# 

|                     |                                | ] |
|---------------------|--------------------------------|---|
| Surname             |                                | - |
| Forename(s)         |                                | _ |
| Candidate signature |                                | _ |
|                     | I declare this is my own work. |   |

## A-level CHEMISTRY

Paper 3

Wednesday 17 June 2020 N

#### Morning

### Time allowed: 2 hours

Question

1

2

3

4

5

6

Section B

TOTAL

For Examiner's Use

Mark

#### Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

#### Advice

• You are advised to spend 70 minutes on **Section A** and 50 minutes on **Section B**.



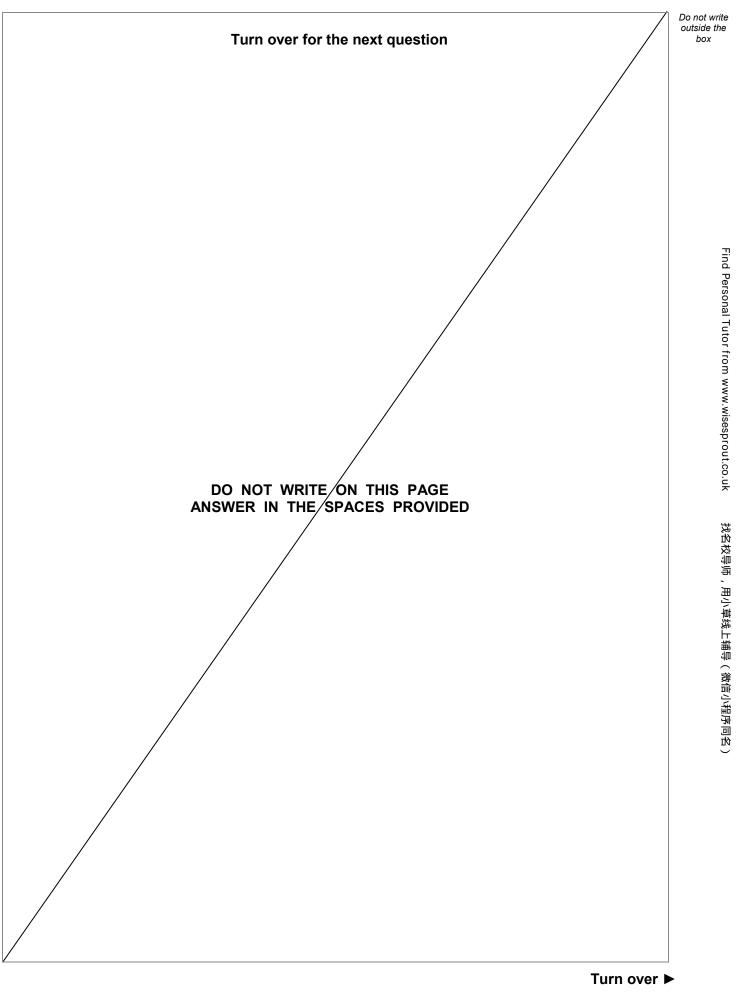
Find Personal Tutor from www.wisesprout.co.uk



|       | Section A                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Answer <b>all</b> questions in this section.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 01    | This question is about emissions of oxides of nitrogen from petrol and diesel engines.<br>Explain how oxides of nitrogen are formed in engines.                                                                                                                                                                                                                                                                                                                |
|       | [2 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01.2  | State why it is desirable to decrease emissions of oxides of nitrogen from vehicles.<br>[1 mark]                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 1.3 | Modern diesel vehicles use diesel exhaust fluids, such as AdBlue, to decrease emissions of oxides of nitrogen.                                                                                                                                                                                                                                                                                                                                                 |
| 0 1.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01.3  | emissions of oxides of nitrogen.<br>AdBlue reacts with water in the hot exhaust gases to form ammonia.<br>In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form                                                                                                                                                                                                                                                                     |
| 01.3  | emissions of oxides of nitrogen.<br>AdBlue reacts with water in the hot exhaust gases to form ammonia.<br>In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form<br>nitrogen and water.                                                                                                                                                                                                                                              |
| 01.3  | <ul> <li>emissions of oxides of nitrogen.</li> <li>AdBlue reacts with water in the hot exhaust gases to form ammonia.<br/>In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water.</li> <li>Give the oxidation state of nitrogen in each of NO<sub>2</sub>, NH<sub>3</sub> and N<sub>2</sub></li> <li>Complete the equation for the reaction between NO<sub>2</sub> and NH<sub>3</sub></li> </ul>                  |
| 01.3  | emissions of oxides of nitrogen.<br>AdBlue reacts with water in the hot exhaust gases to form ammonia.<br>In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form<br>nitrogen and water.<br>Give the oxidation state of nitrogen in each of NO <sub>2</sub> , NH <sub>3</sub> and N <sub>2</sub><br>Complete the equation for the reaction between NO <sub>2</sub> and NH <sub>3</sub><br>[2 marks]                                   |
| 01.3  | emissions of oxides of nitrogen.<br>AdBlue reacts with water in the hot exhaust gases to form ammonia.<br>In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form<br>nitrogen and water.<br>Give the oxidation state of nitrogen in each of NO <sub>2</sub> , NH <sub>3</sub> and N <sub>2</sub><br>Complete the equation for the reaction between NO <sub>2</sub> and NH <sub>3</sub><br>[2 marks]<br>Oxidation state of nitrogen in |



