

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE CHEMISTRY

Foundation Tier Paper 2

Wednesday 13 June 2018 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

0 1	This question is about copper sulfate.						
	Blue copper sulfate turns white when it is heated.						
	The word equation for the reaction is:						
	hydrated copper	sulfate ;	\	anhydrous copper sulfate	+	water	
	blue			white			
0 1.1	What name is given to	hydrated	copp	per sulfate in this reaction?)		[4 mayls]
	Tick one box.						[1 mark]
	Catalyst						
	Element						
	D 1 1						
	Product						
	Reactant						
0 1.2	What does the symbol	→ mear	n?				
	Tick one box.						[1 mark]
	TICK ONE DOX.						
	Endothermic						
	Exothermic						
	LAGUIGITIIC						
	Reversible						
	Polymerisation						
	•						

0 1.3	Complete the sentence. [1 mark]
	The colour change when water is added to anhydrous copper sulfate
	is white to
	A student heats 2.5 g of hydrated conner sulfate in a test tube
	A student heats 2.5 g of hydrated copper sulfate in a test tube. 0.9 g of water is given off.
	The remaining solid is anhydrous copper sulfate.
0 1.4	Calculate the mass of anhydrous copper sulfate produced. [1 mark]
	Mass of anhydrous copper sulfate = g
0 1.5	Calculate the percentage of water contained in 2.5 g of hydrated copper sulfate. [2 marks]
	Percentage of water =%
	Question 1 continues on the next page

8

0 1.6	Draw one line from each cor	mpound to the formula for the compound. [2 marks]	Do not write outside the box
	Compound	Formula for the compound	
		CuO	
	Copper sulfate	CuS	
		CuSO ₄	Find Perso
	Water	H ₂ O	Find Personal Tutor from www.wisesp ro
		H ₂ SO ₄	rom www.ı
			vises pr c

0 2	This question is about fuels.
0 2.1	Cracking breaks down large hydrocarbon molecules into smaller hydrocarbon molecules. Which hydrocarbon molecule can be cracked to produce octane, C_8H_{18} ?
	[1 mark] Tick one box.
	C ₄ H ₈
	C_4H_{10}
	C ₈ H ₁₆
	C ₁₂ H ₂₆
0 2.2	What type of carbon compound is octane, C_8H_{18} ? [1 mark]
	Tick one box.
	Alcohol
	Alkane
	Carboxylic acid
	Ester
	Question 2 continues on the next page

0 2.3	Oxygen is needed to burn fu	uels.		
	Name the source of the oxyg	gen needed to l	ourn fuels.	[1 mark]
	- · · · · · · · · · · · · · · · · · · ·			
0 2 . 4	Particulates and sulfur dioxid Draw one line from each pol			s burn.
	Draw one line from each pol	ilutarit to trie po	muting effect.	[2 marks]
	Pollutant		Polluting effect	
			Acid rain	
	Particulates]	Global dimming	
	T di lissificio			1
			Global warming	
	Sulfur dioxide			
		1	Landfill	
			Sewage sludge	
			cowage diaage	

0 2.5	Which two gases are produced when fuels burn in car engines? Tick two boxes.	[2 marks]	Do not write outside the box
	Ammonia		
	Carbon dioxide		
	Carbon monoxide		
	Nitrogen		Find Pers
	Oxygen		Find Personal Tutor from www.wisesprout.co.uk
			r from ww
			w.wisespr
0 2 . 6	Vehicles produce most of the atmospheric pollution in cities.		out.c
	How could the atmospheric pollution in cities be reduced?		io.uk
		[2 marks]	
	Tick two boxes.		找 公
	Build more roads in cities		找名校导师,用小草线上辅导(微信小程序同名)
	Build new car factories		草线上辅导
	Develop fuel efficient engines		异(微信小
	Make car tax cheaper		程序同名
	Use electric cars		
			9
1			

Turn over ▶

0 3

Polymers are used to make fabrics.

Table 1 shows some properties of two polymers.

Table 1

Property	Polymer J	Polymer K
Density in g/cm ³	0.9	1.4
Melting point in °C	165	260
Flame resistance	Poor	Good
Water absorption	Low	High

0 3 . 1

Polymer fabrics are used to make firefighter uniforms.

Complete **Table 2** by deciding for each property whether polymer **J** or polymer **K** is **best** for firefighter uniforms.

