

F

Monday 23 November 2020 - Morning

GCSE (9-1) Physics A (Gateway Science)

J249/02 Paper 2 (Foundation Tier)

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Physics A (inside this document)

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clearly in black ink. Do not write in the barcodes.							
Centre number				Candidate number			
First name(s)							
Last name							

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

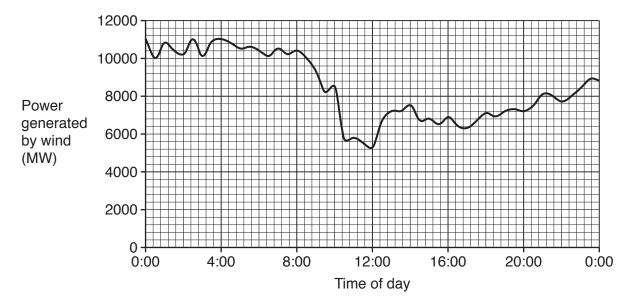
© OCR 2020 [601/8651/3]

OCR is an exempt Charity

Turn over

2

SECTION A

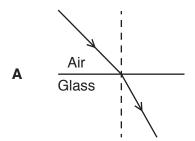

Answer **all** the questions.

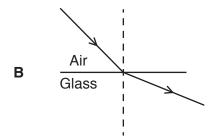
You should spend a maximum of 30 minutes on this section.

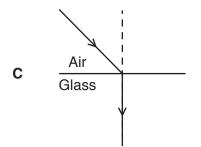
Write your answer to each question in the box provided.

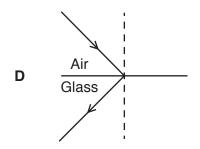
1	Am	notor has an input energy of 800 J. The useful output energy is 500 J.	
	Wh	at is the wasted energy?	
	Α	300 J	
	В	500 J	
	С	800 J	
	D	1300 J	
	You	ir answer	[1]
2	Wh	ich statement about alpha particles is correct?	
	Α	They are fast moving electrons.	
	В	They are less penetrating than beta particles.	
	С	They can pass through lead.	
	D	They have less mass than beta particles.	
	You	ir answer	[1]
3	A ra	adiator has a power of 2 kilowatts (2kW).	
	Cor	overt 2kW into watts.	
	Α	0.002W	
	В	200 W	
	С	2000 W	
	D	2000000W	
	You	ır answer	[1]

4 The graph shows how the power generated by the wind in the UK varied over one day.

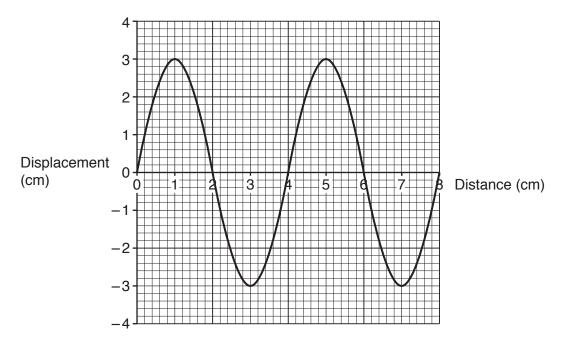

Which row in the table is correct?


	Maximum power generated (MW)	Reliability of wind power
Α	5200	Reliable
В	5200	Unreliable
С	11 000	Reliable
D	11 000	Unreliable


Your answer		[1]
-------------	--	-----


5 A light ray passes from air into glass.

Which diagram shows the **refraction** of this light ray?



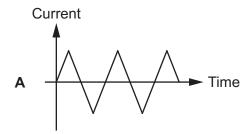
Your answer [1]

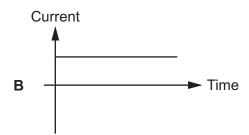
6 Look at the diagram of a wave.

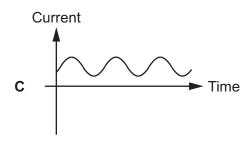
What is the wavelength of the wave?

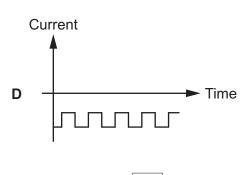
- A 2cm
- B 3cm
- **C** 4 cm
- **D** 6cm

Your answer	[1]
-------------	-----


7 The speed of the wind is measured to be 5.555 m/s.


What is 5.555 m/s written to 2 significant figures?


