

F

# GCSE (9-1) Physics A (Gateway Science)

**J249/02** Paper 2, P5 – P8 and P9 (Foundation Tier)

# Friday 15 June 2018 – Morning

Time allowed: 1 hour 45 minutes

#### You must have:

- a ruler (cm/mm)
- the Data Sheet (for GCSE Physics A (inserted))

#### You may use:

- · a scientific or graphical calculator
- an HB pencil



| First name    |                  |
|---------------|------------------|
| Last name     |                  |
| Centre number | Candidate number |

### **INSTRUCTIONS**

- The data sheet will be found inside this document.
- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided. If additional space is required, use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Do **not** write in the barcodes.

### **INFORMATION**

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [ ].
- Quality of extended responses will be assessed in questions marked with an asterisk (\*).
- This document consists of 24 pages.

© OCR 2018 [601/8651/3] DC (NH/TP) 160476/5 OCR is an exempt Charity

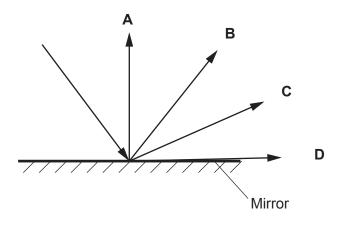
Turn over

2

### **SECTION A**

### Answer all the questions.

You should spend a maximum of 30 minutes on this section.


| 1 | Some   | electroma    | anetic  | waves | are i | used to | scan  | a n | erson  | in | host  | oital. |
|---|--------|--------------|---------|-------|-------|---------|-------|-----|--------|----|-------|--------|
|   | COLLIC | CICCUI CITIC | griotio | WUVUU | alo i | aooa to | Journ | чν  | CIOCII |    | 11001 | Jitai. |

Which statement is true about a scan that uses electromagnetic waves?

- A Micro-waves are used to scan skin.
- **B** Ultrasound waves are used to scan an unborn baby.
- **C** Ultra-violet is used to scan for cancer.
- **D** X-rays are used to scan for broken bones.

Your answer [1]

2 Which light ray shows the correct reflection from the plane (flat) mirror?



Your answer [1]

- 3 Which statement is true about the **nucleus** of an atom?
  - **A** It contains neutrons and ions and has a negative charge.
  - **B** It contains neutrons and ions and has a neutral charge.
  - **C** It contains neutrons and protons and has a neutral charge.
  - **D** It contains neutrons and protons and has a positive charge.

Your answer [1]

| 4 | Esti                   | mate the typical cruising speed of a jet airliner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |  |  |
|---|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|   | Α                      | 25 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |
|   | В                      | 250 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |  |  |
|   | С                      | 2500 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |
|   | D                      | 25 000 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |
|   | You                    | r answer [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ]  |  |  |  |
| 5 | A st                   | udent experiments with a model parachute and collects some results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |  |  |
|   | She                    | drops the parachute from a height of 4 m three times and takes three results of the time taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ١. |  |  |  |
|   | The three results are: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |
|   | 3.25<br>3.00<br>3.08   | Os established to the control of the |    |  |  |  |
|   | Wha                    | at is the mean of the three results?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |
|   | Α                      | 3.00s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |
|   | В                      | 3.08s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |
|   | С                      | 3.11s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |
|   | D                      | 3.25s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |
|   | You                    | r answer [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ]  |  |  |  |

6 A student wants to find out which heater produces the largest temperature rise.

Look at the results she collects and the calculations she makes.

| Heater | Starting<br>temperature<br>(°C) | Finishing<br>temperature<br>(°C) | Change in temperature (°C) |
|--------|---------------------------------|----------------------------------|----------------------------|
| Α      | 18                              | 28                               | 20                         |
| В      | 18                              | 36                               | 16                         |
| С      | 18                              | 44                               | 26                         |
| D      | 18                              | 51                               | 23                         |

| Which heater has results that are correctly calculated? |  |
|---------------------------------------------------------|--|
|                                                         |  |

