

GCE

Chemistry A

Unit H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2017

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
V	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
[1]	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

C	luest	ion	Answer	Marks	Guidance
1	(a)	(i)	Electrostatic attraction between positive and negative ions	1	ALLOW oppositely charged ions ALLOW cations and anions ALLOW '+' for positive and '-' for negative IGNORE references to metal and non-metal IGNORE references to transfer of electrons
		(ii)	$\begin{bmatrix} Ba \end{bmatrix}^{2+} \begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \end{bmatrix}^{2-}$ Ba shown with either 0 or 8 electrons AND O shown with 8 electrons with 6 dots and 2 crosses (or vice versa)	2	For first mark, if eight electrons are shown around Ba, the 'extra' electrons around O must match the symbol chosen for the electrons for Ba. IGNORE inner shells Circles not required Brackets not required
		(iii)	Correct charges on both ions \checkmark FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.89×10^{21} award 2 marks for calculation <i>Moles of barium oxide</i> n(BaO) =1.50/153.3 OR 9.78 × 10 ⁻³ \checkmark <i>Number of barium ions</i> (9.78 × 10 ⁻³ × 6.02 x 10 ²³) = $5.89 \times 10^{21} \checkmark$ 3 SF AND standard form required	2	ALLOW 0.00978 up to calculator value 0.009784735 ALLOW ECF from incorrect moles of BaO Common incorrect answers are shown below IF 137.3 is used for the molar mass ALLOW 1 mark total for 6.58×10^{21} (0.010924981 mol) OR 6.56×10^{21} (0.0109 mol) IF 153 is used for the molar mass ALLOW 1 mark total for 5.90×10^{21}
	(b)	(i)	Barium chloride does not conduct electricity when solid AND	2	IGNORE use of 'free' instead of 'mobile' ALLOW ions are not free to move

Question	Answer	Marks	Guidance
	because it has ions which are fixed (in position/in lattice) Barium chloride conducts when in aqueous solution AND because it has mobile ions		ALLOW ions are held (in position/in lattice) ALLOW ions are not mobile IGNORE charge carriers DO NOT ALLOW electrons moving ALLOW one mark for comparison that does not identify (a) and (ag)
(ii)	Test for sulfate/SO42-White precipitate forms (when barium chloride solution is mixed with a solution containing sulfate ions)	2	identify (s) and (aq). IGNORE hydrochloric acid ALLOW white solid IGNORE cloudy DO NOT ALLOW test result linked to incorrect anion
(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2 award 2 marks $M(BaCl_2) = ((137.3 + (35.5 \times 2)) = 208.3 (g mol^{-1}) \checkmark$ 244.3 - 208.3 = 36 AND 36/18 = 2	2	ALLOW 208 (g mol ⁻¹) ALLOW ECF for incorrectly calculated molar mass provided the final answer is rounded to nearest whole number
(c) (i)	$(1s^2) 2s^2 2p^6$	1	IGNORE 1s ² seen twice ALLOW upper case letters AND subscripts
(ii)	Products of reaction $A = Barium hydroxide/Ba(OH)_2$ \checkmark $B = Ammonia/NH_3$ \checkmark Formula for barium nitride Ba_3N_2 \checkmark Balanced equation AND state symbols $Ba_3N_2(s) + 6H_2O(I) \rightarrow 3Ba(OH)_2(aq) + 2NH_3(g) \checkmark$ State symbols are required	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW one mark for correct products incorrectly labelled Formulae must be correct No ECF from any incorrect formula ALLOW multiples Correct equation with state symbols scores 4 marks
	Total	16	