- **A** 5.5 m/s
- **B** 5.55 m/s
- C 5.56 m/s
- **D** 5.6 m/s


Your answer [1]

8 Which graph shows an alternating current (a.c.)?

Your answer

[1]

		7	
9	A ca	ar travels at a speed of 60 mph (miles per hour).	
	1 m	ph = 0.45 m/s.	
	Cor	overt 60 mph into m/s (metres per second).	
	Α	0.45 m/s	
	В	7.5 m/s	
	С	27 m/s	
	D	130 m/s	
	You	ir answer	[1]
10	Wh	ich statement about nuclear fission is correct?	
	Α	An example is when hydrogen is converted to helium.	
	В	It may happen when a nucleus absorbs a neutron.	
	С	The Sun uses fission to generate its energy.	
	D	Two nuclei join to make a heavier nucleus.	
	You	ur answer	[1]

11 The table shows the current and potential difference for four different lamps.

Which lamp has the highest **power**?

Use the equation: power = potential difference × current

	Current (A)	Potential difference (V)
Α	2	5
В	3	4
С	4	2
D	5	1

Your answer		[1
-------------	--	----

The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ	12	A b	oy of mass 65 kg climbs a ladder of height 3.0 m.	
Gravitational field strength = 10 N/kg. A 30 J B 195 J C 650 J D 1950 J Your answer 13 The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ		Cal	culate the gain in potential energy of the boy.	
A 30 J B 195 J C 650 J D 1950 J Your answer 13 The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ		Use	e the equation: potential energy = mass × height × gravitational field strength	
B 195J C 650J D 1950J Your answer 13 The kinetic energy of motorbike X is 10kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5kJ B 10kJ C 20kJ D 40kJ		Gra	vitational field strength = 10 N/kg.	
C 650 J D 1950 J Your answer 13 The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ		Α	30 J	
Your answer 13 The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ		В	195 J	
Your answer 13 The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5kJ B 10kJ C 20kJ D 40kJ		С	650 J	
The kinetic energy of motorbike X is 10 kJ. Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5 kJ B 10 kJ C 20 kJ D 40 kJ		D	1950 J	
Motorbike Y has the same speed but double the mass. What is the kinetic energy of motorbike Y ? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5kJ B 10kJ C 20kJ D 40kJ		You	ır answer	[1]
What is the kinetic energy of motorbike Y? Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5kJ B 10kJ C 20kJ D 40kJ	13	The	e kinetic energy of motorbike X is 10 kJ.	
Use the equation: kinetic energy = 0.5 × mass × (speed) ² A 5kJ B 10kJ C 20kJ D 40kJ		Mot	torbike Y has the same speed but double the mass.	
 A 5kJ B 10kJ C 20kJ D 40kJ 		Wh	at is the kinetic energy of motorbike Y ?	
B 10kJC 20kJD 40kJ		Use	e the equation: kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	
C 20kJD 40kJ		Α	5 kJ	
D 40 kJ		В	10 kJ	
		С	20 kJ	
Your answer		D	40 kJ	
		You	ır answer	[1]

14 Which row in the table is correct for a **step-down** transformer?

	Current	Potential difference	
Α	Decreases Decreases		
В	B Decreases Increases		
С	Increases	eases Decreases	
D	Increases	Increases	

Your answer	[1]
-------------	-----

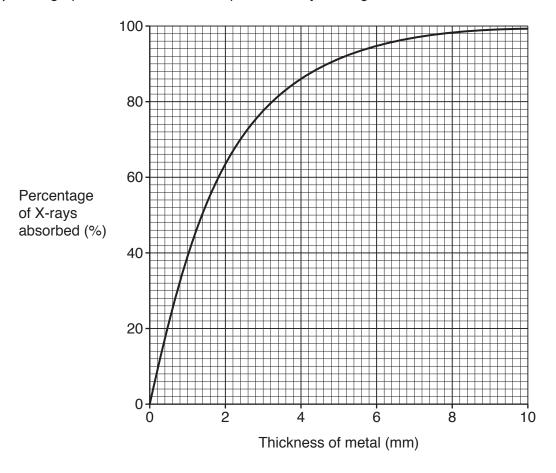
15 Four students measure the time it takes a wave to travel the length of a ripple tank.

Each student collects three measurements of the time.