Use Table 1.

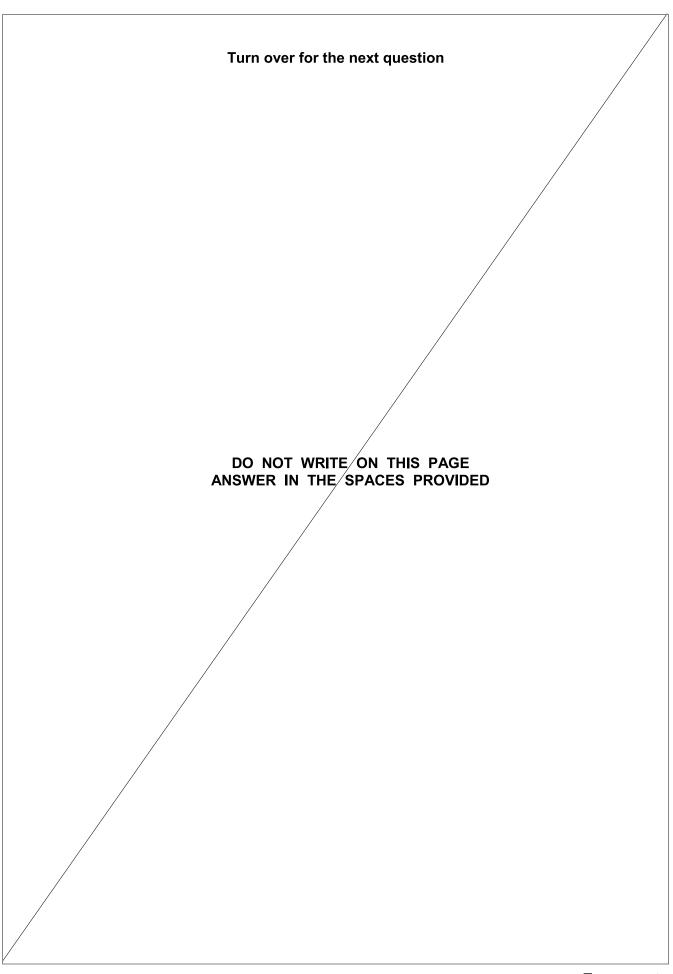
Density has been completed for you.

[2 marks]

Tick three boxes.

Table 2

Property	Polymer J	Polymer K
Density in g/cm ³	✓	
Melting point in °C		
Flame resistance		
Water absorption		


0 3.2	A firefighter uniform made from polymer J has a	mass of 6.0 kg	
	Calculate the mass of a uniform of the same size	made from polymer K .	
	Use Table 1 and the equation:		
	mass of uniform made from polymer $\mathbf{K} = -$	density of polymer K	× 6.0
	mace of armount made norm polymer to	density of polymer J	
			[2 marks]
	Mass of uniform made from polyr	mer K =	kg
0 3.3	Polymers ${\bf J}$ and ${\bf K}$ are both thermosoftening poly	mers.	
	Polymer L is a thermosetting polymer.		
	Why would polymer L be better than polymers J	and K for firefighter uniforn	ne?
		and K for mengriter dimorr	[1 mark]
	Tick one box.		
	Polymer L burns easily		
	Polymer L does not biodegrade		
	Polymer L will not melt		
	Question 3 continues on the ne	xt page	

/.wisesprout.co.uk
发化校中写,
,用小早线上铺守
(微信小柱序同名

	Polymers J and K are made from crude oil.	Do not write outside the box
	In the past, firefighter uniforms were made from wool.	
	Wool is obtained from sheep.	
0 3.4	Why are many fabrics made from polymers instead of wool? [1 mark] Tick one box.	
	Polymers are man-made	Find Pe
	Polymers are more hard-wearing	ersonal Tuto
	Wool is more easily available	r from w
	Wool is more flame resistant	Find Personal Tutor from www.wisesprout.co.uk
0 3.5	Why is wool more sustainable than polymers J and K for making firefighter uniforms? [2 marks]	t.co.uk 找名校导师,用小草
		直线上辅导(微信小程序 <u>同名</u>
		信小程序[
		8

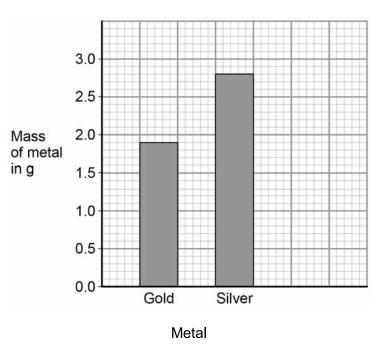
box

0 4

A 9 carat gold ring is made from a mixture of metals.