Question	Answer	Marks	Guidance
2*	Please refer to marking instructions on page 5 of mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) All three scientific points are covered in detail and explained thoroughly. The method is logically structured and clear calculations are shown for an appropriate mass of metal and suitable volume of acid. The drawing of a tangent and determination of the gradient is communicated well. Level 2 (3–4 marks) Candidates cover all three scientific points but explanations may be incomplete. OR Two of the scientific points are described thoroughly with no omissions. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. e.g. there are clear calculations to justify mass and acid volume supported by some working and units; a simple description for determining initial rate related to tangent but no detail of how to measure gradient.	6	Indicative scientific points 1. Method • measure mass of (excess) zinc (using 2 decimal place balance) • measure volume of hydrochloric acid (using measuring cylinder) • mix zinc and acid in flask • measure gas volume at time intervals 2. Calculations • moles of hydrogen 72/24000 = 0.00300 mol • minimum mass of zinc 0.003 × 65.4 = 0.20 g • moles of hydrochloric acid Zn + 2HCl \rightarrow ZnCl ₂ + H ₂ 0.00300 × 2 = 0.00600 mol • volume/concentration of acid If [HCl(aq)] = 0.1 mol dm ⁻³ appropriate volume of acid = 0.006 × 1000/0.1 = 60 cm ³ If [HCl(aq)] ≥ 0.3 mol dm ⁻³ , too low (≤ 20 cm ³) If [HCl(aq)] ≤ 0.03 mol dm ⁻³ too high (≥ 200 cm ³) 3. Processing results • Plot a graph of volume against time • Draw a tangent at $t = 0$ • Gradient of tangent = initial rate • Gradient = volume/time
	Level 1 (1–2 marks)		

Mark scheme

Question	Answer	Marks	Guidance
	 There is a description based on at least two of the main scientific points OR The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. e.g. 'add zinc and acid and measure volume (no mass, volume or time intervals); calculations that have little structure, absent units and little working. 0 marks No response or no response worthy of credit. 		
	Total	6	Level 0

Question	Answer	Marks	Guidance
3 (a) (i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2510 (kJ mol ⁻¹) award 4 marks IF answer = $2508 / 2507$ (kJ mol ⁻¹) award 3 marks (not rounded to 3SF, ignore sign) IF answer = $+ 2510$ (kJ mol ⁻¹) award 3 marks (incorrect sign) IF answer = -2510000 (kJ mol ⁻¹) award 3 marks (used J instead of kJ)	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	<i>Moles</i> $n(C_6H_{14}) = 0.0150 \text{ mol}$ ✓		moles = 1.29/86.0 IGNORE trailing zeros
	Energy q calculated correctly = 37620 (J) OR 37.620 (kJ) ✓		$q = 200 \times 4.18 \times 45.0$ ALLOW correctly rounded to 3 sig figs: 37.6 kJ ALLOW ECF from incorrect q
	Calculating ΔH Correctly calculates ΔH in kJ mol ⁻¹ AND to 3 or more SF \checkmark Rounding AND sign calculated value of ΔH rounded to 3 SF AND '-'sign \checkmark		ALLOW ECF from incorrect molar mass or incorrect moles of hexane to 3 SF or more correctly rounded IGNORE sign at this intermediate stage IGNORE working $\Delta H = 37.62/0.015 = 2508 \text{ (kJ mol}^{-1})$ $\Delta H = 37.6/0.015 = 2507 \text{ (kJ mol}^{-1})$ $\Delta H = -2510 \text{ (kJ mol}^{-1})$ Final answer must have '' sign and 3 SF

H032/	02
-------	----

Question	Answer	Marks	Guidance
(ii)	Any two from the following: $\checkmark \checkmark$	2	
	Heat released to the surroundings		ALLOW heat loss
	Incomplete combustion		ALLOW incomplete reaction OR not everything burns
	Non-standard conditions		IGNORE reference to evaporation
(b) (i)	Value for butane plotted accurately on the graph \checkmark	1	relative molecular mass = 58
			$\Delta_{\rm c} H^{\circ} = -2877 \text{ kJ mol}^{-1}$
			0 20 40 60 80 100
			-1000
			-2000
			-3000
			-4000
			Check accuracy:
			There must be a visible pointVertically: touching the 58 line
			Horizontally: between 2800 and 2900
(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE	3	relative molecular mass = 72

