

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 4 June 2019

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

Do not write outside the box

0 1 . 3 The enthalpy of lattice formation for caesium iodide in Table 1 is a value obtained by experiment. The value obtained by calculation using the perfect ionic model is -582 kJ mol⁻¹ Deduce what these values indicate about the bonding in caesium iodide. [1 mark] 0 1 4 Use data from Table 2 to show that this reaction is not feasible at 298 K $\operatorname{Csl}(s) \to \operatorname{Cs}(s) + \frac{1}{2}I_2(s) \qquad \Delta H^{\circ} = +337 \text{ kJ mol}^{-1}$ Table 2 Csl(s) Cs(s) l₂(s) S^e / J K⁻¹ mol⁻¹ 130 82.8 117

[4 marks]

9

Turn over ►

IB/G/Jun19/7405/1

6

0 3	This question is about periodicity, the Period 4 elements and their compounds	Do n outs t
	State the meaning of the term periodicity	
	[1 mark	[]
		_
		_
		_
03.2	Identify the element in Period 4 with the highest electronegativity value. [1 mark	3
		-
0 3.3	Identify the element in Period 4 with the largest atomic radius.	
	[3 marks]
	Element	_
	Explanation	_
		-
		-
		-
0 3.4	The equations for two reactions of arsenic(III) oxide are shown.	
	$As_2O_3 + 6HCl \rightarrow 2AsCl_3 + 3H_2O$	
	$As_2O_3 + 6NaOH \rightarrow 2Na_3AsO_3 + 3H_2O$	
	Name the property of arsenic(III) oxide that describes its ability to react in these two ways.	_
	[1 mark	[]
		-
0 3.5	Complete the equation for the formation of arsenic hydride.	
		۰ <u> </u>
	$AS_2O_3 + ZII + \Pi INO_3 \rightarrow AS\Pi_3 + Z\Pi (INO_3)_2 + H_2O$	

ſ

04.4	Give the formula of Precipitate M and state its colour. [2 marks]	Do not writ outside the box
	Formula of M	
	Colour	
04.5	Transition metal complexes have different shapes and many show isomerism.	
	Describe the different shapes of complexes and show how they lead to different types of isomerism. Use examples of complexes of cobalt(II) and platinum(II).	1
	You should draw the structures of the examples chosen. [6 marks]	
		W W W. W W
		espi out.o
		龙口
		ни, ни,
		中 20 二 二 二
		유 신 1021 미 기
		が用いていた。

8

Do not write outside the box

Turn over ►

U	9	

10

	I his question is about some Group 7 compounds.
0 5 . 1	Solid sodium chloride reacts with concentrated sulfuric acid.
	Give an equation for this reaction. State the role of the sulfuric acid in this reaction
	[2 marks]
	Equation
	Role
0 5 2	Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid.
	For this reaction
	 give an equation give one other observation
	state the role of the sulfuric acid. [3 marks]
	Equation
	Observation
	Role
	Role
0 5.3	RoleChlorine reacts with hot aqueous sodium hydroxide as shown in the equation.
0 5.3	Role Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation. $\label{eq:solution} 3\text{Cl}_2 + 6\text{NaOH} \rightarrow \text{NaClO}_3 + 5\text{NaCl} + 3\text{H}_2\text{O}$
0 5.3	Role Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation. $3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$ Give the oxidation state of chlorine in NaClO ₃ and in NaCl
0 5.3	Role Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation. $3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$ Give the oxidation state of chlorine in NaClO_3 and in NaCl [1 mark] NaClO_3
0 5.3	Role

Do not write outside the box

State, in terms of redox, what happens to chlorine in the reaction in Question **05.3**. [1 mark]

0 5.5

0 5 . 4

Solution **Y** contains **two** different negative ions.

To a sample of solution Y in a test tube a student adds

- silver nitrate solution
- then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

Table 3

Reagent added to solution Y	Observation
silver nitrate solution	cream precipitate containing compound D and compound E
excess dilute nitric acid	cream precipitate D and bubbles of gas F
excess concentrated ammonia solution	colourless solution containing complex ion G

Give the formulas of **D**, **E** and **F**. Give an **ionic** equation to show the formation of **E**. Give an equation to show the conversion of **D** into **G**.

