

GCE

Physics A

Unit H156/02: Depth in physics

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error or repeated error
SF	Error in number of significant figures
✓	Correct response
AE	Arithmetic error
?	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance.

Q	uesti	ion	Answer	Marks	Guidance
1	(a)		Sum of thinking distance and the braking distance	B1	Allow the (total) distance travelled from when the driver sees a hazard to the vehicle stopping wtte
	(b)	i	$\frac{61000}{3600} = 16.944$	M1	Note v must be the subject
			17 m s ⁻¹	A0	
		ii 1	$\frac{1}{2} \times 1.9 \times 10^5 \times 17^2$	C1	Allow use of 16.9 gives 2.7×10^7 (J)
			$2.7(5) \times 10^7(J)$	A1	
		ii 2	$0 = 17^2 + 2a \times 310$ OR $t = \frac{310}{8.5} = 36.5$	C1	Allow $v^2 = u^2 + 2as$ with values stated correctly
			$a = (-)\frac{17^2}{2 \times 310} = (-)\frac{289}{620}$ OR $a = \frac{17}{36.5}$	C1	
			0.47 (ms ⁻²)	A1	Ignore negative sign Allow use of 16.9 gives 0.46
					Not 0.5
		3	$1.9 \times 10^5 \times 0.47$	C1	Allow ECF from (b) (ii) 1 and (b) (ii) 2 Allow $\frac{2.7 \times 10^7}{310}$ Allow $1.9 \times 10^5 \times 0.46$ Allow $\frac{1.9 \times 10^5 \times 17}{36.5}$
			89000(N)	A1	Allow alternatives 87100, 87400, 88000
		(iii)	Component of train's <u>weight</u> acts against the motion/down the incline/same direction as braking force OR some KE transferred to GPE	B1	Not gravity will slow it down Not down, parallel
			Smaller distance because larger opposing forces/net force or greater deceleration or less work done by braking force	B1	
			Total	11	

Questio	n Answer	Marks	Guidance
2 (a)	F/N e/cm 0 0.0 0.49 1.0 0.98 1.8 1.47 2.8 1.96 3.6 2.45 4.6	B1	Note Column heading required and values in table. Allow 0 for 0.0 Not 1 for 1.0
(b)	y-axis labelled correctly e / cm	B1	Allow extension / cm or e (cm) for e / cm
	y-axis scale is simple and uses at least half the graph paper	B1	Note axis tick labels must be at least every two large squares (4 cm)
	Data points plotted correctly.	B1	Check two data points (0.98, 1.8) and (2.45, 4.6) Thickness of each point must be less than half a small square
	Straight line of best fit drawn with a straight edge / ruler	B1	Not freehand / wobbly line
(c)	Gradient in the range 1.80 to 1.94 OR 0.0180 to 0.0194	B1	Allow 1.8 or 1.9 OR 0.018 or 0.019 Not 2 OR 0.02 Ignore POT errors Ignore significant figures
(d)	$k_2 = \frac{1}{\text{gradient}} = \frac{1}{(c)}$	C1	Note expect about 0.55 (N cm ⁻¹) or 55 (N m ⁻¹)
	Correct value for k_2 and correct unit Ncm ⁻¹ or Nm ⁻¹ and given to 2 or 3 significant figures	A 1	Note unit must be with correct power of ten

Question	Answer	Marks	Guidance
(e)	Hooke's law: Extension is (directly) proportional to the load (provided elastic limit not exceeded)	B1	
	Graph is not a <u>straight</u> line <u>passing through the origin</u> so Hooke's law is not obeyed OR Graph is a <u>straight</u> line <u>passing through the origin</u> so Hooke's law is obeyed	B1	
(f)	k_1 = 2 x (d) or springs in series = k/n	C1	Allow $F = k_1e = k_22e = k_33e$ Note 2:3 scores one mark
	$\frac{2}{3}$	A 1	Allow 0.66, 0.67
	Total	12	