June 2017

Question	Answer	Marks	Guidance
	IF energy released = 87.5 (minimum) to 90 (maximum) AND line is extrapolated to 72 (molar mass) award 3 marks IF energy released <87.5 OR > 90.0 check the estimated value of $\Delta_c H^{e}$ from the graph Estimation of $\Delta_c H^{e}$ extrapolated (straight) line of best fit (see graph) AND correctly estimated value $\Delta_c H^{e}$ from graph \checkmark		$\Delta_{c}H^{e} = -3509 \text{ kJ mol}^{-1}$ $a_{c}H^{e} = -3509 \text{ kJ mol}^{-1}$
	Calculation of energy released $n(C_5H_{12}) = 0.0250 \text{ mol } \checkmark$		moles = 1.80/72.0
	energy released = 0.0250 × correctly estimated value of $\Delta_c H^{e}$ \checkmark		IGNORE sign ALLOW ECF from incorrectly calculated moles of pentane OR incorrectly estimated $\Delta_c H^{\circ}$

Question	Answer	Marks	Guidance
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change = -3919.5 (kJ mol ⁻¹) award 3 marks IF enthalpy change = (+)3919.5 (kJ mol ⁻¹) award 2 marks Working for CO ₂ AND H ₂ O seen anywhere (1 mark) $6 \times (-)393.5$ AND $6 \times (-)285.8$ OR (-)2361 AND (-)1714.8 OR (-)4075.8 \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible
	Calculates $\Delta_c H$ A further 2 marks for correct answer AND correct sign = $(6 \times -393.5) + (6 \times -285.8) - (-156.3)$ = -3919.5 (kJ mol ⁻¹) $\checkmark \checkmark$		ALLOW 3 marks for $\Delta_c H = -3920$ <i>FINAL answer rounded to 3 SF</i> Common incorrect answers are shown below ALLOW 2 marks for $\Delta_c H = -3924$ <i>From</i> $\Delta_c H = (6 \times -394 + 6 \times -286) - (-156)$ <i>Data rounded to 3 sig figs</i> ALLOW 2 marks for $\Delta_c H = -4232.1$ <i>All data added together</i> $(6 \times -393.5) + (6 \times -285.8) + (-156.3)$ ALLOW 1 mark for $\Delta_c H = (+)4232.1$
	Total	13	

C	Questi	on	Answer	Marks	Guidance	
4	(a)		Displayed formulae of CH ₃ OH and H ₂ O AND C-O AND O-H polar bonds shown on CH ₃ OH molecule with δ + and δ AND Both O-H polar bonds shown on H ₂ O molecule with δ + and δ Two lone pairs shown on both oxygen atoms AND Hydrogen bond/H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol	2	Must be displayed formulae Hydrogen bond H H H H H H H H H H H H H	
	(b)	(i)	3-methylbutan-2-ol ✓	1	ALLOW 3-methyl-2-butanol ALLOW 3-methylbutane-2-ol ALLOW absence of hyphens IGNORE commas DO NOT ALLOW 2-methylbutan-3-ol	
		(ii)	Peak X (<i>m/z</i> = 45) CH ₃ CHOH ⁺ √	2	C ₅ H ₁₂ O has lost C ₃ H ₇ IGNORE C ₂ H ₅ O ⁺ OR C ₂ H ₄ OH ⁺ <i>ambiguous</i> DO NOT ALLOW unfeasible fragments e.g. C ₃ H ₉ ⁺ (too many H atoms) ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above for both structures	
			Peak Y (<i>m/z</i> = 88)		IGNORE $C_5H_{12}O^+$ ALLOW $C_5H_{11}OH^+$	