[6 marks]

Formula of D	
Formula of E	
Formula of F	

Ionic equation to form E

Equation to show the conversion of **D** into **G**

	A student does an experiment to determine the percentage of copper in an allow	Do not write outside the box
	A student does an experiment to determine the percentage of copper in an alloy.	
	The student • reacts 985 mg of the alloy with concentrated nitric acid to form a solution	
	(all of the copper in the alloy reacts to form aqueous copper(II) ions)	
	 pours the solution into a volumetric flask and makes the volume up to 250 cm³ with distilled water 	
	shakes the flask thoroughly	
	 transfers 25.0 cm³ of the solution into a conical flask and adds an excess of potassium iodide 	
	 uses exactly 9.00 cm³ of 0.0800 mol dm⁻³ sodium thiosulfate (Na₂S₂O₃) solution to react with all the iodine produced. 	Find P
	The equations for the reactions are	erson
	$2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$	al Tutor
	$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$	from
0 6.1	Calculate the percentage of copper by mass in the alloy.	www.wis
	Give your answer to the appropriate number of significant figures.	espro
	[6 marks]	ut.co.
		uk
		拔
		名校
		- 市
		日山
		影士
		目
		》 读 合
		小程序
	~ /	
	% copper	

	apparatus as this experiment.	[9 marke]
	1	
	2	
6.3	State the role of iodine in the reaction with sodium thiosulfate.	
		[1 mark]
6.4	Give the full electron configuration of a copper(II) ion.	
		[1 mark]
) 6.5	Copper(I) iodide is a white solid.	
	Explain why copper(I) iodide is white.	
		[2 marks]
	Question 6 continues on the next page	

~

06.6	lodine vaporises easily.		Do not write outside the box
	Calculate the volume, in cm ³ , that 5.00 g of iodine vapour occupies at 185 °C and 100 kPa		
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$		
	Give your answer to 3 significant figures.	[4 marks]	
	Volume	cm ³	Find Personal Tutor from www.wisesprout.co.uk 找名校导师,用小单线上辅导(微信小溎序间名)

Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

	Sulfur triovide decomposes on besting to form an equilibrium mixture containing	Do not write outside the box
	sulfur dioxide and oxygen.	
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$	
0 7.1	A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given	
	The equilibrium mixture contained 6.08 g of sulfur dioxide.	
	Calculate the mass, in g, of oxygen gas in the equilibrium mixture.	
	[2 marks]	
		Find Personal Tutor from www.wisesprout.co.uk
	Mass9	找名校
		用小草
		我 上 朝
	Question 7 continues on the next page	早 (後
		与小程序
		回 公 (
	Turn over ►	

Г

0 7 . 2 A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K 2SO₃(g) ⇒ 2SO₂(g) + O₂(g) The amounts of each substance in the equilibrium mixture are shown in Table 4. Table 4

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, K_p = 7.62 x 10⁵ Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	

 K_{p}

Total pressure

Ра

Do not write outside the For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5$ Pa For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4$ Pa box 0 7 . 3 Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks] Find Personal Tutor from www.wisesprout.co.uk 0 7 . 4 Use data from Question 07.3 to calculate the value of K_p , at 500 K, for the equilibrium represented by this equation. Deduce the units of K_p $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$ [2 marks] 找名校导师,用小草线上辅导(微信小程序同名) *K*_p 10 Units _____ Turn over for the next question Turn over ►