Student	Time taken (s)			
Student	1st measurement	2nd measurement	3rd measurement	
Α	2	2	1	
В	2.1	2.1	2.4	
С	2.1	2.0	2.2	
D	2.11	2.49	2.23	

Which student collected the **most** precise data?

Your answer	[1
	 7


10 SECTION B

Answer all the questions.

- **16** This question is about X-rays and visible light.
 - (a) State one similarity and one difference between X-rays and visible light.

Similarity		 	
Difference	·	 	
			[2]

(b) This graph shows how the absorption of X-rays changes with the thickness of metal.

(i) What percentage of X-rays is absorbed by 4 mm of metal?

Percentage of X-rays absorbed = % [1]

(ii) Calculate the percentage of X-rays passing **through** 4 mm of metal. Use your answer to **16(b)(i)** to help you.

		Percer	ntage of X-rays =		% [2]
(c)	Use the words	from the list to comp	lete the sentences a	bout the Universe.	
	You may use e	ach word once, more	e than once, or not a	all.	
	Big-Bang	Contracting	CMBR	Expanding	
	LDR	Red giant	Red shift	Solar system	
	The		is a model of	how the universe began.	
	Light from dista	ant galaxies has a lo	nger wavelength wh	en it reaches Earth than	when it was
	This is called				
	Distant galaxie	s are moving away fa	aster so the universe	is	

[3]

17	Rip	ples	are made on the surface of the wa	ater. The ripples o	can be used to model waves.
	(a)	(i)	State the type of wave modelled	by the ripples.	
					[1]
		(ii)	Describe how the water molecul	es move as the w	vave travels across the pond.
					[1]
		(iii)	10 ripples hit the side of the pon	d in 20 seconds.	
			Calculate the frequency of the ri	pples.	
				Frequency =	Hz [2]
	(b)	Stu	dent A and student B drop stones	s into a pond.	
		(i)	Student A measures the freque shows his results:	ency and wavele	ngth of the water ripples. Table 17.1
			Frequency (Hz) of ripples	0.6	
			Wavelength (m) of ripples	0.1	
			Table 17.1		
			Calculate the wave speed of the	ripples.	
			Use the equation: wave speed =	frequency × wav	elength
				Wave speed =	m/s [2]

(ii) Student B measures the same ripples as student A.

She measures:

- The distance one ripple travels.
- The time it takes the ripple to travel this distance.

Table 17.2 shows student B's results:

Distance ripple travels (m)	2.40
Time taken (s)	30.0

Table 17.2

	Name the equipment student B uses to measure the distance and time.	
	Distance	
	Time	
(iii)	Use results in Table 17.2 to calculate the wave speed of the ripples.	1
(,	The following in table in a to defound the wave operation in inputs.	
	Wave speed =m/s [3	;]
(iv)	Student A and student B obtained different answers for the wave speed of the ripples.	
	Suggest why.	
	[1	1

18 (a) Some isotopes of cobalt are radioactive.

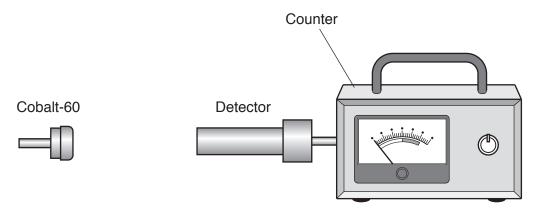
The isotope cobalt-60 (Co-60) has the symbol:

⁶⁰₂₇ Co

The isotope cobalt-57 (Co-57) has the symbol:

⁵⁷ Co

(i) State the number of protons in a nucleus of Co-60.


Number of protons =	 [1]	ı
rtarribor or protorio	 	4

(ii) Give **one** similarity and **one** difference between the nucleus of Co-57 and the nucleus of Co-60.

Similarity

(b) A teacher measures the radiation emitted by Co-60.

She uses this equipment:

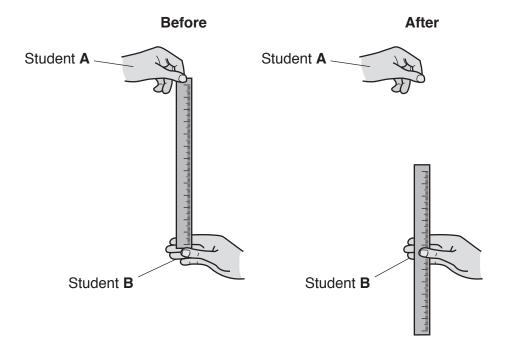
The teacher's results are shown in **Table 18.1**.

