

| Please write clearly ir | n block capitals.              |
|-------------------------|--------------------------------|
| Centre number           | Candidate number               |
| Surname                 |                                |
| Forename(s)             |                                |
| Candidate signature     | I declare this is my own work. |

# GCSE COMBINED SCIENCE: TRILOGY



Higher Tier Chemistry Paper 1H

Thursday 14 May 2020 Morning Time allowed: 1 hour 15 minutes

### **Materials**

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

### Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

## Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| TOTAL              |      |  |

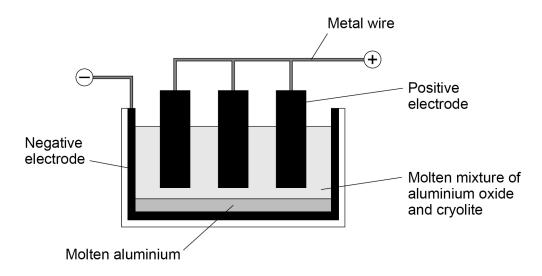


- This question is about the extraction of aluminium.
- 0 1 . 1 An aluminium atom is represented as:

<sup>27</sup><sub>13</sub>Al

Give the number of electrons and neutrons in the aluminium atom.

[2 marks]


Number of electrons \_\_\_\_\_

Number of neutrons \_\_\_\_\_

Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.

Figure 1 shows the cell used for the electrolysis.





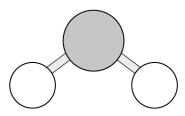
0 1 . 2 Aluminium is produced by the reduction of aluminium oxide (Al<sub>2</sub>O<sub>3</sub>).

What is meant by the term reduction?

[1 mark]



| 0 1.3   | Oxygen is formed at the positive carbon electrodes.                         |           |
|---------|-----------------------------------------------------------------------------|-----------|
|         | Explain why the positive carbon electrodes must be continually replaced.    | [3 marks] |
|         |                                                                             |           |
|         |                                                                             |           |
|         |                                                                             |           |
| 0 1 . 4 | A substance conducts electricity because of free moving, charged particles. |           |
|         | What are the free moving, charged particles in a:                           |           |
|         | carbon electrode (made from graphite)                                       |           |
|         | molten mixture of aluminium oxide and cryolite                              |           |
|         | metal wire?                                                                 | [3 marks] |
|         | Carbon electrode (made from graphite)                                       |           |
|         | Molten mixture of aluminium oxide and cryolite                              |           |
|         | Metal wire                                                                  |           |


Turn over for the next question





- **0** 2 This question is about substances with covalent bonding.
- **0 2** . **1 Figure 2** shows a ball and stick model of a water molecule (H<sub>2</sub>O).





| Suggest <b>one</b> limitation of using a ball and stick model for a water molecule. | [1 mark] |
|-------------------------------------------------------------------------------------|----------|
|                                                                                     |          |
|                                                                                     |          |

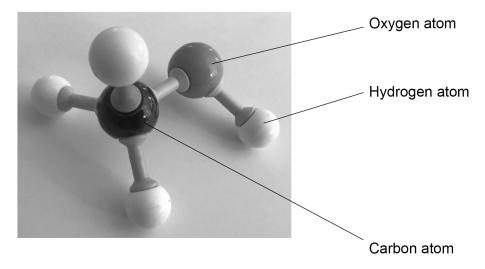
0 2 . 2 Ice has a low melting point.

Water molecules in ice are held together by intermolecular forces.

Complete the sentence.

[1 mark]

Ice has a low melting point because the


intermolecular forces are



0 2 . 3

Figure 3 shows the structure of a molecule.