Table 3 shows the mass of different metals in the ring.

The mass of the ring is 5.0 g

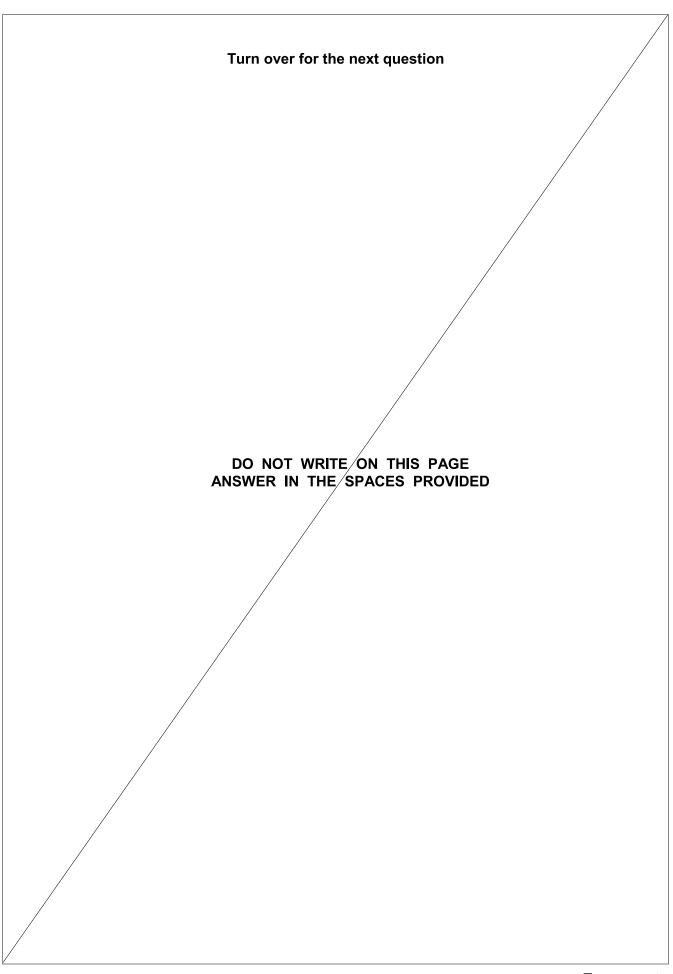

Table 3

Metal	Mass of metal in g
Gold	1.9
Silver	2.8
Copper	0.3

0 4 . 1 Plot the data for copper from **Table 3** on **Figure 1**.

[2 marks]

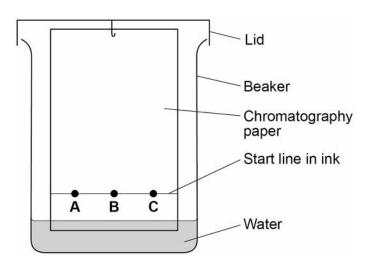
Figure 1


0 4 . 2	The cost of gold is £30 per gram.
	Calculate the cost of the gold used in the 9 carat gold ring.
	Use Table 3.
	[1 mark]
	Cost of gold = £
0 4 . 3	Rings can be made from 22 carat gold.
	The ratio of the mass of gold in 22 carat gold compared to 9 carat gold is 22:9
	Calculate the mass of gold in a 22 carat gold ring of mass 5.0 g
	Use Table 3 .
	[2 marks]
	Mass of gold = g

Question 4 continues on the next page

0 4.4	Pure gold is 24 carat.
	Suggest two reasons why silver and copper are mixed with gold to make 9 carat
	gold rings. [2 marks]
	1
	2
0 4 . 5	Copper is obtained from copper ores or by recycling copper.
	Copper ores are non-renewable.
	Copper ores can be obtained by mining.
	Some scrap copper goes to landfill sites.
	Give three reasons why we should use recycled copper instead of copper from
	copper ores.
	[3 marks]
	1
	2
	3

0 5	A student investigated the colours in three different flowers, A , B and C , using
	paper chromatography.
	The colours are soluble in ethanol but are insoluble in water.
	This is the method used.
	Place ethanol in a beaker.
	2. Add the flower.
	3. Stir until the colours dissolve in the ethanol.
	4. Filter the mixture.
	5. Put spots of the coloured filtrate on the chromatography paper.
0 5 1	The filtrate was a very pale coloured solution.
	How could the student obtain a darker coloured solution? [2 marks]
	Tick two boxes.
	Crush the flower
	Filter the mixture three times
	Use a larger beaker
	Use more ethanol
	Use more flowers



0 5 . 2

Figure 2 shows the apparatus used.