Q	uesti	on	Answer	Marks	Guidance
3	а	i	Micrometer/(Vernier) calliper	B1	Not ruler
			Repeat readings (in different directions) and average	B1	
		ii	$\frac{4}{3}\pi(0.014)^3$ OR 1.15 × 10 ⁻⁵	M1	Allow $\frac{4}{3}\pi(1.4)^3$
			$m = 650 \times 1.15 \times 10^{-5} = 7.47 \times 10^{-3}$	M1	Note must see correct POT
			0.0075 (kg)	A0	
		iii	$1000 \times 1.15 \times 10^{-5} \times 9.81 = 0.11 \text{ N OR}$	C1	Allow use of 7.47 x 10 ⁻³ kg from a ii
			$0.0075 \times 9.81 = 0.074 \text{ N}$		Allow ecf from a ii
			F = 0.11 - 0.074 = 0.037 (N)	A 1	
			OR		
			9.81 (1000 – 650) or 1.15 \times 10 ⁻⁵ \times (1000 – 650)	C1	
			$F = 1.15 \times 10^{-5} \times 9.81 (1000 - 650) = 0.039 (N)$	A1	
	1			I	

Question	Answer	Marks	Guidance
b	Level 3 (5–6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Limited procedure and limited measurements or limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	B1 x6	Indicative scientific points may include: Procedure Identify labelled diagram Indicative scientific points may include: Identify labelled diagram Identify labelled labelle
	Total	12	

Qı	uesti	on	Answer Ma		Guidance
4	а	i	$R = \frac{230^2}{3500} = 15.11$	M1	Allow calculation of current (15.2) and $R = V/I$ Not 3500 / 230 = 15.2
			15 (Ω)	A0	
		ii	$A = \pi \times 0.00055^{2} (= 9.5 \times 10^{-7} \text{ m}^{2})$	C1	
			$L = \frac{15 \times 9.5 \times 10^{-7}}{1.6 \times 10^{-6}}$	C1	
			8.9 (m)	A 1	Note 8.9 x 10 ⁿ scores two marks Allow 15.1 gives 9.0 m
		iii	(Ohm's law states that) V proportional to I (provided the physical conditions/temperature remain constant)	B1	
			Since the temperature is not constant, Ohm's law will not apply	B1	Allow one mark for Ohm's law will not apply because as temperature changes the resistance changes
	b		3.5 x 7 or 3.5 x 7 x 7 or 10.5 x 7 or 10.5 x 7 x 7 or 514.5	C1	Note for use of 17 hours £94.96 scores one mark
			514.5 x 7.6p = £39.10 or £39.11	A 1	
	С	i	$V = \frac{1.1}{6.8 + 1.4 + 1.1} \times 6$	C1	Allow 3910p or 3911p or £39.1 or £39.102 Allow $I = \frac{6}{(6.8+1.4+1.1)\times 10^3} = 0.00065$
			0. 71 (V)	A 1	Allow 0.7
	C	ii	As temperature of thermistor increases, resistance of thermistor decreases	B1	
			Total resistance of circuit decreases or current increases	B1	
			Greater proportion of p.d. across <u>fixed resistor</u> or p.d. across <u>fixed resistor</u> increase	M 1	
			Reading on the voltmeter will increase	A 1	
			Total	14	

Q	uestic	on	Answer	Marks	Guidance
5	а		phase difference: difference in degrees/radians/angle between points on the same wave or (similar) points on two waves	B1	Note must be a comparison between points/waves Allow how far out of step/sync or leads/lags for difference
			coherence:	B1	
			constant/fixed phase difference		Allow constant / fixed phase relationship lgnore 'the frequency / wavelength is the same' Not the same phase difference Not zero phase difference
	р	-	At point P: path difference between slits and screen is a whole/integer number of <u>wavelengths</u> (for constructive interference)	B1	Allow nλ or λ Not phase difference
			At point Q: path difference between slits and screen is an odd number of half wavelengths (for destructive interference)	B1	Allow $(n + \frac{1}{2})\lambda$ Not $\lambda/2$
		ii 1	x = 4.22 mm	C1	Note $x = 42.2 \text{ mm or } 4.2 \times 10^{-2} \text{ m scores zero}$
			$\lambda = \frac{4.22 \times 10^{-3} \times 0.56 \times 10^{-3}}{4.50}$	C1	Note $x = 3.84, 4.77 \times 10^{-7} \text{ m may score max 2}$
			5.25 x 10 ⁻⁷ m	A1	