Question	Answer	Marks	Guidance
	CH ₃ CH(CH ₃)CH(OH)CH ₃ ⁺ or CH ₃ CH(OH)CH(CH ₃) ₂ ⁺ √		 + charge (anywhere on structure) required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge ALLOW one mark if both formulae are correct but incorrectly labelled X/Y
(c)*	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive explanation with all three scientific points covered thoroughly. There is a well-developed description with a logical structure including correct chemical equations and an explanation with a clear line of reasoning including a fully labelled diagram. Level 2 (3-4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with no omissions. The description has a line of reasoning presented with some structure and includes correct structural formulae and an accurate diagram of a distillation apparatus. Level 1 (1-2 marks) A simple explanation based on at least two of the main scientific points	6	 Indicative scientific points <u>1. Oxidation reaction forming aldehyde</u> acid/H⁺ AND dichromate/Cr₂O₇²⁻ heat AND distillation organic product is butanal/CH₃CH₂CH₂CH₀ CH₃CH₂CH₂CH₂OH + [O] → CH₃CH₂CH₂CHO +H₂O <u>2. Oxidation reaction forming carboxylic acid</u> acid/H⁺ AND dichromate/Cr₂O₇²⁻ heat under reflux organic product is butanoic acid/ CH₃CH₂CH₂CH₂OH + 2[O] → CH₃CH₂CH₂CH₂OOH CH₃CH₂CH₂COOH + 42[O] → CH₃CH₂CH₂COOH + H₂O <u>3. Distillation</u> diagram of apparatus with condenser condenser has water flow collection of organic product product is separated to prevent further oxidation (to carboxylic acid)

Question	Answer	Marks	Guidance
	 OR The candidate explains one scientific point thoroughly with few omissions. The description may be communicated in an unstructured way but it includes the correct reagents and conditions for the formation of the aldehyde. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 		Water Out
	0 marks – No response or no response worthy of credit.		
	Total	11	

Mark scheme

June 2017

G	Question		Answer	Marks	Guidance
5	(a)		$\begin{array}{c} C_n H_{2n} O_2 \\ \textbf{OR} \\ C_n H_{2n+1} COOH \ \checkmark \end{array}$	1	
	(b)	(i)	Tetrahedral AND 109.5(°) ✓ four bonded pairs repel OR four bonds repel ✓	2	Mark each point independently ALLOW range 109 – 110° IGNORE surrounded by four atoms IGNORE four areas of electron charge repel IGNORE four electron pairs repel (<i>one could be lp</i>) DO NOT ALLOW atoms repel
		(ii)	104.5(°) ✓	1	ALLOW range 104 – 105°
	(c)		LOOK ON THE SPECTRUM for labelled peaks which can be given credit C=O 1630 - 1820 (cm ⁻¹) AND C=O \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW wavenumber values that identify the peak within the range 1630 – 1820 ALLOW carbonyl OR aldehyde OR ketone for C=O
			$\begin{array}{c} O-H\\ 3200-3600\ \mathrm{cm}^{-1}\\ \mathbf{AND}\\ O-H \checkmark\\ \end{array}$ $\begin{array}{c} Any\ two\ structures\ of\ compound\ \mathbf{B}\ from\\ CH_{3}COCH_{2}OH\\ CH_{2}(OH)CH_{2}CHO\\ CH_{3}CH(OH)CHO\\ \end{array}$		ALLOW wavenumber values that identify the peak within the range 3200 – 3600 ALLOW alcohol for O–H IGNORE other bonds ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above IGNORE names Penalise incorrect connectivity once only

Question	Answer		Guidance
(d) (i)	Ultraviolet (radiation)/UV ✓	1	ALLOW sunlight IGNORE temperature
(ii)	$CH_3CH_2COOH + CI_2 \rightarrow CH_3CHCICOOH + HCI \checkmark$	1	ALLOW C ₂ H ₅ COOH + Cl ₂ \rightarrow C ₂ H ₄ ClCOOH + HCl ALLOW C ₃ H ₆ O ₂ + Cl ₂ \rightarrow C ₃ H ₅ ClO ₂ + HCl
(iii)	one electron from the bond (pair) goes to each atom/chlorine/radical ✓	1	ALLOW the breaking of a covalent bond where each atom keeps one of the bonding electrons IGNORE particle for atom ALLOW one electron from the bond goes to each product / species DO NOT ALLOW molecule or compound for atom IGNORE homolytic fission equations
(iv)	Propagation step 1 Cl• + CH ₃ CH ₂ COOH → CH ₃ CHCOOH• + HCl ✓Propagation step 2 CH ₃ CHCOOH• + Cl ₂ → CH ₃ CHCICOOH + Cl• ✓	2	ALLOW 1. Cl• + $C_3H_6O_2 \rightarrow C_3H_5O_2$ • + HCl 2. $C_3H_5O_2$ • + Cl ₂ $\rightarrow C_3H_5ClO_2$ + Cl• ALLOW dot at any position on the radical ALLOW 1 mark if both equations correct but any dots omitted from radicals
(v)		1	Dot shown in correct position ALLOW –OH

