

Please	rite clearly in block capitals.
Centre	umber Candidate number
Surnar	
Forena	e(s)
Candio	e signature I declare this is my own work.

A-level PHYSICS

Paper 3
Section B Turning points in physics

Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

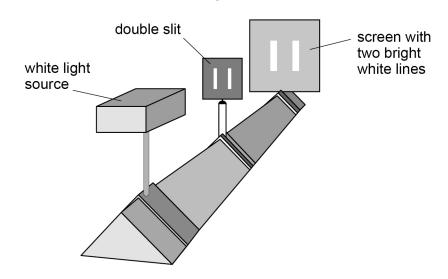
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
TOTAL					

Section B


Answer all questions in this section.

0 1

In the 17th century, Isaac Newton proposed a theory to explain some of the properties of light. An alternative theory of light was proposed by Christiaan Huygens at about the same time.

A student uses the arrangement in **Figure 1** to investigate the two theories.

Figure 1

0	1	-	1	The student observes two bright white lines on the screen
---	---	---	---	---

		observation				

[2 marks]	, ,		•

The student makes alterations to the apparatus in **Figure 1**.

[6 marks]

Figure 2 shows the red and dark fringes that the student now observes on the screen.

Figure 2

red fringes

dark fringes

Identify the alterations made by the student and explain how the observations in **Figure 2** support Huygens' theory of light.

In your answer you should:

- identify alterations made to the apparatus in Figure 1
- outline the key features of Huygens' theory
- explain how the result of this experiment supports Huygens' theory.

Answer space for t	his auestion	continues o	on the next p	age	

Turn over ▶

0 1 .

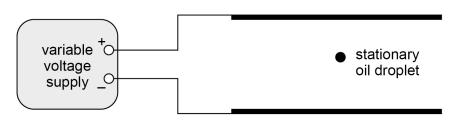
2

Do not write outside the box

-
l l
l l
l l
-
l l

0 1.3	Shortly before the work of Newton and Huygens, Francesco Grimaldi carried out an experiment into the behaviour of light. Figure 3 shows Grimaldi's arrangement.						
	Figure 3						
	bright white light source						
	A B						
	C D						
	screen						
	A bright white light source is used to illuminate a small circular aperture, AB . The light from this aperture illuminates a second, slightly larger circular aperture, CD .						
	The light passing through both apertures arrives at a screen.						
	Newton's theory and Huygens' theory make different predictions about the appearance of the light on the screen.						
	Discuss these differences in appearance. [3 marks]						

11



0 2

Robert Millikan experimented with oil drops to determine a value for the electronic charge.

Figure 4 shows a stationary oil droplet between two horizontal metal plates. The plates are connected to a variable voltage supply so that the upper plate is positive. The oil droplet has mass m and charge Q.

Figure 4

0 2 . 1 State and explain the sign of the charge on the oil droplet.

Γ1	mark1
L -	

The variable voltage supply is set to zero volts. The oil drop falls. The constant speed ν_1 of the falling oil droplet is found to be $3.8\times 10^{-5}~{\rm m~s^{-1}}$ and the following measurements are recorded:

density of oil =
$$910~kg~m^{-3}$$
 viscosity of air = $1.8\times10^{-5}~N~s~m^{-2}$

0 2. **2** Show that the mass m of the oil droplet is about 8×10^{-16} kg.

[3 marks]

- 0 2 . 3
- The variable voltage supply is adjusted so that the oil droplet rises at a constant speed v_2 . The potential difference (pd) across the plates is V and the distance between the plates is *d*.

In his experiment, Millikan measured the constant speed v_1 of a falling droplet when the pd was zero. He compared this with the speed v_2 of the same droplet when the droplet was made to rise.

$$\frac{v_2}{v_1} = \frac{VQ}{dmg} - 1$$

[2 marks]

