in every kind of learning, for all kinds of people,
wherever they are in the world. We've been involved in education for over 150 years, and by
working across 70 countries, in 100 languages, we have built an international reputation for our
commitment to high standards and raising achievement through innovation in education. Find out
more about how we can help you and your students at: www.pearson.com/uk

Summer 2023

Publications Code 1CP2_02_2306_MS

All the material in this publication is copyright
© Pearson Education Ltd 2023

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

Find Personal Tutor from www.wisesprout.co.uk

General Marking Guidance

e All candidates must receive the same treatment. Examiners
must mark the first candidate in exactly the same way as they
mark the last.

e Mark schemes should be applied positively. Candidates must
be rewarded for what they have shown they can do rather than
penalised for omissions.

e Examiners should mark according to the mark scheme not
according to their perception of where the grade boundaries
may lie.

e There is no ceiling on achievement. All marks on the mark
scheme should be used appropriately.

e Allthe marks on the mark scheme are designed to be awarded.
Examiners should always award full marks if deserved, i.e. if
the answer matches the mark scheme. Examiners should also
be prepared to award zero marks if the candidate’s response is
not worthy of credit according to the mark scheme.

e Where some judgement is required, mark schemes will provide
the principles by which marks will be awarded and
exemplification may be limited.

e When examiners are in doubt regarding the application of the
mark scheme to a candidate’s response, the team leader must
be consulted.

e Crossed out work should be marked UNLESS the candidate has
replaced it with an alternative response.

Find Personal Tutor from www.wisesprout.co.uk

%ten's\‘tblg: MP ALF;EZ. Answer Additional guidance Mark
1 Award marks as shown.
1.1 37 DISCOUNT_5 / DISCOUNT_10 (1) Alternative line numbers should be
1.2 38 theTemperatures (1) awarded, in the event that students
change the code layout by
1.3 40 10/11/12 (1) inserting/deleting lines.
1.4 | 41 |27/27,29/27-30 (1) Award first response only. Do not
1.5 42 | 22/22-24 (1) skip over incorrect response to get to
16 43 17 / 17-18 (1) a correct response.
Allow spelling/transcription errors.
Do not award where a line humber is
required and a text response is
provided.
Do not award repetition for iteration
1.7 44 18/21/24/32(1)

or vice versa.

Do not award assignments, e.g. line
21, for initialisation, as it is not the
first time the variable is used.

(7)

Find Personal Tutor from www.wisesprout.co.uk

%ﬂersggp MP ALF;rF:()a(. Answer Additional guidance Mark
2 Award marks as shown. Award equivalgnt expressions, if
accurate and fix the error
Import libraries
Misspelling of randum changed to random (1)
2.1 4 Original: import randum
Amended: import random
Global variables
Single/double quotes added to ‘pushups’ in array (1)
Original: exerciseTable = ["squats", "planks",
2.2 8 pushups, "lunges", "burpees"]
Amended: exerciseTable = ["squats", "planks",
"pushups", "lunges", "burpees"]
Main program - printing akk exercises
Missing colon added to for loop (1)
2.3 16 Original: for exercise in exerciseTable
Amended: for exercise in exerciseTable:
Main program - choosing exercises
-1 removed (1)
2.4 19 Original: for count in range (numExercises - 1):
Amended: for count in range (numExercises):
Call to random completed with randint (0,4) (1)
2.5 20 Original: index = random.
Amended: index = random.randint (0, 4)
2.6 21 +1 removed (1) (8)

Find Personal Tutor from www.wisesprout.co.uk

Original: name = exerciseTable[index + 1]

Amended: name = exerciseTable[index]

Misspelling of naime changed to name (1)

