| Write your name here Surname | Other r | names | |--|---------------|-------------------------| | Pearson
Edexcel GCE | Centre Number | Candidate Number | | Chemisti
Advanced Subsid
Paper 1: Core Inorg | iary | l Chemistry | | Friday 27 May 2016 – Mo
Time: 1 hour 30 minute | • | Paper Reference 8CH0/01 | | You must have:
Data Booklet | | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You may use a scientific calculator. - For questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate. ### Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Show all your working in calculations and include units where appropriate. PEARSON Turn over ▶ ### **Answer ALL questions.** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . - 1 This question is about Group 7 elements and their compounds. - (a) (i) Give the physical states of chlorine and iodine at room temperature and pressure. (1) (ii) Predict the physical state of a tatine under these conditions. Justify your answer. (1) (b) Write the equation for the reaction of chlorine with cold, dilute sodium hydroxide solution to form bleach. Name this type of reaction. (2) Type of reaction (c) Hydrogen bromide gas reacts with ammonia gas $$HBr + NH_3 \rightarrow NH_4Br$$ What would be observed during this reaction? (1) - A bubbles - B decolorisation - C steamy fumes - **D** white smoke (d) State what is meant by the term electronegativity and hence explain the polarity, if any, of the **bonds** in chlorine trifluoride, CIF₃. (3) (e) What is the number of ions in $9.53\,\mathrm{g}$ of magnesium chloride, MgCl₂? [Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$] (1) - lacktriangle A 6.02 imes 10²² - $lacktriangleq B 1.20 imes 10^{23}$ - \square C 1.81×10^{23} - \square **D** 6.02 × 10²³ (Total for Question 1 = 9 marks) **2** This question is about the structure of the atom and isotopes. The following excerpt is taken from the book *Inorganic Chemistry* by Bailey and Snellgrove, fourth impression 1938. "Some of the electrons are also contained in the nucleus, whilst the remainder are arranged in rings revolving round the nucleus The two isotopes [of chlorine] have therefore 18 and 20 electrons respectively in the nucleus and 17 [electrons] external to it." | | (a) | Identify | / and | correct two | errors | in | the | excer | p1 | |--|-----|----------|-------|--------------------|--------|----|-----|-------|----| |--|-----|----------|-------|--------------------|--------|----|-----|-------|----| (2) (b) What is the structure of a 1+ ion of the carbon-13 isotope? (1) - A six protons, six neutrons and five electrons - **B** six protons, seven neutrons and six electrons - C six protons, seven neutrons and five electrons - **D** seven protons, six neutrons and six electrons - (c) (i) State what is meant by the term **relative atomic mass**. (2) 4 (ii) A 5.000 g sample of lithium, containing the two isotopes lithium-6 and lithium-7, was found to contain 0.460 g of the isotope lithium-6. Calculate the relative atomic mass of lithium for this sample. Give your answer to an appropriate number of significant figures. | Isotope | Relative isotopic mass | |-----------|------------------------| | Lithium-6 | 6.015 | | Lithium-7 | 7.016 | (3) (d) A mass spectrometer was used to analyse a sample of bromine, Br_2 , with only the ^{79}Br and ^{81}Br isotopes present. Explain why a very small peak occurs at m/z = 80. (2) (Total for Question 2 = 10 marks) A student used the apparatus in the diagram to determine the molar volume of a gas. The student used a piece of magnesium ribbon, which was about 5 cm in length, and the dilute hydrochloric acid was in excess. The experiment was repeated three times at 24°C and the following results were obtained. | | Experiment 1 | Experiment 2 | Experiment 3 | |--|--------------|--------------|--------------| | Mass of magnesium / g | 0.04 | 0.04 | 0.04 | | Volume of hydrogen gas / cm ³ | 31 | 25 | 32 | The equation for the reaction is $$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$ (a) (i) Calculate the number of moles of magnesium used by the student in each experiment. (1) (ii) Use your answer from part (a)(i) to deduce the number of moles of hydrogen gas that should be produced. (1) (iii) Calculate, using the Ideal Gas Equation, the volume of hydrogen gas, in **cm**³, that should be produced in each of these experiments. $$[pV = nRT$$ $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $p = 101000 \text{ Pa}]$ (4) (b) Give a reason why the student repeated the experiment three times. (1) (c) Give three reasons for the difference between your calculated value in (a)(iii) and the actual volumes of hydrogen gas obtained by the student. For each reason, identify a change to either the apparatus or the chemicals that could be made by the student to improve the result. (6) (Total for Question 3 = 13 marks) The labels on four colourless solutions had fallen off in storage. It was known that the solutions were: hydrochloric acid magnesium sulfate potassium chloride sodium carbonate In order to identify each solution, a number of tests were carried out. (a) Solutions can be sprayed into a flame to produce a flame colour identical to that seen in the more conventional method with a solid on a nichrome wire. Which solution would produce a lilac flame? (1) - A hydrochloric acid - magnesium sulfate - potassium chloride - sodium carbonate - (b) Which of the following diagrams best illustrates the electronic transitions that take place during a flame test? (1) C | (c) Which solution produces a white precipitate with acidified barium chloride solution | n?