Do not write outside the box

What two mistakes did the student make in setting up the apparatus	'?
---	----

[2 marks]

Tick two boxes.

The paper does not touch the beaker	
The start line is drawn in ink	
The water level is below the start line	
Uses a lid on the beaker	
Uses water as the solvent	

Question 5 continues on the next page

Turn over ▶

box

0 5 . 3 Another student sets up the apparatus correctly. Figure 3 represents the student's results. Figure 3 C A В What two conclusions can be made from Figure 3? [2 marks] Tick two boxes. Flower A contains a single pure colour Flowers A and B contain the same colours The colour in flower C is a mixture The colour in flower **B** was the least soluble Two of the colours have the same R_f value

8

Do not write outside the

box

Ī	0	5	.	4

The student records some measurements.

The measurements are:

- the colour from flower B moves 7.2 cm
- the solvent moves 9.0 cm

Calculate the R_f value for the colour from flower \boldsymbol{B} .

Use the equation:

$$R_f = \frac{\text{distance moved by colour}}{\text{distance moved by solvent}}$$

[2 marks]

R_f value = ____

Turn over for the next question

Turn over ▶

0 6 Disposable cups are made from coated paper or poly(styrene).

Figure 4 represents the structure of poly(styrene).

Figure 4

$$\begin{pmatrix}
C_6H_5 & H \\
-C & -C \\
- & | \\
H & H
\end{pmatrix}_n$$

0 6 . 1 Which small molecule is used to produce poly(styrene)?

[1 mark]

Tick one box.

0 6.2	Which process is used to m	ake poly(sty	rene) from sma	II molecules?	[1 mark]
	Tick one box.				[
	Cracking				
	Distillation				
	Fermentation				
	Polymerisation				
0 6 . 3	Complete the sentences.				
	Choose answers from the b	OX.			[3 marks]
	ceramics c	omposites	foı	ır	many
	Ceramics C	omposites	100	41	many
	monomers		polymers	two	
					_
	Poly(styrene) is produced fr	om small mo	olecules called		
	When poly(styrene) is made	e,		styrene molecu	les join to form
	large molecules.				
	These large molecules are	called			
	Question 6	continues	on the next pa	ge	

box

0 6 . 4 Table 4 gives some information about disposable cups.

Table 4

	Coated paper cups	Poly(styrene) cups
Source of raw materials	Wood	Crude oil
Energy to make 1 cup in arbitrary units	550	200
Biodegradable	Yes	No
Recyclable	No	Yes

Compare the advantages and disadvantages of using coated paper and poly(styrene) to make disposable cups.

Jse Table 4 and your knowledge and understanding of life cycle assessmen	ts (LCAs). [4 marks]

9

0 7	A student investigated how concentration affects the rate of reaction between magnesium and hydrochloric acid.
	This is the method used.
	Place hydrochloric acid in a conical flask.
	2. Add magnesium powder.
	3. Collect the gas produced in a gas syringe.
	4. Measure the volume of gas every 40 seconds for 160 seconds.
	5. Repeat steps 1–4 three more times.
	6. Repeat steps 1–5 with hydrochloric acid of a higher concentration.
0 7.1	Figure 5 shows a gas syringe.
	Figure 5
CIIIIII	
	10 20 30 40 50 60 70 80 90 100 cm ³
	What is the volume of gas in the syringe?
	[1 mark]
	Volume =cm ³
0 7.2	Which two variables should the student keep the same to make the investigation a fair test?
	[2 marks]
	Tick two boxes.
	Concentration of hydrochloric acid
	Mass of magnesium powder
	Temperature of hydrochloric acid
	Time for reaction to end
	Volume of gas collected

Table 5 shows the student's results for the experiment with hydrochloric acid of a lower concentration.