•	This question is about stru	ucture and bon	iding.	
. 1	Draw a diagram to show t ethanol (C_2H_5OH) in the li	the strongest ty iquid phase.	/pe of interaction between t	wo molecules of
	Include all lone pairs and	partial charges	s in your diagram.	
				[3 marks]
. 2	Methoxymethane (CH ₃ OC	CH₃) is an isom	er of ethanol.	
. 2	Methoxymethane (CH ₃ OC Table 5 shows the boiling	CH₃) is an isom) points of etha	er of ethanol. nol and methoxymethane.	
.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling	CH₃) is an isom រ points of etha 1	ier of ethanol. nol and methoxymethane. Γ able 5	
.2	Methoxymethane (CH₃OC Table 5 shows the boiling	CH₃) is an isom) points of etha 1	er of ethanol. nol and methoxymethane. Fable 5	
.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound	CH ₃) is an isom points of etha	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C	
.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol	CH₃) is an isom ȝ points of etha ╹	her of ethanol. nol and methoxymethane. Table 5 Boiling point / °C 78	
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethal	CH ₃) is an isom points of etha	her of ethanol. nol and methoxymethane. Table 5 Boiling point / °C 78 –24	
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan	CH ₃) is an isom points of etha 1	her of ethanol. nol and methoxymethane. Table 5 Boiling point / °C 78 –24	
8.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha 1 ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points.
8.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha 1 ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
8.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]
3.2	Methoxymethane (CH ₃ OC Table 5 shows the boiling Compound ethanol methoxymethan In terms of the intermolec	CH ₃) is an isom points of etha ne :ular forces invo	her of ethanol. nol and methoxymethane. Fable 5 Boiling point / °C 78 –24 blved, explain the difference	in boiling points. [3 marks]

Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

	Extra space	Do not v outside box	rite/ the
08.3	Draw the shape of the POCl ₃ molecule and the shape of the ClF_4^- ion. Include any lone pairs of electrons that influence the shapes.		Find P
	In a POCl ₃ molecule the oxygen atom is attached to the phosphorus atom by a double bond that uses two electrons from phosphorus.		ersonal Tu
	Name each shape.		utor fro
	Suggest a value for the bond angle in ClF_4^-		www mo
	Shape of POCl ₃ Shape of ClF₄ [−] [5 marks]		v.wisesprout.
			co.uk
			找名
			校导师
			,用小草
			线上辅导
	Name of shape of POCl ₃		₹ (微信
	Name of shape of ClF ₄ ⁻		小程序
	Bond angle in ClF ₄ -	11	· 四伯)
	Turn over for the next question		

Turn over ►

09	This question is about different pH values.	Do not write outside the box
09.1	For pure water at 40 $^{\circ}$ C, pH = 6.67 A student thought that the water was acidic.	
	Explain why the student was incorrect.	
	Determine the value of K_w at this temperature. [4 marks]	
	Explanation	

Kw	mol ²	dm ⁻⁶
• • •		

Question 9 continues on the next page

Turn over ►

Find Personal Tutor from www.wisesprout.co.uk

Show your working. [3 marks] [3 marks] Ka mol dm ⁻³].3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (~) one box. [1 mark] Indicator pH range Tick (~) one box. [1 mark]
K_a mol dm ⁻³].3 Suggest which indicator is the most appropriate for the reaction in Question 09.2? Tick (\checkmark) one box. Indicator pH range Tick (\checkmark) one box Indicator pH range Tick (\checkmark) one box methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$ $1000000000000000000000000000000000000$
Indicator pH range Tick (✓) one box. Indicator pH range Tick (✓) one box methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$
IndicatorpH rangeTick (\checkmark) one boxmethyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$
methyl orange $3.1 - 4.4$ bromothymol blue $6.0 - 7.6$
bromothymol blue 6.0 – 7.6
cresolphthalein 8.2 – 9.8
indigo carmine 11.6 – 13.0

Turn over ►

0 9. **4** A student prepared a buffer solution by adding 0.0136 mol of a salt KX to 100 cm^3 of a 0.500 mol dm⁻³ solution of a weak acid HX and mixing thoroughly.

The student then added 3.00×10^{-4} mol of potassium hydroxide to the buffer solution.

Calculate the pH of the buffer solution after adding the potassium hydroxide.

For the weak acid HX at 25 °C the value of the acid dissociation constant, $K_a = 1.41 \times 10^{-5}$ mol dm⁻³.

Give your answer to two decimal places.

[6 marks]

Do not write outside the

box

Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

pН

A buffer colution has a constant old even when diluted	Do not write outside the box
Use a mathematical expression to explain this.	
[1 mark]	
	15
	ind Pers
	onal Tut
	or from v
	www.wis
	esprout.
END OF QUESTIONS	co.uk
	找名权
	、 导师 , 用
	小草线上
	捕导(彼
	信小程序
	同名)

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