(1) | |---|-----------| | ☑ A hydrochloric acid | | | ■ B magnesium sulfate | | | □ C potassium chloride | | | ☑ D sodium carbonate | | | (d) Two of the solutions produce the same result on the addition of dilute nitric acid followed by silver nitrate solution. | | | State the observation with this test and the two solutions that give this result. | (2) | | Observation | | | Solutions | | | (e) The hydrochloric acid and the sodium carbonate solution react together. State an observation you would make and write the ionic equation for the reaction. State symbols are not required. | (2) | | Observation | | | Ionic equation | | | | | | | | | | | | | | | (Total for Question 4 = 7 mar | ks) | | | | **5** A solution of nitric acid, HNO₃, of concentration 100 g dm⁻³, can be used to artificially age wood. A sample of nitric acid, thought to be suitable for this use, was diluted by pipetting 10.00 cm³ of this acid into a 250 cm³ volumetric flask, adding deionised water and making the solution up to the mark. The solution was thoroughly mixed. A titration was carried out using this diluted solution of nitric acid. The burette was filled with 0.0800 mol dm⁻³ sodium hydroxide solution and 25.00 cm³ of the diluted nitric acid was pipetted into each of three conical flasks. The following results were obtained. | | Titration 1 | Titration 2 | Titration 3 | |---|-------------|-------------|-------------| | Final burette reading / cm ³ | 20.50 | 40.40 | 20.00 | | Initial burette reading / cm ³ | 0.00 | 20.50 | 0.00 | | Volume added / cm ³ | 20.50 | 19.90 | 20.00 | The equation for the reaction is $$HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$$ (a) Select the appropriate titres and calculate the mean titre in cm³. (1) (b) Calculate the concentration of the **undiluted** nitric acid in g dm⁻³. Give your answer to one decimal place. Deduce whether this nitric acid is suitable for use in artificially ageing wood. (5) (c) Complete the dot-and-cross diagram for the bonding in nitric acid, showing only outer shell electrons. Use (•) for the oxygen electrons, (**x**) for the nitrogen electrons and (*) for the hydrogen electron. (d) One possible method for the formation of nitric acid involves the reaction between dinitrogen tetroxide and water. $$3N_2O_4 + 2H_2O \rightarrow 4HNO_3 + 2NO$$ Calculate the atom economy for the formation of nitric acid from this reaction. (1) (Total for Question 5 = 10 marks) **6** (a) The diagram shows bond angles in ammonia and water. Explain why the bond angle in water is less than the bond angle in ammonia. (2) (b) Explain why the O—H and S—H bond lengths are different. (3) (Total for Question 6 = 5 marks) 7 *(a) A student suggested that the difference in the rates of reaction of strontium and barium with water is due to the difference in the sum of their first and second ionisation energies. Discuss this suggestion. (6) |
 | ••••• |
 |
••••• |
 | | |------|-------|------|-----------|------|--| | | | | | | | |
 | |
 |
 |
 | | | | | | | | | (b) Which is the equation for the **third** ionisation energy of barium? (1) - \blacksquare **A** Ba(s) \rightarrow Ba³⁺(g) + 3e⁻ - \square **C** Ba²⁺(g) \rightarrow Ba³⁺(g) + e⁻ - \square **D** Ba³⁺(g) \rightarrow Ba⁴⁺(g) + e⁻ | (c) Explain why magnesium nitrate, $Mg(NO_3)_2$ decomposes more readily on heating than potassium nitrate, KNO_3 . | | | | | |--|-----|--|--|--| | than potassium mitrate, kno ₃ . | (4) | (d) Some metal carbonates also undergo thermal decomposition | | | | | (i) Draw a diagram of the apparatus that could be used to compare the ease of thermal decomposition of lithium carbonate, Li₂CO₃, and magnesium carbonate, MgCO₃. (2) | (ii) State one way in which you would ensure a fair test. | (1) | |--|----------| | | | | (iii) State how data obtained in this experiment could be used to make a comparison. | (1) | | | | | (Total for Question 7 = 15 | i marks) | - 8 The properties of elements and their compounds are determined by their structure and bonding. - (a) Magnesium oxide has a very high melting temperature. Which