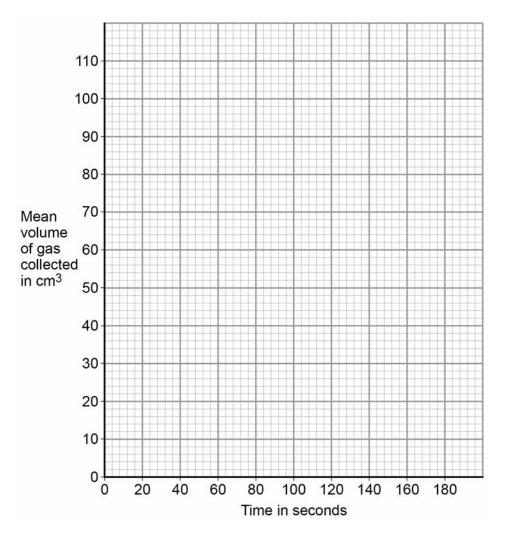
Table 5

Time in	Volume of gas collected in cm ³				
seconds	Test 1	Test 2	Test 3	Test 4	Mean
0	0	0	0	0	0
40	46	30	47	49	Х
80	78	83	83	82	82
120	98	94	96	95	96
160	100	100	100	100	100

0 7.3	Calculate mean value X in Table 5 .	
	Do not include the anomalous result in your calculation.	
	Give your answer to 2 significant figures.	[2 marks]
	v -	cm ³

Do not write

0 7 . 4

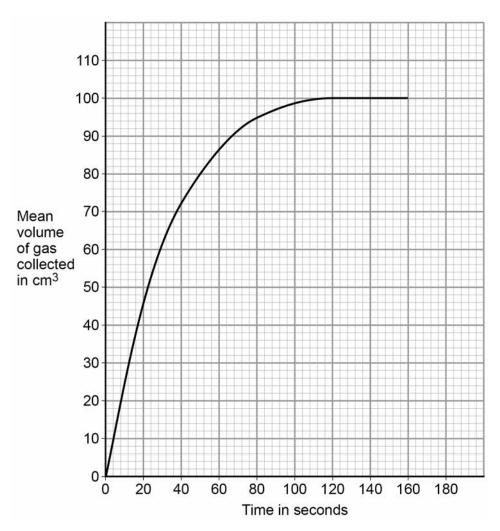

Plot the data from **Table 5** on **Figure 6**.

You should include your answer to Question 07.3.

You do not need to draw a line of best fit.

[2 marks]

Figure 6


Question 7 continues on the next page

Turn over ▶

Do not write

Figure 7 shows results of the experiment with the hydrochloric acid of a higher concentration.

0 7 . 5 Calculate the mean rate of reaction between 0 and 50 seconds.

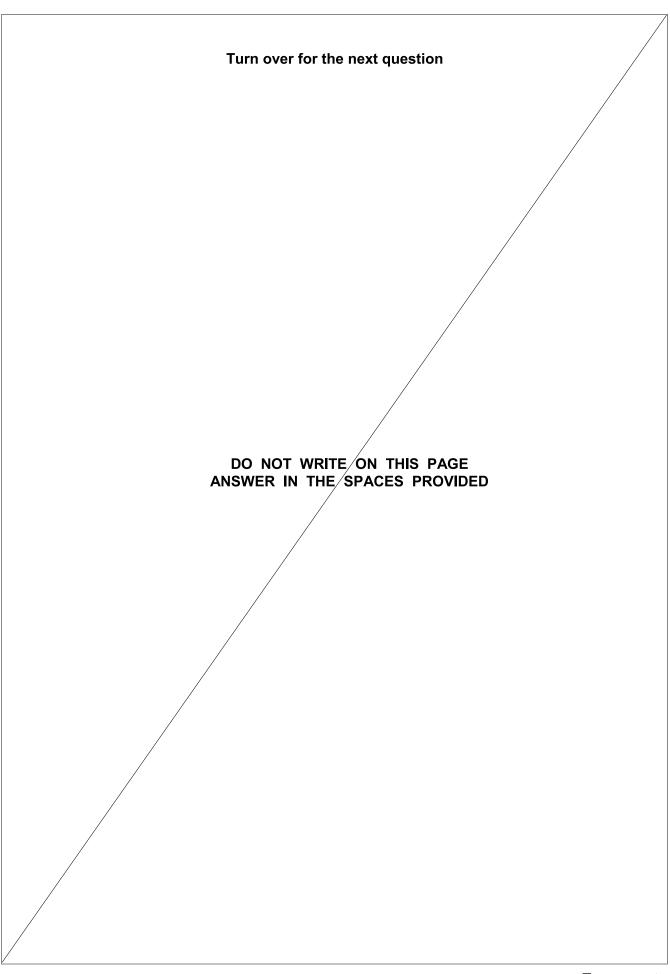
Use **Figure 7** and the equation:

$$mean \ rate \ of \ reaction = \frac{mean \ volume \ of \ gas \ collected}{time \ taken}$$