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

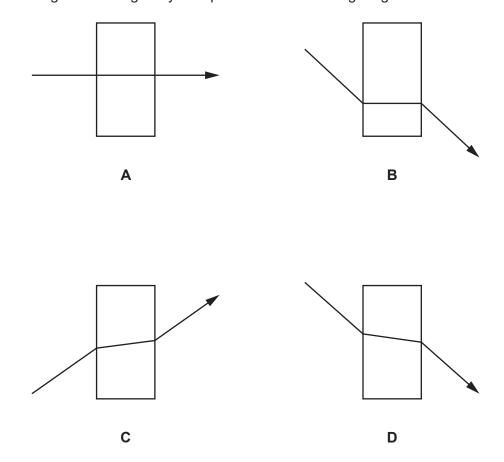
# 7 Which row **A**, **B**, **C** or **D**, is true for electromagnetic waves?

|   | Transmission                            | Туре         | Movement in space                                     |
|---|-----------------------------------------|--------------|-------------------------------------------------------|
| A | Transmit energy from absorber to source |              |                                                       |
| В | Transmit energy from absorber to source | Transverse   | Travel through space at different velocities          |
| С | Transmit energy from source to absorber | Longitudinal | Travel through space where all have the same velocity |
| D | Transmit energy from source to absorber | Transverse   | Travel through space where all have the same velocity |

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

| 8 | A ve | vehicle has an input power from fuel of 20 kW and a useful output power of 6 kW.         |     |  |  |  |  |  |
|---|------|------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|   | Cal  | Calculate the power it wastes.                                                           |     |  |  |  |  |  |
|   | Α    | 3kW                                                                                      |     |  |  |  |  |  |
|   | В    | 6kW                                                                                      |     |  |  |  |  |  |
|   | С    | 14 kW                                                                                    |     |  |  |  |  |  |
|   | D    | 20 kW                                                                                    |     |  |  |  |  |  |
|   | You  | er answer                                                                                | [1] |  |  |  |  |  |
| 9 | Wh   | ich statement is <b>correct</b> about geostationary satellites?                          |     |  |  |  |  |  |
|   | Α    | They are above the equator and they orbit the Earth in about 90 minutes at a high orbit. |     |  |  |  |  |  |
|   | В    | They are above the equator and they orbit the Earth in 24 hours at a high orbit.         |     |  |  |  |  |  |
|   | С    | They are above the equator and they orbit the Earth in 24 hours at a low orbit.          |     |  |  |  |  |  |
|   | D    | They are above the poles and they orbit the Earth in 24 hours at a low orbit.            |     |  |  |  |  |  |
|   | You  | er answer                                                                                | [1] |  |  |  |  |  |

10 A student measures the time it takes for the sound from a firework to reach the observer.


She takes 3 measurements of the time taken for four different distances, A, B, C and D.

|          | Time taken (s)     |                    |                    |  |  |
|----------|--------------------|--------------------|--------------------|--|--|
| Distance | 1st<br>measurement | 2nd<br>measurement | 3rd<br>measurement |  |  |
| Α        | 2.16               | 2.19               | 2.17               |  |  |
| В        | 1.99               | 2.02               | 1.97               |  |  |
| С        | 1.80               | 1.81               | 1.89               |  |  |
| D        | 1.69               | 1.68               | 1.71               |  |  |

Which distance A, B, C or D, has the largest range of values?

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

11 Look at the diagrams of a light ray as it passes from air through a glass block.



Which diagram shows an incorrect refraction?

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

12 A radio wave has a wavelength of 100 m. It has a speed of  $3 \times 10^8$  m/s.

Use the equation: Wave speed = Frequency × Wavelength

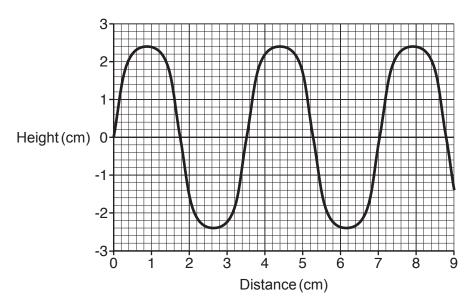
Calculate the frequency of the wave.