2.7 22 Original: print (naime)
Amended: print (name)
Whole code file
58) At least one additional use of white space, in a correct location that Ignore excessive white space

improves readability (1)

ot ot et ot
Nl W B = O W 00 =] gy N s L R

RTINS NG T NG T (N T NG Yy T S i
M Wk 2O W oo -],

Find Personal Tutor from www.wisesprout.co.uk

Import libraries

exerciseTable = ["sguats", "planks", "pushups", "lunges", "burpees"]
index = 0

name = ""

numkExercises = 0

Main program

print ("Here is the exercise table")

for exercise in exerciseTable:
print (exercise)

numExercises = int (input ("How many exercises do you need (1-5)7 "))
for count in range (numExercises):

index = random.randint (0, 4)

name = exerciseTable[index]

print (name)

Find Personal Tutor from www.wisesprout.co.uk

Question | MP | Appx. | Answer Additional guidance Mark
number Line
3 Award marks as shown. Only one response allowed (15)
for MCQ. Do not award if
more than one line
uncommented.
Constants
3.1 7 Add “Screws.txt”, including quotes e Must be name of
INPUT FILE = “Screws.txt” (1) fupphed ﬁle", which is
- Screws.txt
3.2 10 Add .txt to Bricks file name e Allow .txt after the
OUTPUT FILE = "Bricks.txt" (1) quotes
e Allow .csv
Global variables
3.3 16 Add brickTable as name of array before assignment symbol
brickTable = ["Rustic", .. (1)
3.4 31 Choose integer initialisation
total = 0 (1)
3.5 36 Choose string initialisation:
outLine = "" (1)
Processing copper screws
3.6 50 Choose constant file name and open for read only:
inFile = open (INPUT FILE, "r") (1)
3.7 56 Choose result of find() '= -1
if (line.find (SPECIFIED MATERIAL) != -1) (1)
3.8 61 Add code to increment total by one e Allow total += 1
total + 1 (1)
3.9 64 Choose closing that matches the correct opening on line 48

Find Personal Tutor from www.wisesprout.co.uk

inFile.close () (1)
3.10 73 Choose output that will create the one given in the question paper
print ("Total screws: " + str(total) + " " +
SPECIFIED MATERIAL +" screws: " + str(foundCount)) (1)
Processing bricks
3.11| 79 | Choose opening the file for writing only As file does not exist on
.) (1 first run, the “a” will
outFile = open (OUTPUT FILE, "w") (1) create the file. If run
again, the program will
append bricks, resulting
in an incorrect output
file.
3.12 85 Choose the line to convert the brick name to uppercase
brick = brick.upper () (1)
3.13 93 Choose the line to add a line feed so each brick name is on a separate line
outLine = brick + "\n" (1)
3.14 98 Choose the line to write the correct variable to the output file
outFile.write (outLine) (1)
3.15 | 105 | Choose output that will create the one given in the question paper

print ("Wrote", len (brickTable), "brick names to file") (1)

Display output:

Find Personal Tutor from www.wisesprout.co.uk

Total screws: 26 Copper screws: 5
Wrote 12 brick names to file

Bricks.txt file contents:

RUSTIC
HEATHER
STAFFORDSHIRE
TUDOR

HAMPTON
NORMAN
NORTHCOTE
TUSCAN
REGENCY
CONCRETE COMMON
OLD ENGLISH
HADRIAN GOLD

10

Find Personal Tutor from www.wisesprout.co.uk

O Jo Uk

Constants

SPECIFIED MATERIAL = "Copper"
=====> Add the correct extension to this file name
INPUT FILE = "Screws.txt"
=====> Add the correct extension to this file name
OUTPUT FILE = "Bricks.txt"
B
Global variables

=====> Complete the line with the correct variable name for the arra
brickTable = ["Rustic", "Heather",