Figure 3



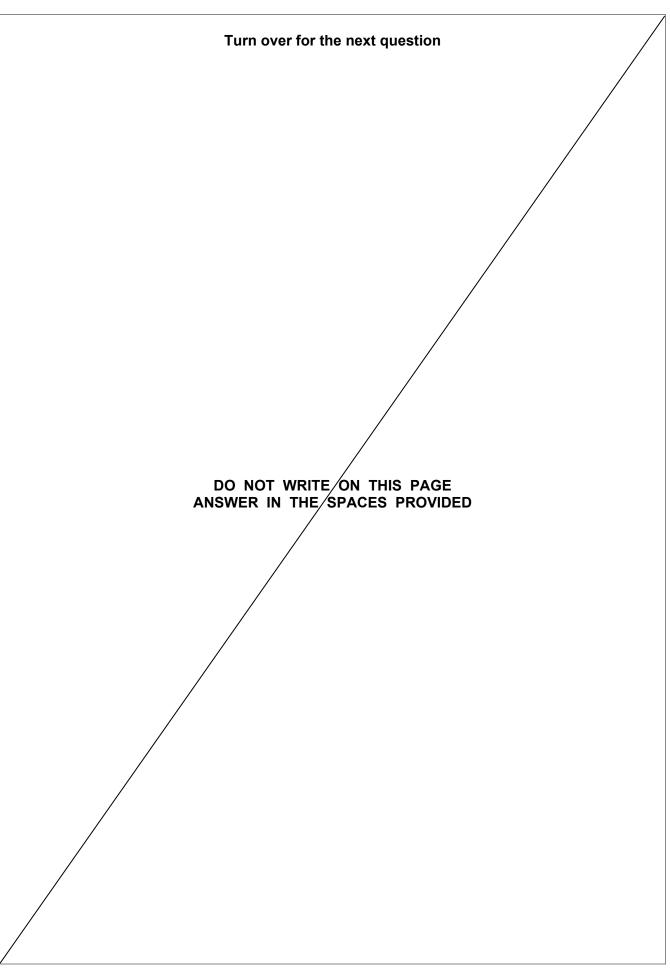
What is the molecular formula of the molecule in Figure 3?

[1 mark]

Question 2 continues on the next page



Turn over ▶


|   | Find Personal                                 |  |
|---|-----------------------------------------------|--|
|   | Tutor from                                    |  |
|   | Find Personal Tutor from www.wisesprout.co.uk |  |
| • | rout.co.uk                                    |  |
|   | 找名校导师,用小                                      |  |
|   | 三                                             |  |

| n www.wisesprout.co.uk |
|------------------------|
| 找名校导师,用                |
| 找名校导师,用小草线上辅导(         |
| 微信小程序同名)               |

|         | Diamond has a giant covalent structure.                                               |           |  |
|---------|---------------------------------------------------------------------------------------|-----------|--|
| 0 2.4   | What is the number of bonds formed by each carbon atom in diamond?  Tick (✓) one box. | [1 mark]  |  |
|         | 2 3 4 8                                                                               |           |  |
| 0 2 . 5 | Give <b>two</b> physical properties of diamond.                                       | [2 marks] |  |
|         | 2                                                                                     |           |  |
| 0 2 . 6 | Name <b>two</b> other substances with giant covalent structures.  1                   | [2 marks] |  |
|         | 2                                                                                     |           |  |
|         |                                                                                       |           |  |
|         |                                                                                       |           |  |
|         |                                                                                       |           |  |
|         |                                                                                       |           |  |
|         |                                                                                       |           |  |
|         |                                                                                       |           |  |



Do not write outside the







Some students investigated the thermal decomposition of metal carbonates.

The word equation for the reaction is:

metal carbonate → metal oxide + carbon dioxide

The students made the following hypothesis:

'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'

The students heated a test tube containing copper carbonate.

Table 1 shows their results.

Table 1

| Time the test tube containing copper carbonate was heated in mins | 0    | 2    | 4    | 6    |
|-------------------------------------------------------------------|------|------|------|------|
| Mass of test tube and contents in g                               | 17.7 | 17.1 | 17.0 | 17.0 |



| You sho  | uld show how the    | students use t   | neir results to tes | st the hypothesis. |       |
|----------|---------------------|------------------|---------------------|--------------------|-------|
| You do ı | not need to write a | about safety pro | ecautions.          |                    | [6 ma |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |
|          |                     |                  |                     |                    |       |