- A 3MHz
- B 30 MHz
- **C** 300 MHz
- **D** 3000 MHz

| Your answer | [1] |
|-------------|-----|
|-------------|-----|

13 Which equation shows a correct alpha decay?

- **A**  $^{241}_{95} \text{Am} \rightarrow ^{239}_{91} \text{Np} + ^{2}_{4} \text{He}$
- **B**  $^{241}_{95}$ Am  $\rightarrow ^{237}_{93}$ Np +  $^{0}_{2}$ He
- **C**  $^{241}_{95} \text{Am} \rightarrow ^{237}_{93} \text{Np} + ^{4}_{2} \text{He}$
- **D**  $^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{0}_{1}\text{He}$


| Your answer | [1] |
|-------------|-----|
| Your answer | [1] |

| 14 | A wooden block has a mass of 2 kg and a specific heat capacity of 2000 J/kg °C. |                                                                                |     |  |  |  |  |  |
|----|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|--|--|--|--|--|
|    | Cal                                                                             | Calculate the energy needed to raise its temperature by 6 °C.                  |     |  |  |  |  |  |
|    | Use                                                                             | e the equation:                                                                |     |  |  |  |  |  |
|    | Cha                                                                             | ange in thermal energy = Mass × Specific Heat Capacity × Change in Temperature |     |  |  |  |  |  |
|    | Α                                                                               | 1200 J                                                                         |     |  |  |  |  |  |
|    | В                                                                               | 2400 J                                                                         |     |  |  |  |  |  |
|    | С                                                                               | 12000 J                                                                        |     |  |  |  |  |  |
|    | D                                                                               | 24 000 J                                                                       |     |  |  |  |  |  |
|    | You                                                                             | ır answer                                                                      | [1] |  |  |  |  |  |
| 15 | A lo                                                                            | erry has a mass of 3500 kg. It travels at a speed of 30 m/s.                   |     |  |  |  |  |  |
|    | Use                                                                             | e the equation: Kinetic Energy = 0.5 × Mass × Speed <sup>2</sup>               |     |  |  |  |  |  |
|    | Cal                                                                             | culate the kinetic energy of this lorry.                                       |     |  |  |  |  |  |
|    | A                                                                               | 10500J                                                                         |     |  |  |  |  |  |
|    | В                                                                               | 52 500 J                                                                       |     |  |  |  |  |  |
|    | С                                                                               | 1575 000 J                                                                     |     |  |  |  |  |  |
|    | D                                                                               | 3150000J                                                                       |     |  |  |  |  |  |
|    | You                                                                             | ır answer                                                                      | [1] |  |  |  |  |  |

## **SECTION B**

Answer all the questions.

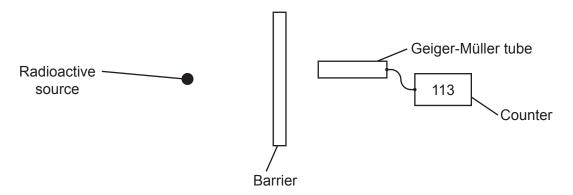
16 Look at the diagram of a water wave.



(a) (i) What is the wavelength of this wave?

| Answer | = | cm | [1] |
|--------|---|----|-----|
|        |   |    |     |

(ii) What is the amplitude of this wave?