"Staffordshire", "Tudor", "Hampton",

"Norman", "Northcote",

"Tuscan", "Regency",

"Concrete Common",

"0ld English",

"Hadrian Gold"]
inFile = ""
outFile = ""

foundCount = 0

=====> Choose the correct value to initialise the wvariable
#total = 0.0

#total - ""

total = 0

#total = True

=

#outLine = False
outLine = ""
#outLine = 0.0
#outLine = 0

=====> Choose the correct value to initialise the wvariable

11

40
41
42
43
44
45

Process the screws

Find Personal Tutor from www.wisesprout.co.uk

=====> Choose the correct line to open the file
#inFile = open ("Screws", "r")
#inFile = open ("Screws", "a")

#inFile = open ("INPUT FILE", "a")
inFile = open (INPUT_FILE, "r'")

for line in inFile:

=====> Choose the correct line to locate the

substring in the line

#if (line.find (SPECIFIED MATERTIAL) == -1):

if (line.find (SPECIFIED MATERIAL) != -1):

#if (line.find (SPECIFIED MATERIAL) == False):

#if (line.find (SPECIFIED MATERIAL) == True):

foundCount = foundCount + 1

=====> Complete the line to increment total

total = total + 1
=====> Choose the correct line to close the file
inFile.close ()
#Screws.close ()
#INPUT_FILE.close ()
#outFile.close ()
=====> Choose the correct line to display the output
#print ("Total screws: ", foundCount, "SPECIFIED MATERIAL", total)
#print ("Total screws: ", total)
#print ("Total screws: " + str (foundCount) + "Copper" + str (total))
print ("Total screws: " + str (total) + " " + SPECIFIED MATERIAL + " screws:

" + str (foundCount))

12

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Find Personal Tutor from www.wisesprout.co.uk

Process the bricks

#

=====> Choose the correct line to open the bricks file
#outFile = open (OUTPUT FILE, "r")

outFile = open (OUTPUT FILE, "w"
#outFile = open ("Bricks", "r")
#outFile = open (OUTPUT FILE, "a")

for brick in brickTable:
=====> Choose the correct line to convert the case
brick = brick.upper ()
#brick = brick.isalpha ()
#brick = brick.format ("{}")
#brick = brick.isupper ()

=====> Choose the correct line to complete the output line
#outLine = brick

foutLine = brick + "\r"

outLine = brick + "\n"

foutLine = brick + ","

=====> Choose the correct line to write the line to the file
#outFile.writelines (brickTable)

outFile.write (outLine)

#outFile.writelines (brick)

#foutFile.write (brick)

outFile.close ()
=====> Choose the correct line to display the output

print ("Wrote", len (brickTable), "brick names to file")
#print ("Wrote", total, "brick names to file")

#print ("Wrote {:75.2f} brick names to file".format (len (brickTable)))

#print ("Wrote {:"5.2f} brick names to file".format (total))

13

Find Personal Tutor from www.wisesprout.co.uk

%ﬂersggp MP ALpir?:. Answer Additional guidance Mark
4 Award marks as shown.
Three individual inputs taken from user (1) e Dbase = input (.)
4.1 e height = input (..)
e length = input (..)
Take and prepare inputs
Inputs converted from strings to real numbers prior to being used | ® Pase = float (input (.))
4.2 e length = float (input (..))
e Allow conversion at any point
before the calculation
Check for invalid inputs (relational and logical operators)
Relational operator used to check for invalid input (<= 0) (at * height <= 0.0
least one input variable) (1) * Dbase <= 0.0
e Jlength <= 0.0
e Allow 0 as equivalent to 0.0
4.3 « Allow < for <=
e This mark can be awarded
anywhere in the response that
demonstrates the use of a
relational operator
Correct logical operator used to create at least one compound e (height <= 0.0) or (base <=
test (1) 0.0) or (length <= 0.0)
° (width or height or length) <
0
4.4 e This mark can be awarded
anywhere in the response that
demonstrates the use of a logical
operator
4.5 An error message for invalid input is displayed (1)
Process the triangle
Formula used to calculate the area of a triangle is translated e Must use variables taken as input
4.6
correctly (1) e area = (1/2) * base * height (15)