2 The following measurements are made for the droplet in Question 02.2 when it is rising at constant speed.

$$V = 715 \text{ V}$$

$$v_2 = 1.1 \times 10^{-4} \text{ m s}^{-1}$$

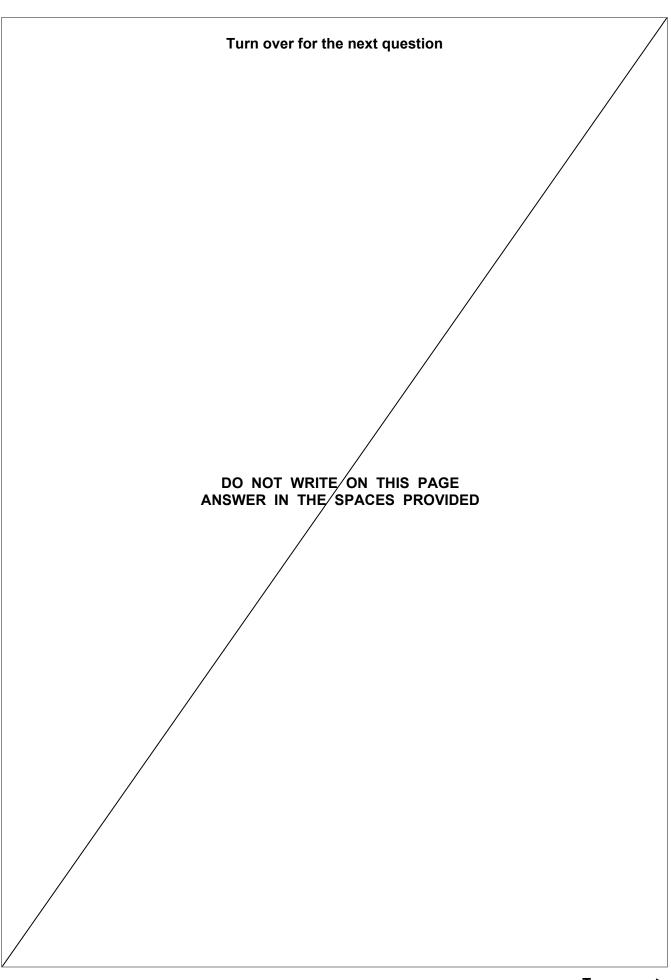
The separation of the plates d = 11.6 mm.

Deduce, using the equation in Question 02.3, whether the value of the charge for this droplet is consistent with the currently accepted value of the electronic charge.

[3 marks]

Question 2 continues on the next page

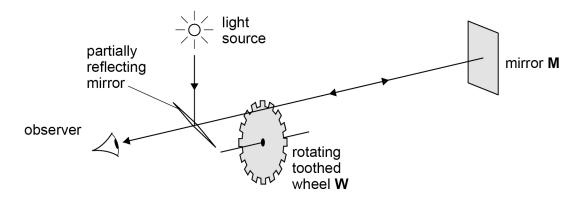
Turn over ▶


	Find Personal Tutor from www.wisesprout.co.uk
	.wises
12	prout
	.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

0 2 . 5	After Millikan published his results, it was found that he had used a value for the viscosity of air that was smaller than the actual value.					
	Discuss the effect this error had on Millikan's value of the electronic charge.	[3 marks]				

Do not write outside the



0 3

Figure 5 shows the arrangement used by Fizeau to determine the speed of light.

Figure 5

The toothed wheel ${\bf W}$ is rotated and the reflected light from a distant mirror ${\bf M}$ is observed.

The speed of light is calculated from the equation

$$c = 4dnf_0$$

where

d is the distance from ${\bf W}$ to ${\bf M}$ and

n is the number of teeth on the rotating wheel **W**.

0	3	1	State what f_0 represents in the equation.
			v •

LZ	marks	

0 3 . 2 The experiment is attempted using a rotating wheel with 720 teeth that can be rotated at up to 620 revolutions per minute.

The distance between **W** and **M** is 8.5 km.

Deduce whether the speed of light can be determined with this particular arrangement.