(iii) The wavelength of the wave is changed to 25 cm. Two waves are produced each second.Use the equation: Wave speed = Frequency × WavelengthCalculate the speed of the wave.

| Answer = |  | m/s | [2 |
|----------|--|-----|----|
|----------|--|-----|----|

| (b) | Wat         | er waves are tr  | ansverse ar      | nd sound waves           | are longitudina      | ıl.     |            |     |
|-----|-------------|------------------|------------------|--------------------------|----------------------|---------|------------|-----|
|     | (i)         | Describe how     | water partic     | les move in a <b>tra</b> | <b>ansverse</b> wate | r wave. |            |     |
|     |             |                  |                  |                          |                      |         |            |     |
|     |             |                  |                  |                          |                      |         |            | [1] |
|     | (ii)        | Describe how     | air particles    | move in a <b>long</b> i  | itudinal sound       | wave.   |            |     |
|     |             |                  |                  |                          |                      |         |            |     |
|     |             |                  |                  |                          |                      |         |            | [1] |
| (c) | Loo         | k at the diagrar | n of the elec    | tromagnetic spe          | ectrum.              |         |            |     |
| Ra  | idio        | Microwave        | Infra-red        | Visible light            | Ultra-violet         | X-rays  | Gamma-rays |     |
|     | <b>(:</b> ) | Name             | 4b a4 b a a a la |                          | h 4h                 |         |            | _   |
|     | (i)         | name a wave      | ınaı nas a id    | onger wavelengt          | _                    |         |            | [1] |
|     |             |                  |                  |                          |                      |         |            |     |
|     | (ii)        | Name a wave      | that has a h     | igher frequency          | than violet ligh     | t.      |            |     |
|     |             |                  |                  |                          |                      |         |            | [1] |
|     | /iii\       | State two uses   | e of gamma       | rave                     |                      |         |            |     |
|     | (iii)       |                  | _                | -                        |                      |         |            |     |
|     |             |                  |                  |                          |                      |         |            |     |
|     |             |                  |                  |                          |                      |         |            | [2] |

**17** A teacher demonstrates an experiment about radioactivity. He demonstrates how different types of radiation can be absorbed.

He puts different barriers between the source and the Geiger-Müller tube. He uses four different radioactive sources  $\mathbf{A}$ ,  $\mathbf{B}$ ,  $\mathbf{C}$  and  $\mathbf{D}$ .



| (a) | Suggest two | safety | precautions | that | the | teacher | should | use | when | demonstrating | this |
|-----|-------------|--------|-------------|------|-----|---------|--------|-----|------|---------------|------|
|     | experiment. |        |             |      |     |         |        |     |      |               |      |

| 1 |      | <br> | <br> |     |
|---|------|------|------|-----|
|   |      |      |      |     |
|   | <br> | <br> | <br> |     |
| 2 |      |      |      |     |
|   | <br> | <br> | <br> |     |
|   | <br> | <br> | <br> |     |
|   |      |      |      | [2] |

(b) The teacher chooses source A and uses the Geiger-Müller tube to measure the count rate (counts per minute) for different barriers. He repeats the experiment with source B, source C and then source D.

Look at his results.

| Source | Count rate using different barriers |           |      |            |  |  |  |
|--------|-------------------------------------|-----------|------|------------|--|--|--|
| Source | Paper                               | Aluminium | Lead | No barrier |  |  |  |
| Α      | 113                                 | 112       | 22   | 112        |  |  |  |
| В      | 20                                  | 21        | 20   | 182        |  |  |  |
| С      | 162                                 | 23        | 21   | 164        |  |  |  |
| D      | 282                                 | 78        | 24   | 280        |  |  |  |

He also finds that the average count rate with no sources and no barriers is 20.

|     | (1)   | Which source A, B, C or D emits gaining radiation only?                                 |                |
|-----|-------|-----------------------------------------------------------------------------------------|----------------|
|     |       | Explain your answer.                                                                    |                |
|     |       | Source because                                                                          |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         | [2]            |
|     | (ii)  | Which source A, B, C or D emits alpha radiation only?                                   |                |
|     |       | Explain your answer.                                                                    |                |
|     |       | Source because                                                                          |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         | [2]            |
|     | (iii) | Which source A, B, C or D could emit both beta and gamma radiation?                     |                |
|     |       | Explain your answer.                                                                    |                |
|     |       | Source because                                                                          |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         | [2]            |
| (c) | The   | teacher notices that the count rate behind the lead barrier ranges from 20 to 24.       |                |
|     | Giv   | e <b>two</b> reasons why there are a wide range of results around 22 counts per minute. |                |
|     | 1     |                                                                                         |                |
|     |       |                                                                                         |                |
|     | 2     |                                                                                         |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         | [2]            |
| (d) | The   | teacher decides to repeat the experiment.                                               |                |
|     | This  | s time he records the number of counts for a much longer time interval for each source  | <del>)</del> . |
|     | Exp   | lain why this is an improvement to the experiment.                                      |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         |                |
|     |       |                                                                                         | [2]            |