[2 marks]

Mean rate of reaction = cm³/s

0 7.6	Describe how the rate of reaction changes between 0 and 160 seconds.		
	Use Figure 7.		
		[3 marks]	
07.7	The student concludes that the rate of reaction is greater when the concent hydrochloric acid is higher.	ration of	
	Why is the rate of reaction greater when the concentration of hydrochloric acid is higher?		
	Tick two boxes.	[2 marks]	
	The particles are moving faster		
	The particles have more energy		
	The surface area of magnesium is smaller		
	There are more particle collisions each second		
	There are more particles in the same volume		
	Question 7 continues on the next page		



17

0 7.8	The student tests the gas produced by bubbling it through limewater.	
	No change is seen in the limewater.	
	Give one conclusion the student can make about the gas.	[1 mark]
	The student tests the goe produced using a burning oplint	
0 7 . 9	The student tests the gas produced using a burning splint.	
	Name the gas the student is testing for.	
	Give the result of a positive test for this gas.	[2 marks]
	Name of gas	
	Result	

0 8	This question is about chemicals in fireworks. Coloured flames are produced because of the metal ions in the fireworks.	
0 8.1	What colour flame would sodium ions produce?	[1 mark]
0 8.2	Name a metal ion that would produce a green flame.	[1 mark]
0 8.3	Some fireworks contain a mixture of metal ions. Why is it difficult to identify the metal ions from the colour of the flame?	[1 mark]

	01			
0 8.4	Flame emission spectroscopy is used to identify meta	ıl ions in a firework.		
	Figure 8 shows:			
	the flame emission spectra of five individual metal i	ons		
	• a flame emission spectrum for a mixture of two met			
	Figure 8			
		Ca ²⁺		
		Cu ²⁺		
		K+		
		Li+		
		Na ⁺		
		Mixture of two metal ions		
		I mixture of the metal lene		
	Which two metal ions are in the mixture?			
		[2 marks]		
	Tick two boxes.			
	Ca ²⁺			
	Cu ²⁺			
	K ⁺			
	Li ⁺			
	Na ⁺			

Question 8 continues on the next page

Turn over ▶

9

	The compounds in fireworks also contain non-metal ions. A scientist tests a solution of the chemicals used in a firework.
0 8.5	Silver nitrate solution and dilute nitric acid are added to the solution. A cream precipitate forms.
	Which ion is shown to be present by the cream precipitate? [1 mark]
0 8.6	Describe a test to show the presence of sulfate ions in the solution. Give the result of the test if there are sulfate ions in the solution. [3 marks]
	Test
	Result

box

0 9 Methylated spirit is a useful product made from a mixture of substances.

Table 6 shows the mass of the substances in a sample of methylated spirit.

Table 6

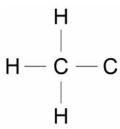
Substance	Mass in grams
Ethanol	265.5
Methanol	23.3
Pyridine	3.0
Methyl violet	1.5

0 9.1	What name is given to a useful product such as methylated spirit?	[1 mark]
0 9 . 2	Calculate the percentage by mass of methanol in methylated spirit.	
	Use Table 6 .	[2 marks]
	Porcentago -	0/

Question 9 continues on the next page

Turn over ▶

	Methylated spirit contains ethanol and is available cheaply. Methylated spirit also contains: pyridine which has a very unpleasant smell methyl violet which makes the mixture purple.	
0 9.3	Suggest why pyridine and methyl violet are added to ethanol to make methylated spirit.	[1 mark]
0 9.4	Suggest one use of methylated spirit.	[1 mark]
0 9 . 5	Describe how ethanol is produced from sugar solution. Give the name of this process.	[3 marks]