	Count-rate (counts per minute)
Measurement 1	191
Measurement 2	224
Measurement 3	212

Table 18.1

(i	
(ii) Use the teacher's results in Table 18.1 to calculate the mean count-rate for Co-60.
(iii	Count-rate = counts per minute [2]) Co-60 emits gamma radiation.
(111)	The teacher puts thin aluminium foil between Co-60 and the detector.
	State what happens to the count-rate.
	[1]
(c) (i) Explain what is meant by the half-life of a radioactive isotope.
	[1]
(ii) The half-life of Co-60 is 5 years.
	The count-rate of a sample of Co-60 is 160 counts per minute.
	Calculate the count-rate of the Co-60 after 10 years.
	Count-rate = counts per minute [3]

(d) A radioactive isotope can be used as a tracer in a patient's body. It is monitored by a radiation detector outside the body.


Four possible radioactive isotopes are shown in Table 18.2.

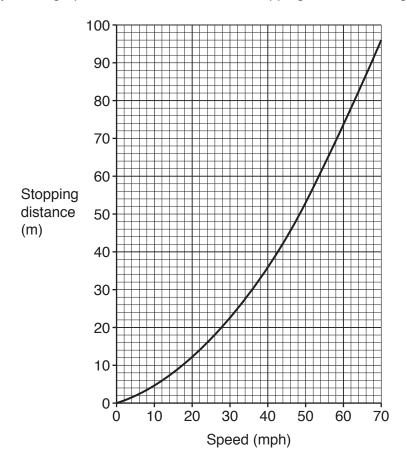
Radioactive isotope	Type of radiation emitted	Half-life
Radon-222	Alpha	4 days
lodine-131	Gamma	8 days
Cobalt-60	Gamma	5 years
Plutonium-238	Alpha	88 years

Table 18.2

(i)	Doctors wear a lead apron when they use radioactive isotopes.
	Explain why.
	[2]
(ii)	Which radioactive isotope from Table 18.2 is best to use as a radioactive tracer in a patient's body?
	Tick (✓) one box.
	Radon-222
	lodine-131
	Cobalt-60
	Plutonium-238
	Explain your answer.
	[31

19 (a) The diagram shows a ruler being used to estimate a student's reaction time.

(i)	Describe how the ruler can be used to estimate student B 's reaction time.	
		[2]
(ii)	Why do the students repeat the experiment several times?	
		[1]
iii)	Student B is very tired when they try this experiment.	
	Suggest how this might affect student B 's reaction time.	
		[1]


(b) The driver of a car makes an emergency stop.

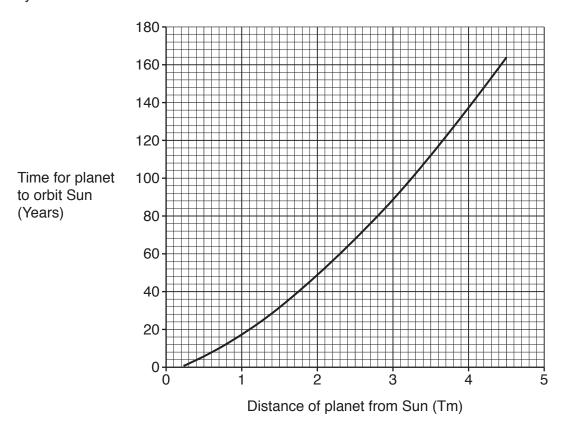
The thinking distance is 9 m. The braking distance is 14 m.

(i) Calculate the total stopping distance of the car.

Stopping distance = m [1]

(ii) This graph shows how this driver's stopping distance changes with speed.

- A car is travelling at 50 mph.
- There is a barrier in the road 40 m in front of the car.
- The driver makes an emergency stop.