Turn over for the next question





| 0 4   | This question is about acids, alkalis and bases.                                                                                                                      |                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|       | A student reacted zinc oxide powder with hydrochloric acid to produce zinc chloride solution.                                                                         |                      |
| 0 4.1 | Complete the equation for the reaction by writing the state symbols.                                                                                                  | 2 marks]             |
| ZnO   | $(\underline{\hspace{1cm}}) + 2  \text{HCl}(\underline{\hspace{1cm}}) \rightarrow  \text{ZnCl}_2(\underline{\hspace{1cm}}) +  \text{H}_2 O(\underline{\hspace{1cm}})$ | )                    |
| 0 4.2 | Give <b>one</b> way that the student could speed up the reaction between zinc oxide powder and hydrochloric acid.                                                     | e<br>[1 mark]        |
|       |                                                                                                                                                                       |                      |
|       | Hydrochloric acid was the limiting reactant.                                                                                                                          |                      |
| 0 4.3 | How could the student know when all the hydrochloric acid has reacted?                                                                                                | [1 mark]             |
| 0 4.4 | How could the student obtain zinc chloride solution from the reaction mixture with the hydrochloric acid has reacted?                                                 | when all<br>[1 mark] |
|       |                                                                                                                                                                       |                      |



| 0 4.5   | Describe how zinc chloride crystals are produced from zinc chloride solution | [2 marks] |
|---------|------------------------------------------------------------------------------|-----------|
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         |                                                                              |           |
|         | Sulfuric acid and sodium hydroxide react to produce sodium sulfate.          |           |
|         |                                                                              |           |
| 0 4 . 6 | Sulfuric acid is gradually added to sodium hydroxide solution.               |           |
|         | The pH of the mixture changes as the sulfuric acid is added until in excess. |           |
|         |                                                                              |           |
|         | Suggest the pH at:                                                           |           |
|         | the start before sulfuric acid is added                                      |           |
|         | • the end when sulfuric acid is in excess.                                   |           |
|         |                                                                              | [2 marks] |
|         | pH at start =                                                                |           |
|         | pH at end =                                                                  |           |
|         |                                                                              |           |
|         |                                                                              |           |
| 0 4 . 7 | Complete the symbol equation for the preparation of sodium sulfate.          |           |
|         | You should balance the equation.                                             |           |
|         |                                                                              | [2 marks] |
|         | $N_2 \cap H + H_2 \cap G$                                                    |           |
|         | NaOH + $H_2SO_4 \rightarrow$ +                                               |           |
|         |                                                                              |           |
|         | Question 4 continues on the next page                                        |           |
|         | Question 4 continues on the next page                                        |           |
|         |                                                                              |           |



|         | 12                                                                                           |   |
|---------|----------------------------------------------------------------------------------------------|---|
| 0 4 . 8 | A solution of hydrochloric acid had a hydrogen ion concentration of 1.0 mol/dm <sup>3</sup>  | 1 |
|         | Water was added to the hydrochloric acid until the pH increased by 1                         |   |
|         | What was the hydrogen ion concentration of the hydrochloric acid after water had been added? |   |
|         | Tick (✓) one box.                                                                            |   |
|         | 100 mol/dm³                                                                                  |   |
|         | 10 mol/dm <sup>3</sup>                                                                       |   |
|         | 0.10 mol/dm <sup>3</sup>                                                                     | Γ |
|         | 0.010 mol/dm <sup>3</sup>                                                                    |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |
|         |                                                                                              |   |



A student investigated the temperature change when magnesium was added to copper sulfate solution.

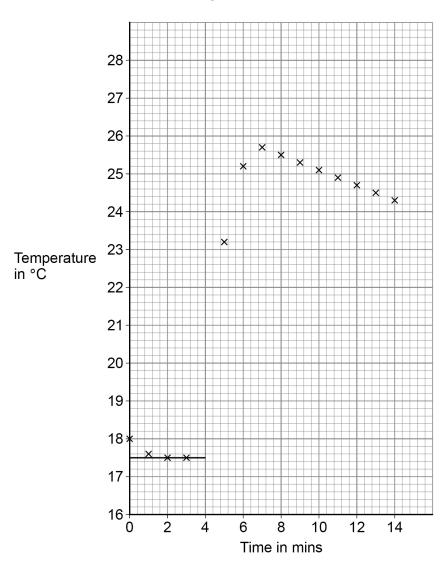
This is the method used.

- 1. Pour 30 cm<sup>3</sup> of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of copper sulfate solution every minute for 3 minutes.
- 3. Add magnesium on the fourth minute.
- 4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.

| 0 | 5 | . 1 |  | What is the dependent | variable in | this | investigation? |
|---|---|-----|--|-----------------------|-------------|------|----------------|
|---|---|-----|--|-----------------------|-------------|------|----------------|

[1 mark]

Question 5 continues on the next page




Turn over ►

The student used the results to plot a graph.

Figure 4 shows the graph.