14

Find Personal Tutor from www.wisesprout.co.uk

area 0.5 * base * height

area = base * height / 2

The area of the triangle rounded to two decimal places (using any

round (area, 2)

4.7
method) (1) e print("{:0.2f}".format (area))
Formula used to calculate the volume of a prism is translated e Must use variables taken as input
4.8 correctly (1) and previously calculated area
e volume = area * length
Printing of final volume uses a string formatting function) (1) e Allow f-strings
4.9 e Allow <string>.format()
e Do not award round(a,2) as string
formatting
410 Format of decimal output is 8 columns with 2 decimal places. (1) |e {:<8.2f} cubic units
' « Ignore omission of 'cubic units'
4.11 A goodbye message is displayed before program terminates, in all
' cases, valid or invalid inputs (1)
Whole code file
4.12 Meaningful variable names used throughout (1) e Allow b, h, I, a, and v as they're
' given in the question paper
Levels-based mark scheme to a maximum of 3 from:
Functionality (3) Considerations for levels-based mark
scheme:
Execute with test data given in question paper. e« Functionality - Translates without
Execute with negative humbers to check validation. syntax and runtime errors
4.13
e Functionality - Calculations are
4.14
accurate, regardless of output
4.15

Functionality - Output messages
are accurate and fit for purpose

Functionality - Fully meets
requirements

15

Find Personal Tutor from www.wisesprout.co.uk

Prism 1:
Extra spaces after 250.00 is correct, due to the eight columns.

Enter the width of the base of the triangle: 4.567
Enter the height of the triangle: 1.23

Enter the length of the prism: 89.01

Area of the triangle is 2.81

Volume is 250.00 cubic units

Goodbye

Prism 2:
Extra spaces after 250.00 is correct, due to the eight columns.

Enter the width of the base of the triangle: 2.74
Enter the height of the triangle: 6.01

Enter the length of the prism: 5.55

Area of the triangle is 8.23

Volume is 45.70 cubic units

Goodbye

Invalid input:
Any input value less than or equal to zero.

Enter the width of the base of the triangle: 0
Enter the height of the triangle: 1.23

Enter the length of the prism: 89.01

Invalid input

Goodbye

Find Personal Tutor from www.wisesprout.co.uk

Functionality (levels-based mark scheme)

0 | 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

I limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

rié e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

o e Program respon_cl§ predic_:tably to « Solution may not be robust within anticipated input.

2 some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

17

o ~Jo b WwhE

BB R WWWWWwwWwwwwNhPpNhdNMNdDNDMNDMNNMNDNERRERERRPRRPRRRRE
WNhNhPRrRoLwOoOJIooUE WNMNERPR OO -JOOOUEWNDNREOW IO WNDERE OWw

Find Personal Tutor from www.wisesprout.co.uk

o
Global variables

=====> Write your code here

height = 0.0

base = 0.0

length = 0.0

area = 0.0

volume = 0.0

layout = "Volume is {:<8.2f} cubic units"
o
Main program

B
=====> Write your code here

4 Take three decimal inputs from the user

base = float (input ("Enter the width of the base of the triangle: "))
height = float (input ("Enter the height of the triangle: "))

length = float (input ("Enter the length of the prism: "))

Check for invalid inputs, using relational and logical operators
if ((height <= 0.0) or (base <= 0.0) or (length <= 0.0)):
Display an error message if any input is invalid.
Invalid input should not be processed.
print ("Invalid input™)
else:
Process all wvalid inputs
Calculate the area of the triangle
area = (1/2) * base * height

Display the area of the triangle, rounded to two decimal places
print ("Area of the triangle 1s", round (area, 2))

Calculate the volume of the prism
velume = area * length

Display the volume of the prism using the <string>.format () function
in eight columns with two decimal places
print (layout.format (volume))

= =

In all cases, display a goodbye message just before terminating
print ("CGoodbye™)