18 Look at the information about different electric motors.

| Electric motor | Energy input per hour (J) | Useful energy output per hour (J) | Energy 'wasted'<br>per hour (J) |
|----------------|---------------------------|-----------------------------------|---------------------------------|
| Α              | 72 000                    | 60 000                            |                                 |
| В              | 54 000                    | 36 000                            |                                 |
| С              | 18 000                    |                                   | 3000                            |
| D              |                           | 48 000                            | 12 000                          |
| E              | 54000                     | 48 000                            |                                 |

(a) (i) Calculate the energy input per hour in  ${\sf J}$  for electric motor  ${\sf D}$ .

|     |       | Answer = J [2]                                                                   |
|-----|-------|----------------------------------------------------------------------------------|
|     | (ii)  | Which electric motor has the <b>lowest</b> 'wasted' energy in one hour?          |
|     |       | [1]                                                                              |
| (   | (iii) | Which electric motor has the <b>highest</b> 'wasted' energy in one hour?         |
|     |       | [1]                                                                              |
| (   | (iv)  | Describe how energy is 'wasted' in an electric motor.                            |
|     |       |                                                                                  |
|     |       | [1]                                                                              |
|     | (v)   | Suggest how this 'wasted' energy can be reduced in an electric motor.            |
|     |       |                                                                                  |
|     |       | [1]                                                                              |
| (b) | Cald  | culate the % efficiency of electric motor E.                                     |
|     | Use   | the equation: Efficiency = Useful output energy transfer / Input energy transfer |
|     | Give  | e your answer to <b>2</b> significant figures.                                   |

19 A student watches a ball game on the school field.

The student sees the ball being hit with a bat but he hears the sound a short time after. This is because the speed of light is greater than the speed of sound.

He decides to do an experiment to measure the speed of sound waves in air.

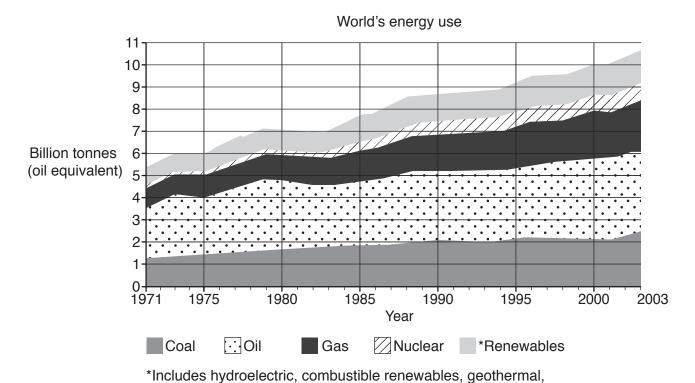
| (a) | Describe which measurements he needs to measure this speed.      |           |
|-----|------------------------------------------------------------------|-----------|
|     |                                                                  |           |
|     |                                                                  |           |
|     | [2                                                               | <u>']</u> |
| (b) | Which equation is used to calculate speed?                       |           |
|     | [1                                                               | ]         |
| (c) | Describe one way he could get valid results for this experiment. |           |
|     | [1                                                               |           |
|     |                                                                  |           |

**20** Fig. 20.1 shows thinking, braking and stopping distances for the same car travelling at different speeds.

| Speed<br>(m/s) | Thinking distance (m) | Braking distance<br>(m) | Stopping distance (m) |
|----------------|-----------------------|-------------------------|-----------------------|
| 8              | 6                     | 6                       | 12                    |
| 16             | 12                    | 24                      | 36                    |
| 32             | 24                    | 96                      | 120                   |