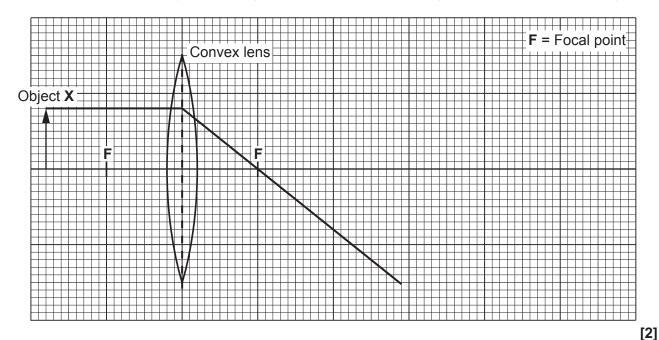

Use the graph to work out if the car hits the barrier.

Explain how you obtained your answer.

______[

	(iii)	State one factor, other than speed, that affects braking distance.
		Explain how this factor changes braking distance.
		Factor
		Explanation
(-)	(:)	[3]
(c)	(i)	
		Calculate the deceleration of the car.
		Use the equation: acceleration = change in velocity ÷ time
		Deceleration =m/s ² [2]
	(ii)	
		The braking system of the car in (c)(i) is changed. The same car travelling at 13 m/s now takes 0.4s to stop after the brakes are applied.
		takes 0.4s to stop after the brakes are applied.
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.'
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer.
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes
		takes 0.4 s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes No
		takes 0.4s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes No [2]
	(iii)	takes 0.4 s to stop after the brakes are applied. The driver says, 'The new braking system is ten times safer.' Do you agree with the driver? Explain your answer. Yes No

20* This graph shows how a planet's orbit time changes with distance from the Sun in our solar system.



Describe and explain the relationship shown by the graph.

Use data from the graph and ideas about our solar system in your answer.

- 21 A projector is used to create a larger image of an object.
 - (a) The diagram shows one light ray as it passes through the convex lens.

Draw **one** more ray on the diagram to show where the image is formed. Label the image **Y**.

((b)	The	projector	contains	a white	liaht	source.
- 1		,	p. ojoutu.	0011601110	G	9	000.00.

Explain how this white light source can be used to get **red** light.

 	 [2]

(c) (i) The projector is connected to the mains power supply. The projector has an earth wire.

State the potential difference between the earth wire and the live wire in normal use.

Potential difference =	V	/ [[1]]
------------------------	---	-----	-----	---

(ii) A projector with a plastic case does not need an earth wire. A projector with a metal case needs an earth wire.

Explain why.		

.....[2

22 A student investigates the rate of cooling using a cardboard box to model the walls of a building.

She puts a beaker of hot water into the cardboard box. She measures the temperature of the water every two minutes.

She investigates how the rate of cooling changes with the thickness of the walls.

(a)	Describe a method she can use to do this investigation.
	[3]

(b) Here are the results of one of her experiments.

Time (minutes)	Temperature of water (°C)
0	90
2	75
4	63
6	54
8	47
10	41
12	37

(i) Plot the results on the grid in Fig. 22.1.

Two of the points have been plotted for you.

[2]

(ii) Draw a line of best fit on your graph.

[1]

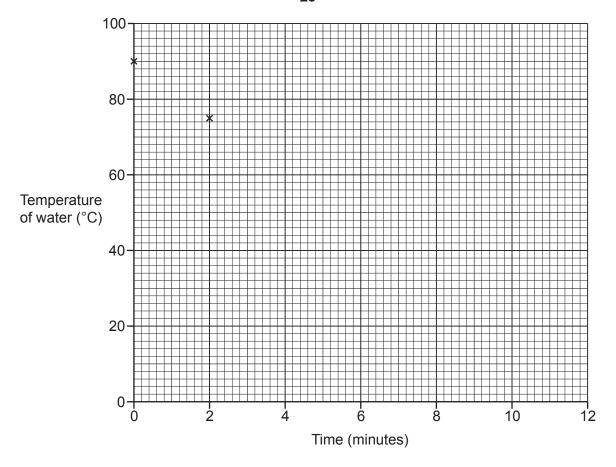


Fig. 22.1

	(iii)	Describe how the temperature of the water changes with time. Use data from the graph in Fig. 22.1 in your answer.	
		[2]
	(iv)	The thickness of the cardboard box is doubled. Everything else stays the same.	
		Sketch a line on the graph in Fig. 22.1 to suggest what these new results may look like Label your line Z .	э. [1]
	(v)	Suggest one way to improve the investigation.	
		[1]
c)		lain why the rate of cooling of a metal box is different to a cardboard box. ume the thickness of the walls is the same in both boxes.	
		[1]

24

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.