18

Find Personal Tutor from www.wisesprout.co.uk

EETen MP Appx. Answer Additional guidance Mark
number Line
5 Award marks as shown.
makelD subprogram
[definition line] any one of the parameter names changed to a
5.1 14 X
different name (1)
55 14 [definition line] all three parameter names changed to a different
' name (1)
5.3 14 [definition line] Any changed names are meaningful (1)
int eplaced with ord 1 e numberPart = numberPart +
5.4 24 ! O replac Wi : () () ord (character)
Welcome subprogram
Welcome subprogram is defined using keyword def, a meaningful e Ignore inclusion of parameters
5.5 32
name, and brackets (1) and return() statement
5.6 33 Welcome message is fit for purpose (1)
Main program
5.7 39 Welcome subprogram called in main, prior to taking any other « Ignore inclusion of arguments
inputs (1) (15)
String (lastName, firstName, or myID) converted to lower case (1) | ® Do notaward if missing brackets
e Conversion on input:
lastName = lastName.lower ()
5.8 firstName =
' firstName.lower ()
e Conversion before output:
myID.lower ()
Digits in date of birth are validated as being 0-9 e Examples:
5.9 49 o A loop over all digits
o Use of <string>.isdigit()
Levels-based mark scheme to a maximum of 6, from: ConS|de.rat|ons for levels-based mark
scheme:
5.10 Solution design (3) e Variables in makelD subprogram

19

Find Personal Tutor from www.wisesprout.co.uk

511 changed to match new header
5 12 variable names
' e Welcome subprogram must have
a body (indented line) and no
return() statement
e Uses [<string>.isdigit()] rather
than loop over all characters
5.13 Functionality (3) e Program translates
5.14 e Program runs without runtime
5.15 errors
¢ A welcome message is displayed
e Displays an error message if date
of birth is invalid
e Fully meets requirements
Test data:
Last name First name Date of birth (ddmmyyyy) |ID
Bassir Viola 15062005 bassirv403
BASSIR VIOLA 15062005 bassirv403
Jon35 pen7 15062005 jon35p403 No requirement to validate for all characters in the first
and last names
Jon35 pen?7 01AB2005 Invalid date of birth. | Processing should not take place
Jon35 pen?7 A5062005 Invalid date of birth. | Processing should not take place

20

Solution design (levels-based mark scheme)

Find Personal Tutor from www.wisesprout.co.uk

0 | 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been decomposed 3
decompose the problem. decompose the problem. clearly into component parts.

- Some of the component parts of Most of the component parts of the The component parts of the

3 the problem can be seen in the problem can be seen in the problem can be seen clearly in the

g solution, although this will not be solution. solution.

rEU complete. Most parts of the logic are clear The logic is clear and appropriate

Q Some parts of the logic are clear and appropriate to the problem. to the problem.

§ and appropriate to the problem. The use of variables and data The choice of variables and data

& The use of variables and data structures is mostly appropriate. structures is appropriate to the

§ strubc.itureg, ?_pp_ropc)lrlate to the The choice of programming problem.

S problem, is limited. constructs is mostly appropriate to The choice of programming

< The choice of programming the problem. constructs is accurate and
constructs, appropriate to the appropriate to the problem.
problem, is limited.

21

Find Personal Tutor from www.wisesprout.co.uk

Functionality (levels-based mark scheme)

0 | 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

I limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

rié e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

o e Program respon_cl§ predic_:tably to « Solution may not be robust within anticipated input.