Mark scheme

C	Question		Answer	Marks	Guidance
		(vi)	Any structure with two or more CI atoms on alkyl chain (provided that one CI is at C–2) e.g. H $ C$ C C C C C C C C C	1	 ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above DO NOT ALLOW C₃H₄Cl₂O₂ ALLOW further substitution into any or all of the 4 positions occupied by H atoms in the alkyl group, provided that at least one Cl is at C-2
			Total	15	

Mark scheme

H032/02	
Question	

G	Question		Answer		Guidance	
6	(a)	(i)	OH	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous	
			Acid (catalyst) AND heat ✓		ALLOW (heat under) reflux ALLOW H ₃ PO ₄ OR H ₂ SO ₄ OR H ⁺ DO NOT ALLOW other named acids IGNORE concentration/pressure IGNORE water/steam	
		(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 44.4(%) award all 3 marks for calculation Amount cyclohexene (m/M) = 1.23/82 OR 0.0150 mol ✓	3	If there is an alternative answer, check to see if there is any ECF credit possible	
			<i>Amount of bromocyclohexane</i> (<i>m/M</i>) = 5.50/162.9 OR 0.0338 mol √		ALLOW 3 SF: 0.0338 up to calculator value of 0.033763044 correctly rounded	
			% <i>yield</i> = (0.0150/0.0338) × 100 = 44.4(%) ✓ Final answer must be to 3 significant figures		Common ECFs(2 marks)• Incorrect $M_r \rightarrow$ incorrect moles of cyclohexene• Incorrect $M_r \rightarrow$ incorrect moles of 2- bromocyclohexanee.g. ALLOW two marks for use of incorrect mass of bromocyclohexane with other calculations correct e.g. (5.50/163) = 0.033742331 \rightarrow 44.5%	
	(b)			4	ALLOW calculation in mass Theoretical mass yield: $m(C_6H_{10}) = 0.0338 \times 82 = 2.77 \text{ g}$ % yield = (1.23/2.77) × 100 = 44.4% ANNOTATE ANSWER WITH TICKS AND	

Question	Answer	Marks	Guidance
	Curly arrow from double bond to Br of Br–Br \checkmark Correct dipole shown on Br–Br AND curly arrow showing breaking of Br–Br bond \checkmark $\overset{Br\delta-}{\overset{Br\delta-}{\overset{Br\delta+}{\overset{Br}{s}}{\overset{Br}{\overset{Br}{s}}{\overset{Br}{\overset{Br}{s}}{\overset{Br}{s}}}}{\overset{Br}{\overset{Br}{s}}{\overset{Br}{s}}{s}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$		 CROSSES ETC Curly arrow must start from bond and go to correct atom DO NOT ALLOW any other partial charges e.g. shown on double bond DO NOT ALLOW missing H on displayed formulae (penalise once only)
	Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br^- to C ⁺ of carbocation \checkmark H^{+} H^{+}		 DO NOT ALLOW δ+ on C of carbocation. Curly arrow must come from a lone pair on Br⁻ OR from the negative sign of Br⁻ ion (then lone pair on Br⁻ ion does not need to be shown) IGNORE wording if diagrams are correct
	Correct product:		Maximum of two marks for mechanism based on incorrect structure of cyclohexene
	Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017