of the following is the best description of its structure and bonding? (1) - 🛛 🗛 giant ionic - B giant metallic - C giant covalent - D simple covalent - (b) Sulfur reacts with fluorine to form a number of different compounds. - (i) One compound contains 45.79% sulfur and 54.21% fluorine by mass. Calculate the empirical formula of this compound. (2) (ii) In a dry container, a fluoride of silver reacts with sulfur to produce disulfur difluoride. Complete the equation for this reaction. State symbols are not required. (1) $$S_8 + \dots AgF_2 \rightarrow \dots S_2F_2 + \dots AgF$$ (iii) Explain, by using the oxidation numbers of **all** the atoms, whether or not this is a redox reaction. (3) | (c) Element X has the typical appearance of a metal. | | |---|-------| | Predict two other distinct physical properties that element X would exhibit if it is a metal. Explain your choices in terms of structure and bonding. | | | | (4) | (Total for Question 8 = 11 ma | arks) | | TOTAL FOR DARER OF MA | DIVE | **TOTAL FOR PAPER = 80 MARKS** # **BLANK PAGE** # **BLANK PAGE** DO NOT WRITE IN THIS AREA # The Periodic Table of Elements 0 (8) | (18) 4.0 He helium 2 2 0.0 20.2 Ne neon 10 10 10 10 10 10 10 10 10 1 | but not fully authenticated | | |---|-----------------------------|--------| | (1) in | 1 | Γ, | | (17) 19.0 F fluorine 9 35.5 Cl Cl Chlorine 17 79.9 Br Dromine 35 126.9 I iodine 53 At astatine 85 | Ď
D | , | | (16) 16.0 O oxygen 8 32.1 S sulfur 16 79.0 Selenium 34 Te tellurium 52 [209] Po potonium 84 | icate | í | | (15) 14.0 N nitrogen 7 31.0 Phosphorus 15 As arsenic 33 121.8 Sb antimony 51 209.0 Bi bismuth 83 | but not fully authenticated | | | (14) 12.0 C Carbon 6 28.1 Siticon p 14 72.6 Ge germanium 32 118.7 Sn tin 50 207.2 Pb tead 82 | but not fu | -,, | | (13) 10.8 B boron 5 27.0 All aluminium 13 Ga gallium 8 31 In indium 49 204.4 Tl thallium 81 | שורו מ | .,, | | (12) a 65.4 Zn zinc 30 Cd Cd admium 48 Me mercury 180 80 | | .,, | | (11)
63.5
Cu
copper
29
29
107.9
Ag
Ag
Ag
Silver
47
Au
197.0
Au
Sold
79 | roentgenium
111 | | | (10) S8.7 Ni nickel 28 106.4 Pd palladium 46 195.1 Pt platinum 78 | E. | 1.77 | | (9) 58.9 Co cobalt 27 102.9 Rh rhodium F 45 192.2 Ir iridium 77 M** | Ē | | | 1.0 Hydrogen 1.0 Fe iron 26 101.1 Ru ruthenium 44 190.2 Os osmium 76 Lr77] | E | 01, | | | bohrium
107 | [7, 7] | | bol (b) (7) (c) (7) (c) (7) (c) (7) (d) (7) 52.0 54.9 Cr Mn chronium manganese 24 25 95.9 [98] Mo Tc molybdenum technetium 42 43 183.8 186.2 W Re tungsten rhenium 74 75 [266] [264] | seaborgium
106 | ,,,, | | Key relative atomic mass atomic symbol name atomic (proton) number | <u> ∃</u> | *** | | relativing atomic (4) (4) 47.9 Ti titanium 22 91.2 Zr 27 Zr 2178.5 Hf hafinium 72 Def 196 | <u>ij</u> | , | | (3) S.C. andium 21 Ctrium 39 Ctrium 39 Ctrium 38.9 Ctrium 38.9 Ctrium 38.9 Thrian 38.9 Thrian 38.9 Ctrium 38.9 Thrian 38.9 Thrian 38.9 Ctrium 38.9 Ctrium 38.9 | ٦ ' | | | (2) 9.0 Be beryllium 4 24.3 Mg magnesium 12 40.1 Ca m calcium sc 20 87.6 Sr Sr 38 137.3 Ba Ba Ba Ba | radium
88 | | | (1) 6.9 Li lithium 3 23.0 Na sodium 11 39.1 K potassium 19 85.5 Rb rubidium 37 132.9 Cs caesium 55 Er | francium
87 | | * Lanthanide series * Actinide series | | | | | _ | | |--------------------|--------------------------|-------|----------|--------------|-----| | | lutetium
71 | [257] | | lawrenciur | 103 | | 173
Yb | ytterbium
70 | [254] | | | 102 | | 169
Tm | thulium
69 | [256] | DW | mendelevium | 101 | | 167
Er | erbium
68 | [253] | FB | fermium | 100 | | 165
Ho | holmium
67 | [254] | ES | einsteinium | 66 | | 163
Dy | dysprosium
66 | [251] | ל | californium | 86 | | | terbium
65 | [245] | Σ¥ | berkelium | 26 | | 157
Gd | gadolinium
64 | [247] | <u>ج</u> | aurium | 96 | | 152
Eu | europium
63 | [243] | Am | americium | 95 | | 150
Sm | samarium
62 | [242] | Pu | plutonium | 94 | | [147]
Pm | promethium
6 1 | [237] | d
N | neptunium | 93 | | 144
Nd | neodymium
60 | 238 | D | uranium | 92 | | 141
Pr | praseodymium
59 | [231] | Z
B | protactinium | 91 | | 140
Ce | cerium
58 | 232 | _ | thorium | 90 |