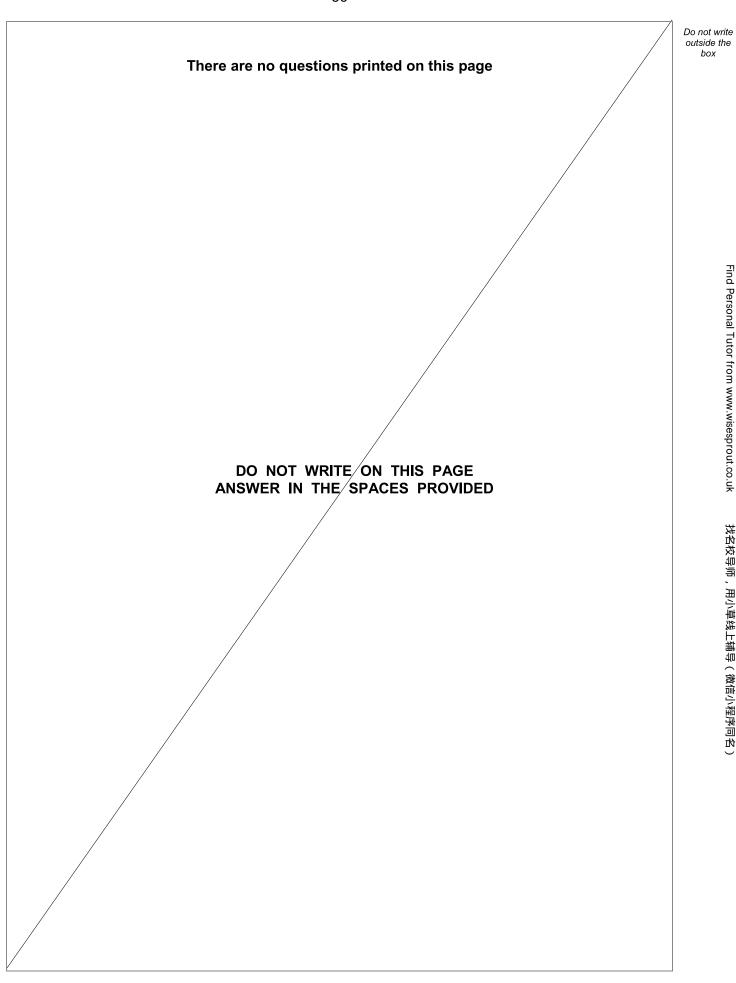
0 9.6 Figure 9 shows part of the displayed formula for ethanol.

Complete Figure 9.

[1 mark]

0 9.7 Name the gas produced when sodium is added to ethanol.

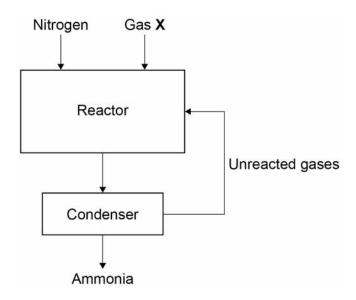
[1 mark]


0 | **9** | **8** | Methanol is used to produce methanoic acid.

What type of substance reacts with methanol to produce methanoic acid?

[1 mark]

Turn over ▶



box

1 0 This question is about gases.

Figure 10 shows how nitrogen is used in the Haber Process to produce ammonia.

Figure 10

1	0 .	1	Gas X in Figure 10 is obtained from methane
---	-----	---	---

Name gas X.

[1 mark]

1 0 . 2 Give the approximate temperature and pressure used in the reactor.

[2 marks]

Temperature _____

Pressure

1 0 3 The mixture of gases from the reactor cools in the condenser.

Suggest why ammonia condenses but the other gases do not.

[1 mark]

The Earth's early atmosphere was different to Earth's atmosphere today.

Scientists think that the Earth's early atmosphere was like the atmosphere found on Venus today.

Table 7 shows the amounts of carbon dioxide and oxygen in the atmospheres of Venus and Earth today.

Table 7

Gas	Percentage (%) in Venus' atmosphere today	Percentage (%) in Earth's atmosphere today
Carbon dioxide	96.50	0.04
Oxygen	0.00	20.95

1 0 . 4	The percentages of carbon dioxide and oxygen have changed from Earth's early atmosphere to Earth's atmosphere today.
	Explain the processes that led to these changes. [6 marks]

1 0 . 5	Why are scientists not certain about the percentage of each gas in the Earth's early atmosphere? [1 mark]	Do not write outside the box
		11

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