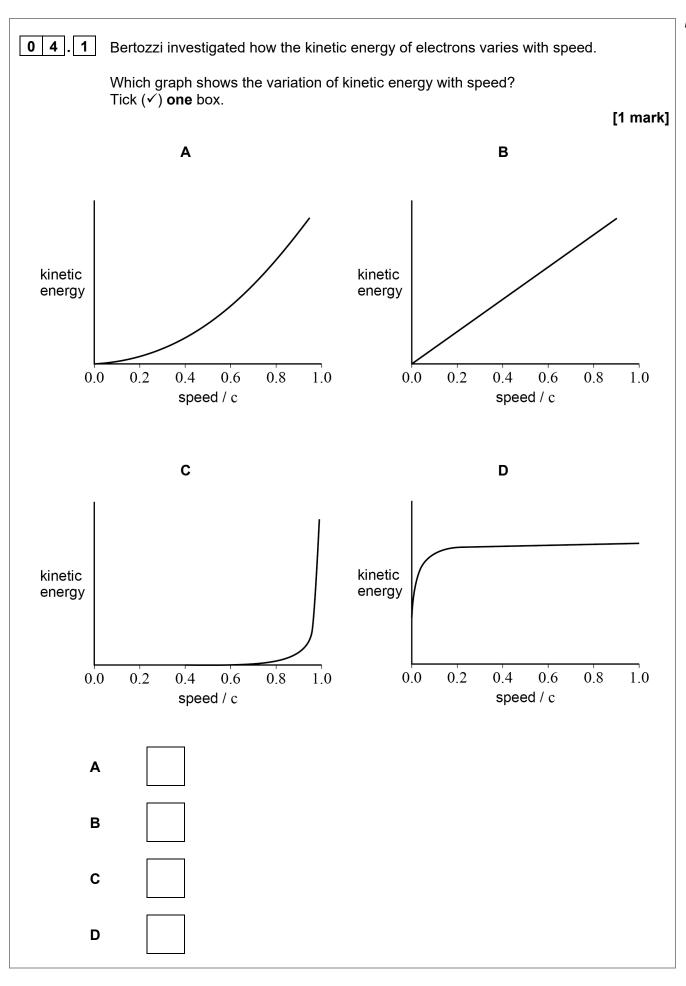
[2 marks]

The determination of the speed of light took on extra significance when Maxwell derived the wave-speed equation

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

State how ε_0 and μ_0 are related to the types of field in the wave.

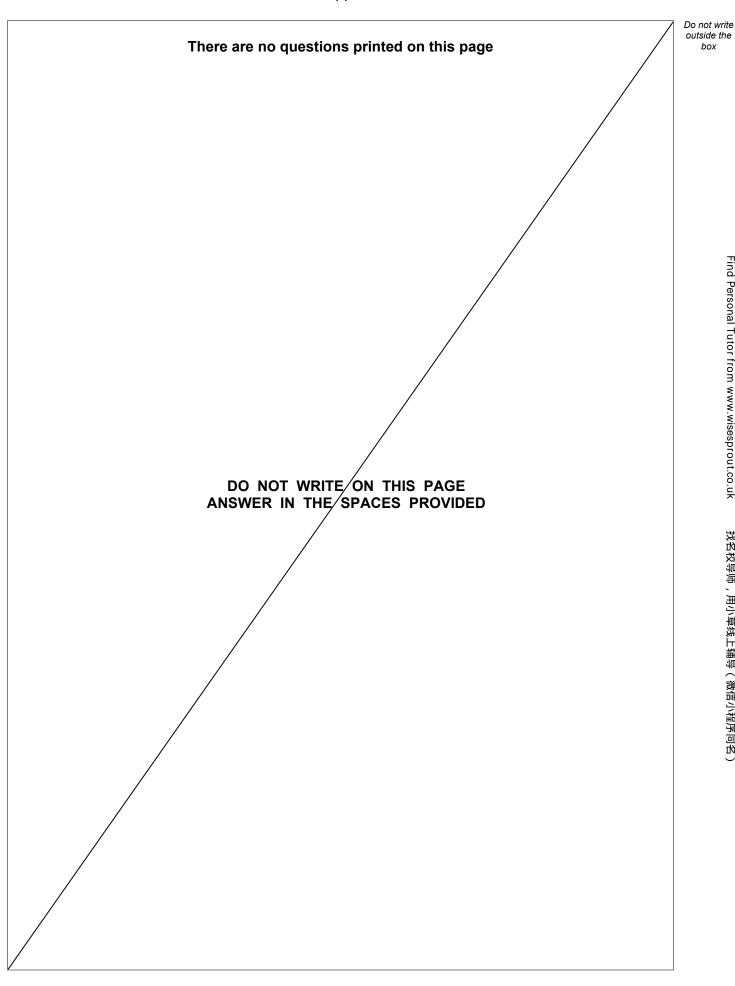
[2 marks]


 $arepsilon_0$

u.

6

Calculate the speed of a particle when its kinetic energy is equal to its rest energy.


找名校导师,用小草线上辅导(微信小程序同名)

		[3 marks]
	speed =	m s ⁻¹
0 4 . 3		
0 4 . 3	Discuss the change in the observed mass of a spring when it is stretched.	[2 marks]
		[Z marks]

END OF QUESTIONS

0 4 . 2

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