2 some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

22

=
e Vo T o o TRESS B R Y % A

MNNNNEPERAERRPRRRFBPB &P
=W N2 OWom o U e W

3
n

27
28

30
31
32
33
34

Find Personal Tutor from www.wisesprout.co.uk

Global variables

lastName = ""
firstName = ""
dob = mn
myID - mnmn

Subprograms

=====> Change the names of the local wvariables to distinguish them
k2 from the global variables with the same name
def makelD (pLast, pFirst, pDob):
namePart = ""
numberPart = 0
namePart = plast + pFirst[0] # Letter part
=====> Correct the logic error caused by using the int() function
in the number part calculation rather than using a function
that returns the ASCII wvalue of the character
for character in pDob:
numberPart = numberPart + ord (character)
yourID = namePart + str (numberPart)
return (yourlID)
=====> Add a procedure, with no parameters, to display a
welcome message for the user
def welcomeUser ():

print ("Welcome to the program")

23

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ail
52
55
54
55
56
57
58
59
60
61
62
63

Find Personal Tutor from www.wisesprout.co.uk

Main program

=====> Call the welcome procedure before taking input from the user
welcomelUser () # Welcome the user

¥ Get last name and first name from the user
lastName = input ("tnter your last name: ")

firstName = input ("Enter your first name: ")
=====> Convert last name and first name to lowercase after they
& are inputted by the user

lastName = lastName.lower ()
firstiName = firstName.lower ()

Get date of birthdate from the user
dob = input ("Enter your date of birth (ddmmyyyy): ")

=====> Check that only the digits 0 to 9 appear in the date of birth

if (dob.isdigit ()):
=====> Call the makeID() function, if the date of birth is wvalid
myID = makeID (lastName, firstName, dob)
print (myID)
else:
 =====> Tell the user, if the date of birth is inwvalid
print ("Invalid date of birth")

24

Find Personal Tutor from www.wisesprout.co.uk

s MP Ap_)px. Answer Additional guidance Mark
number Line
6 Award marks as shown. (15)
6.1 Two string inputs taken (1)
e len (name) ==
6.2 Check for blank input for name/password ¢ len (password) == 0
' using a relational operator (1) ® name == ""
e password == ""
. for (..)
6.3 Table is traversed using a loop (1) e while (..)
e Allow membership
Use of a logical operator to form a compound | ¢ Allow logical operator anywhere in program
test / use of loops to keep invalid input out ¢ (len (name) == 0) or (len (password) == 0)
6.4 (1) e (not foundName) and (index < len (userTable)
e while (name == "")..
e userTable[index] [0] == name
6.5 Individual fields of each record accessed (1) |*® userTablel[index][l] == password)
e Allow membership
] o o e Selection, which may be nested
6.6 Mechanism for distinguishing between states |, Three states are: name not found; name found no
(1) password match; full match
Iée\;il)sr;t.)ased TR SERETE 19 8 Mendm Considerations for levels-based mark scheme:
6.7 Solution design (3) e Solution decomposed into component parts
6.8 e Stops loop when name and password match found
6.9 e Stops loop when name match found, but not password
¢ Minimum number of passes through the data (i.e. visits
each record only once)
6.10 Good programming practice (3) e Meaningful variable names
6.11 e Layout with white space improves readability
6.12 ¢ Commenting is sufficient to completely follow the logic,

without being excessive

25

Find Personal Tutor from www.wisesprout.co.uk

6.13 Functionality (3) e User messages are informative and fit for purpose

6.14 e Robust, does not crash with syntax or runtime errors

6.15 e Fully meets requirements, including working with any

length of array
Test data:

User name Password Output Note
LLemon8 BeigeDresser Welcome Valid user and password found in the array
LLemon8 GreyOttoman Incorrect password The user name is found. The password belongs to a different user.
llemon8 BeigeDresser User not found The user name has lowercase letters so doesn’t match.
OOrange99 WhiteNights User not found The user name is not there. The password belongs to a different user.
Blones33 GoldBed User not found The user does not exist. The password is not in the table.
<empty> GreenCouch Invalid input User name cannot be blank.
LLemon8 <empty> Invalid input Password cannot be blank.

26

Solution design (levels-based mark scheme)

Find Personal Tutor from www.wisesprout.co.uk

0 | 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been decomposed 3
decompose the problem. decompose the problem. clearly into component parts.