Fig. 20.1

| (a) | Describe how the <b>thinking distance</b> changes when the speed doubles. |
|-----|---------------------------------------------------------------------------|
|     | Use data from the table in your answer.                                   |
|     |                                                                           |
|     |                                                                           |
|     | [1]                                                                       |
| (b) | Calculate the reaction time of the person driving the car.                |
|     |                                                                           |
|     | Answer =s [3]                                                             |


| (c)* | Explain why the stopping distances are different for each speed in Fig. 20.1. |
|------|-------------------------------------------------------------------------------|
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      |                                                                               |
|      | [6]                                                                           |

| 21 | (a) | A car has a total weight of 12000 N. It has four tyres which each have an area of $25\mathrm{cm}^2$ in contact with the road. |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------|
|    |     | Calculate the pressure of the car on the road.                                                                                |
|    |     | Answer = N/cm <sup>2</sup> [3]                                                                                                |
|    | (b) | Seatbelts in cars are made of a wide material that stretches in a crash.                                                      |
|    |     | seatbelt material                                                                                                             |
|    |     | (i) Explain why it is important that the material is wide.                                                                    |
|    |     |                                                                                                                               |
|    |     | (ii) Explain why it is important that the material is <b>stretchy</b> .                                                       |
|    |     | [1]                                                                                                                           |
|    | (c) | Children in cars use special seats with their own seatbelts.                                                                  |
|    |     |                                                                                                                               |
|    |     | The seatbelts for children are narrower than adult seatbelts.                                                                 |
|    |     | Why is it safe for children's seatbelts to be <b>narrower</b> than adult seatbelts?                                           |
|    |     |                                                                                                                               |

22 This question is about force, mass and acceleration.

| (a) | A car starts from rest and accelerates at 3 m/s <sup>2</sup> .                       |
|-----|--------------------------------------------------------------------------------------|
|     | Use the equation: Acceleration = Change in velocity ÷ Time taken                     |
|     | Calculate the <b>velocity</b> of the car after 4s.                                   |
|     |                                                                                      |
|     |                                                                                      |
|     | Answer = m/s [2]                                                                     |
| (b) | A roller coaster car moves down a slope with an acceleration of 5 m/s <sup>2</sup> . |
|     | The force on the roller coaster car is 4000 N.                                       |
|     | Calculate the <b>mass</b> of the roller coaster car.                                 |
|     |                                                                                      |
|     |                                                                                      |
|     | Answer = kg [3]                                                                      |
|     |                                                                                      |

23 The graph shows how the World's energy use has changed from the year 1971 to the year 2003.
It also shows the amount of different energy sources used.

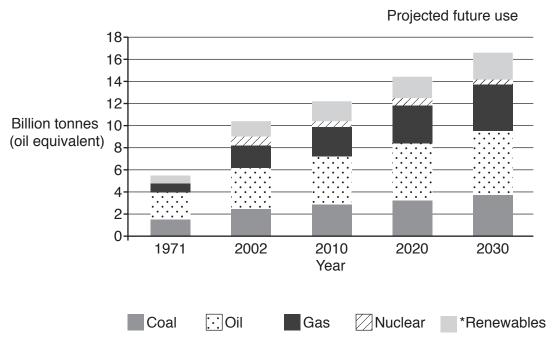


(a) (i) Approximately how much did the total World's energy use increase from the year 1971 to the year 2003?

| (ii) | Which energy source had the <b>greatest</b> use in the year 2003? |
|------|-------------------------------------------------------------------|
|      |                                                                   |
|      | [1]                                                               |

(iii) The total energy use in the year 2003 was 10.6 billion tonnes (oil equivalent).