Question	Answer	Marks	Guidance
		C1 A1	Allow 4% or 5% with evidence of working Ignore significant figures
	Alternative max/min method: $\lambda_{max} = \frac{4.24 \times 10^{-3} \times 0.58 \times 10^{-3}}{4.48} = 5.49 \times 10^{-7}$ and/or $\lambda_{min} = \frac{4.20 \times 10^{-3} \times 0.54 \times 10^{-3}}{4.52} = 5.02 \times 10^{-7}$	B1	
	$\frac{\Delta \lambda}{\lambda} \times 100 = 4.4\% \ or \ 4.6\%$	B1	
С	$\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.25 \times 10^{-7}} = \frac{1.989 \times 10^{-25}}{5 \text{ b ii 1}} = 3.79 \times 10^{-19} \text{ J}$	C1	Allow ecf from bii
	$n = \frac{50 \times 10^{-3}}{3.79 \times 10^{-19}} = 2.5 \times 10^{23} \times 5 \text{ b ii } 1 = 1.3 \times 10^{17}$	A 1	
i	$2.6 \text{ eV} = 2.6 \text{ x } 1.6 \text{ x } 10^{-19} = 4.16 \text{ x } 10^{-19} \text{ J ORA}$	M1	Allow photon has 2.37 eV of energy
	Energy of photon is less than work function so photoelectrons will not be emitted	A1	Allow conclusion based 5 c i
	Total	13	

the direction of the wave)/all points have (the same) amplitude In a stationary wave there is no net energy transfer/energy is stored/has points which are always zero amplitude/or points have different amplitudes b Level 3 (5–6 marks) Clear explanation of observations and correct method to determine the speed of sound There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited evidence of method to determine the speed of sound The information is basic and communicated in an unstructured way. The information is supported by	Qı	uestion	Answer	Marks	Guidance
transfer/energy is stored/has points which are always zero amplitude/or points have different amplitudes b Level 3 (5–6 marks) Clear explanation of observations and correct method to determine the speed of sound There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence and the relationship to the evidence may not be clear. unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. b Level 3 (5–6 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations or correct method to determine the speed of sound There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited evidence and the relationship to the evidence may not be clear. unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. unstructured way. The information is supported by limited evidence and the relationship to the evidence or appropriate graphical method antinodes) for one mark Explanation of Observations Understanding of how the standing wave is formed from the interference between the incident and reflected wave I dea of nodes and antinodes Node at closed end and antinode at ope of sound Hunderstanding of how the standing wave is formed from the interference between the incident and reflected wave I dea of nodes and antinodes Node at closed end and out	6 a		the direction of the wave)/all points have (the same)	B1	Note for two marks there must be a comparison
Clear explanation of observations and correct method to determine the speed of sound There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited evidence of method to determine the speed of sound The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks Explanation of Observations Understanding of how the standing way is formed from the interference between the incident and reflected wave Idea of nodes and antinodes Node at closed end and antinode at ope end Understanding of the direction of oscillation of particles Fundamental frequency/1st harmonic indicated for closed tube. Harmonics indicated for closed tube Harmonics indicated for open tube Determination of speed of sound A correctly linked to length V = f\lambda V calculated for different harmonics/tube or appropriate graphical method a 338 m s ⁻¹			transfer/energy is stored/has points which are always zero amplitude/or points have different amplitudes		antinodes) for one mark
 Level 2 (3–4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited evidence of method to determine the speed of sound The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks	b		Clear explanation of observations and correct method to determine the speed of sound There is a well-developed line of reasoning which is clear and logically structured. The information	B1 x6	 Explanation of Observations Understanding of how the standing wave is formed from the interference between
 structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited evidence of method to determine the speed of sound The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. Fundamental frequency/1st harmonic indicated for open tube Harmonics indicated for open tube Harmonics indicated for open tube A correctly linked to length v = fλ v calculated for different harmonics/tube or appropriate graphical method 338 m s⁻¹			Level 2 (3–4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound		 Idea of nodes and antinodes Node at closed end and antinode at open end Understanding of the direction of oscillation of particles Fundamental frequency/1st harmonic
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks Determination of speed of sound • λ correctly linked to length • $v = f\lambda$ • v calculated for different harmonics/tube or appropriate graphical method • λ sourcetly linked to length • λ correctly linked to length • λ correctly linked to length • λ sourcetly linked to length			structure. The information presented is in the most- part relevant and supported by some evidence. Level 1 (1–2 marks) Has limited explanation of observations or limited		 Fundamental frequency/1st harmonic indicated for open tube Harmonics indicated for closed tube
o marke			The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.		 λ correctly linked to length v = fλ v calculated for different harmonics/tube or appropriate graphical method
Total 8			No response or no response worthy of credit.		• 338 m s ⁻¹

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017