Figure 4





| 0 5.2 | Suggest why the copper sulfate solution was left for four minutes before adding the magnesium.                                                                                    | [1 mark]  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 0 5.3 | Complete <b>Figure 4</b> by:  • drawing a line of best fit through all the points after 7 minutes  • extending the line back to 4 minutes.                                        | [2 marks] |
| 0 5.4 | The temperature change for the reaction is the temperature difference be two graph lines at 4 minutes.  Determine the temperature change for the reaction.  Use <b>Figure 4</b> . | tween the |
|       | Temperature change =                                                                                                                                                              | °C        |
| 0 5.5 | Explain why the temperature of the mixture decreases after 7 minutes.                                                                                                             | [2 marks] |
|       |                                                                                                                                                                                   |           |





| 0 5.6 | The student repeated the experiment with an unknown metal ${\bf Q}$ instead of magnesium.          | out       |
|-------|----------------------------------------------------------------------------------------------------|-----------|
|       | All the other variables were kept the same.                                                        |           |
|       | The student recorded a smaller temperature change.                                                 |           |
|       | Suggest the identity of metal <b>Q</b> .                                                           |           |
|       | Give <b>one</b> reason for your answer.                                                            | [2 marks] |
|       | Metal Q                                                                                            |           |
|       | Reason                                                                                             |           |
|       |                                                                                                    |           |
|       |                                                                                                    |           |
| 0 5.7 | A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 dm³ of water. |           |
|       | Calculate the mass of copper sulfate in 30.0 cm <sup>3</sup> of this solution.                     |           |
|       | Relative formula mass ( $M_r$ ): CuSO <sub>4</sub> = 159.5                                         | [4 monte] |
|       |                                                                                                    | [4 marks] |
|       |                                                                                                    |           |
|       |                                                                                                    |           |
|       |                                                                                                    |           |
|       |                                                                                                    |           |
|       |                                                                                                    |           |
|       |                                                                                                    |           |



| 0 6     | This question is about gold and compounds of gold.                    |                                                                  |
|---------|-----------------------------------------------------------------------|------------------------------------------------------------------|
| 0 6 . 1 | In the alpha particle scattering experiment alpha particles are fired | at gold foil.                                                    |
|         | Alpha particles are positively charged.                               |                                                                  |
|         | Figure 5 shows the results.                                           |                                                                  |
|         | Figure 5                                                              |                                                                  |
| А       |                                                                       | Most alpha particles are not deflected  Deflected alpha particle |
|         | What <b>two</b> conclusions can be made from the results?             | [2 marks]                                                        |
|         | Tick (✓) <b>two</b> boxes.                                            | [Z marks]                                                        |
|         | Atoms are balls of positive charge with embedded electrons.           |                                                                  |
|         | Atoms are tiny spheres that cannot be divided.                        |                                                                  |
|         | Atoms have a positively charged nucleus.                              |                                                                  |
|         | Mass is concentrated in the nucleus in the centre of atoms.           |                                                                  |
|         | Neutrons exist within the nucleus.                                    |                                                                  |
|         | Question 6 continues on the next page                                 |                                                                  |



| 扙             |
|---------------|
| ĪΝ̈́          |
| 苡             |
| 40            |
| 找名校评师         |
| -             |
| $\mathbb{H}$  |
| 宁             |
| 計             |
| 用小草线上辅导       |
| Н             |
| 誰             |
| 40            |
| $\overline{}$ |
| 微信/           |
| 刯             |
| 小程序同名         |
| 重             |
| 4             |
| 믜             |
| ЦĄ            |
| $\overline{}$ |
|               |

| 0 6 . 2 | The gold foil is:                                    |
|---------|------------------------------------------------------|
|         | • 4.00 × 10 <sup>-7</sup> metres thick               |
|         | • 2400 atoms thick.                                  |
|         | What is the diameter of one gold atom in metres?     |
|         | Give your answer to 3 significant figures.           |
|         | [3 marks]                                            |
|         |                                                      |
|         |                                                      |
|         |                                                      |
|         |                                                      |
|         |                                                      |
|         | Diameter of one gold atom (3 significant figures) =m |



| 找名校导师      |
|------------|
| ,用小草线上辅导(微 |
| 微信小程序同名)   |

Gold reacts with the elements in Group 7 of the periodic table. 0 6 . 3 0.175 g of gold reacts with chlorine. The equation for the reaction is: 2 Au + 3 Cl<sub>2</sub>  $\rightarrow$  2 AuCl<sub>3</sub> Calculate the mass of chlorine needed to react with 0.175 g of gold. Give your answer in mg Relative atomic masses ( $A_r$ ): Cl = 35.5 Au = 197 [5 marks] Mass of chlorine = mg