Approximately what percentage of this amount was due to fossil fuel use?


| Answer | = |      |      | <br>0, | 6 | [2] |
|--------|---|------|------|--------|---|-----|
| ,      |   | <br> | <br> | <br>/  | v |     |

Answer = ..... billion tonnes (oil equivalent) [1]

solar, wind, etc.

(b) Scientists are researching the World's energy use for the future.

The graph shows some of their research.



\*Includes hydroelectric, geothermal, solar, wind etc.

| 4 | /:\ | The future | domond | for foodil | fuele ie | avpactad | to increase  |
|---|-----|------------|--------|------------|----------|----------|--------------|
| l | (1) | The future | uemanu | 101 105511 | iueis is | expedied | to increase. |

| Give two reasons why scientists are worried about this increase in dem | Give two reas | ons why scie | entists are | worried | about th | is increase | ; in ( | demar |
|------------------------------------------------------------------------|---------------|--------------|-------------|---------|----------|-------------|--------|-------|
|------------------------------------------------------------------------|---------------|--------------|-------------|---------|----------|-------------|--------|-------|

| 1. |    |
|----|----|
|    |    |
|    |    |
| 2  |    |
| ۷. |    |
|    | [2 |

(ii) In the UK the government is closing coal fired power stations and planning for new nuclear power stations to be built.

Suggest why the government wants more nuclear power stations.

| (C) | Pov      | ver stations in the UK generate electricity at 25 kV a.c.                                     |
|-----|----------|-----------------------------------------------------------------------------------------------|
|     | The      | voltage is then increased to 400 kV a.c. and distributed by power lines.                      |
|     | (i)      | Write down the full name of the device used to <b>increase</b> the voltage.                   |
|     |          | [1]                                                                                           |
|     | (ii)     | Why is it important to increase the voltage in these power lines?                             |
|     |          | [1]                                                                                           |
|     | (iii)    | The high voltages across the power lines are reduced to 230 V a.c. for use in the home.       |
|     |          | A phone charger changes the 230 V a.c. to a 5 V d.c.                                          |
|     |          | Explain the difference between d.c. and a.c.                                                  |
|     |          |                                                                                               |
|     |          |                                                                                               |
|     |          | [2]                                                                                           |
| (d) | A de     | omestic wind turbine has a power rating which varies from 1.0 kW to 3.0 kW.                   |
|     | (i)      | The domestic wind turbine has an electrical resistance of $23 \Omega$ .                       |
|     |          | It generates a current of 11A on a windy day.                                                 |
|     |          | Calculate the <b>power</b> output in kW of the turbine on this day.                           |
|     |          |                                                                                               |
|     |          |                                                                                               |
|     |          | Answer = kW <b>[4</b> ]                                                                       |
|     | (ii)     | Suggest why the manufacturer gives a range for the power rating of the wind turbine.          |
|     | (11)     |                                                                                               |
|     |          | F43                                                                                           |
|     | <b>/</b> | [1]                                                                                           |
|     | (iii)    | Using just <b>one</b> domestic wind turbine may be an unreliable source of power for a house. |
|     |          | State a reason why.                                                                           |
|     |          |                                                                                               |
|     |          | [1]                                                                                           |

# **END OF QUESTION PAPER**

# 23

# **ADDITIONAL ANSWER SPACE**

| If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |
|                                                                                                                                             |  |  |  |  |

| <br>   | <br> |
|--------|------|
|        |      |
|        |      |
| <br>   | <br> |
|        |      |
| <br>   | <br> |
|        | <br> |
|        |      |
| <br>   | <br> |
|        | <br> |
|        |      |
|        | <br> |
|        |      |
|        |      |
| <br>   | <br> |
|        |      |
|        | <br> |
| <br>   |      |
|        |      |
|        | <br> |
| <br>   | <br> |
|        |      |
| <br>   | <br> |
|        | <br> |
|        |      |
| <br>   | <br> |
|        | <br> |
|        |      |
| <br>   | <br> |
|        | <br> |
|        |      |
| <br>.] | <br> |

# OCR Oxford Cambridge and RSA

#### Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.