- Some of the component parts of Most of the component parts of the The component parts of the

.g the problem can be seen in the problem can be seen in the problem can be seen clearly in the

g solution, although this will not be solution. solution.

g complete. Most parts of the logic are clear The logic is clear and appropriate

Q@ Some parts of the logic are clear and appropriate to the problem. to the problem.

§ and appropriate to the problem. The use of variables and data The choice of variables and data

& The use of variables and data structures is mostly appropriate. structures is appropriate to the

§ strubc.itureg, ?_pp_ropc)lrlate to the The choice of programming problem.

S problem, is limited. constructs is mostly appropriate to The choice of programming

< The choice of programming the problem. constructs is accurate and
constructs, appropriate to the appropriate to the problem.
problem, is limited.

27

Find Personal Tutor from www.wisesprout.co.uk

Good programming practices (levels-based mark scheme)

1

2

3

Max.

No rewardable material

There has been little attempt to lay
out the code into identifiable
sections to aid readability.

Some use of meaningful variable
names.

Limited or excessive commenting.

Parts of the code are clear, with
limited use of appropriate spacing
and indentation.

There has been some attempt to
lay out the code to aid readability,
although sections may still be
mixed.

Uses mostly meaningful variable
names.

Some use of appropriate
commenting, although may be
excessive.

Code is mostly clear, with some use
of appropriate white space to aid
readability.

Layout of code is effective in
separating sections, e.g. putting all
variables together, putting all
subprograms together as
appropriate.

Meaningful variable names and
subprogram interfaces are used
where appropriate.

Effective commenting is used to
explain logic of code blocks.

Code is clear, with good use of
white space to aid readability.

28

Find Personal Tutor from www.wisesprout.co.uk

Functionality (levels-based mark scheme)

0 | 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

I limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

rié e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

o e Program respon_cl§ predic_:tably to « Solution may not be robust within anticipated input.

2 some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

29

Find Personal Tutor from www.wisesprout.co.uk

@ oyl

B WwwWwWwwWwwWwwhhdhhhNNNNDNNNDNDNNNERERPRrRRPRRER R R P R
cwoOoNJooudbkWNRPRPROoODOCOJooUEWNMNRPROWVWOJdUE WN P O W

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

userTable = [["LArmstrong3", "RougeChairBean"],
["SBarrett?", "AmarilloDeskLemon"],
["EChishclm4", "JauneStcolCarrot"],
["VDunnl", "AzulFutonLime"],
["DEIms5", "BleuCouchBroccoli"],
["EFirsoval3", "RojoMattressOrange"],
["JGollande", "VertTableSquash"],
["FHartleyl3", "VerdeMirrorApple"],
["DJohnstonel2", "RoseBedOnion"],
["GKirkhope8", "RoszNightstandPear"],
["LLemon8", "BlancDresserPepper"],
["HMacCunnée", "RosaOttomanGrapefruit"],
["PNewlandl0", "NoirWardrobeChilli"],
["AOldham5", "BlancoPillowStrawberry"],
["JPook8", "VioletCeabinetAubergine"]]

$ =====> Write your code here

name = ""

password = "" # User types in

foundName = False # Found user name

letIn = False # Found full match

index = 0

Main program

=====> Write your code here

Get the user input
name = input ("Enter your name: ")
password = input ("Enter your password: ")

Check if input is wvalid

if ((len (name) == 0) or (len (password) == 0)):
print ("Invalid ‘nput") # No blanks allowed
else:

Can be processed
while ((not foundName) and (index < len (userTable))):

if (userTablel[index] [0] == name) :
foundName = True # Stops the lcop
if (userTable[index][l] == password):
letIn = True # Passes both checks
else:

index = index + 1

Determine which state we're in based on flags
if (letlIn):
print ("Welcome™)
elif (foundName) :
print ("Incorrect password")
else:
print ("User not found™)