Turn over for the next question



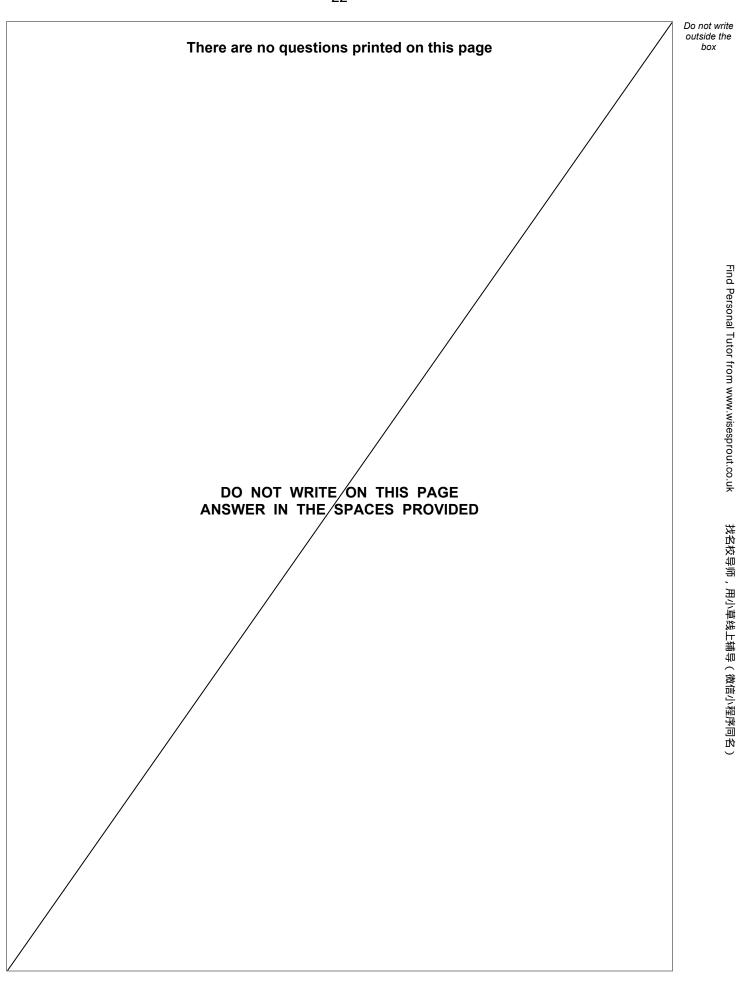
| 0 7     | This question is about elements.                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------|
|         | Caesium is in Group 1 of the periodic table.                                                                        |
|         |                                                                                                                     |
| 0 7.1   | Explain what happens to caesium atoms and to oxygen atoms when caesium reacts with oxygen to produce caesium oxide. |
|         | You should answer in terms of electrons.                                                                            |
|         | [4 marks]                                                                                                           |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
| 0 7 . 2 | Explain why caesium is more reactive than sodium.                                                                   |
|         |                                                                                                                     |
|         | You should answer in terms of electrons.  [4 marks]                                                                 |
|         | [ · markej                                                                                                          |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |
|         |                                                                                                                     |



0 7.3 Figure 6 shows part of Mendeleev's periodic table.

Do not write outside the

Figure 6


| 16<br><b>O</b> | 19<br><b>F</b> |
|----------------|----------------|
|                | Г              |
| 32             | 35.5           |
| S              | CI             |
| 79             | 80             |
| Se             | Br             |
| 128            | 127            |
| Те             | I              |

Explain why the early periodic tables placed iodine (I) before tellurium (Te), but then Mendeleev placed tellurium before iodine.

| [3 marks |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

# **END OF QUESTIONS**







Do not write outside the box

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question number | Additional page, if required. Write the question numbers in the left-hand margin.                                                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                    |
|                 | Copyright information                                                                                                                                                                                                                                                              |
|                 | For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.                                     |
|                 | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |
|                 | Copyright © 2020 AQA and its licensors. All rights reserved.                                                                                                                                                                                                                       |