| 01.4  | Petrol vehicles have a catalytic converter which decreases emissions of oxide nitrogen.<br>Platinum in the catalytic converter acts as a heterogeneous catalyst. | es of      | outside the<br>box                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|
|       | State the meaning of the term heterogeneous catalyst.                                                                                                            | 2 marks]   |                                               |
| 0 1.5 | Some carbon particulates are also formed in both diesel and petrol vehicles.                                                                                     |            | Find Personal Tut                             |
|       | Explain why carbon particulates are formed.                                                                                                                      | [1 mark]   | Find Personal Tutor from www.wisesprout.co.uk |
|       | Turn over for the next question                                                                                                                                  |            | 找名校导师,用小草线上辅导(微信小程序同名)                        |
|       |                                                                                                                                                                  |            | ~程序同名)                                        |
|       | T                                                                                                                                                                | urn over ▶ | •                                             |




Do not write

|         |                                                                                                                                                                 | Do not wr<br>outside th |                                               |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|
| 0 2     | This question is about oxides.                                                                                                                                  | box                     |                                               |
| 0 2 . 1 | Sodium oxide forms a solution with a higher pH than magnesium oxide when equal amounts, in moles, of each oxide are added separately to equal volumes of water. |                         |                                               |
|         | State why both oxides form alkaline solutions.                                                                                                                  |                         |                                               |
|         | Suggest why sodium oxide forms a solution with a higher pH than the solution formed from magnesium oxide.                                                       |                         |                                               |
|         | [2 marks]                                                                                                                                                       |                         |                                               |
|         |                                                                                                                                                                 |                         | <u>.</u>                                      |
|         |                                                                                                                                                                 |                         | nd Per:                                       |
|         |                                                                                                                                                                 |                         | sonal T                                       |
|         |                                                                                                                                                                 |                         | utor frc                                      |
|         |                                                                                                                                                                 |                         | www mo                                        |
| 02.2    | Give an equation for the reaction between phosphorus(V) oxide and water.                                                                                        |                         | Find Personal Tutor from www.wisesprout.co.uk |
|         | [1 mark]                                                                                                                                                        |                         | prout.c                                       |
|         |                                                                                                                                                                 |                         | o.uk                                          |
|         |                                                                                                                                                                 |                         | 找合                                            |
| 02.3    | In the Contact process, sulfur(IV) oxide is converted into sulfur(VI) oxide using vanadium(V) oxide as a catalyst.                                              |                         | 找名校导师 / )                                     |
|         | Give <b>two</b> equations to show how the vanadium(V) oxide acts as a catalyst in this                                                                          |                         | 用小草约                                          |
|         | process. [2 marks]                                                                                                                                              |                         | 草线上辅导(微信小程序同名)                                |
|         |                                                                                                                                                                 |                         | (資言                                           |
|         |                                                                                                                                                                 |                         | 小程序同                                          |
|         | Equation 1                                                                                                                                                      |                         | 名に(                                           |
|         |                                                                                                                                                                 |                         |                                               |
|         |                                                                                                                                                                 |                         |                                               |
|         | Equation 2                                                                                                                                                      | 5                       |                                               |
|         |                                                                                                                                                                 |                         |                                               |
|         |                                                                                                                                                                 |                         |                                               |
|         |                                                                                                                                                                 |                         |                                               |



找名校导师,用小草线上辅导(微信小程序同名)





| 03.1 | Explain why complexes formed from transition metal ions are coloured.<br>[3 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Do not writ<br>outside the<br>box |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                 |
|      | <ul> <li>The iron content of iron tablets can be determined by colorimetry.</li> <li>Method: <ul> <li>Dissolve a tablet in sulfuric acid.</li> <li>Oxidise all the iron from the tablet to Fe<sup>3+</sup>(aq).</li> <li>Convert the Fe<sup>3+</sup>(aq) into a complex that absorbs light of wavelength 490 nm</li> <li>Make the solution up to 250 cm<sup>3</sup></li> <li>Measure the absorbance of light at 490 nm with a colorimeter.</li> <li>Use a calibration graph to find the concentration of the iron(III) complex.</li> </ul> </li> </ul> | -                                 |
| 03.2 | Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm<br>Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$<br>Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$<br>[3 marks]                                                                                                                                                                                                                                                                                                                             |                                   |
|      | Energy gained by each electron J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |



Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

| 03.3  | Describe how a calibration graph is produced and used to find the concentration of the                          | Do not write<br>outside the<br>box            |
|-------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|       | iron(III) complex. [3 marks]                                                                                    |                                               |
|       |                                                                                                                 |                                               |
|       |                                                                                                                 | Find Persona                                  |
| 0 3.4 | The concentration of iron(III) in the solution is $4.66 \times 10^{-3}$ mol dm <sup>-3</sup>                    | ll Tutor from www                             |
|       | Calculate the mass, in mg, of iron in the tablet used to make the 250 cm <sup>3</sup> of solution.<br>[2 marks] | Find Personal Tutor from www.wisesprout.co.uk |
|       |                                                                                                                 | 找名校导师,                                        |
|       |                                                                                                                 | 找名校导师,用小草线上辅导(微信小程序同名)                        |
|       |                                                                                                                 |                                               |
|       | Mass of iron in the tablet mg                                                                                   | 11                                            |
|       | Turn over I                                                                                                     |                                               |



| 0 4     | Cisplatin, $[Pt(NH_3)_2Cl_2]$ , is used as an anti-cancer drug.                                                              | Do not w<br>outside<br>box |
|---------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 0 4 . 1 | Cisplatin works by causing the death of rapidly dividing cells.                                                              |                            |
|         | Name the process that is prevented by cisplatin during cell division. [1 mark]                                               |                            |
|         | After cisplatin enters a cell, one of the chloride ligands is replaced by a water molecule to form a complex ion, <b>B</b> . |                            |
| 04.2    | Give the equation for this reaction. [2 marks]                                                                               |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |
|         |                                                                                                                              |                            |



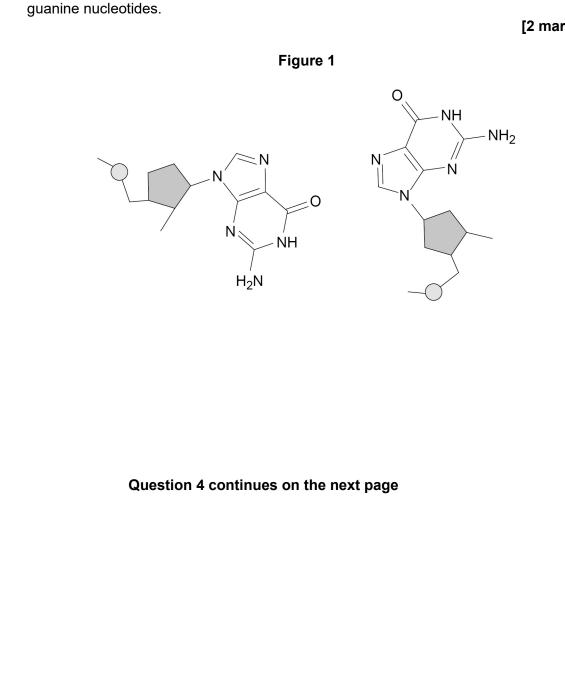
When the complex ion B reacts with DNA, the water molecule is replaced as a bond forms between platinum and a nitrogen atom in a guanine nucleotide.

3

.

0 4

The remaining chloride ligand is also replaced as a bond forms between platinum and a nitrogen atom in another guanine nucleotide.


Figure 1 represents two adjacent guanine nucleotides in DNA.

Complete Figure 1 to show how the platinum complex forms a cross-link between the

#### [2 marks]

Do not write outside the

box



Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

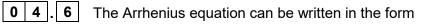
Do not write outside the box

|       |                                                                         | 10                        |                                             |                       |
|-------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------|-----------------------|
|       | An experiment is                                                        | done to investigate t     | he rate of reaction in Q                    | uestion <b>04.2</b> . |
| 0 4.4 | During the experi intervals.                                            | ment the concentration    | on of cisplatin is measu                    | red at one-minute     |
|       |                                                                         |                           | e used to process the m                     | neasured results, to  |
|       | confirm that the r                                                      | eaction is first order.   |                                             | [3 mark               |
|       |                                                                         |                           |                                             |                       |
|       |                                                                         |                           |                                             |                       |
|       |                                                                         |                           |                                             |                       |
|       |                                                                         |                           |                                             |                       |
|       |                                                                         |                           |                                             |                       |
|       |                                                                         |                           |                                             |                       |
|       | In another experi<br>Question <b>04.2</b> is<br><b>Table 1</b> shows th | investigated.             | mperature on the rate o                     | f the reaction in     |
|       |                                                                         |                           | Table 1                                     |                       |
|       | Temperature<br>T / K                                                    | $\frac{1}{T}/\kappa^{-1}$ | Rate constant<br><i>k /</i> s <sup>-1</sup> | ln <i>k</i>           |
|       | 293                                                                     | 0.00341                   | 1.97 × 10 <sup>-8</sup>                     | -17.7                 |
|       | 303                                                                     | 0.00330                   | 8.61 × 10 <sup>-8</sup>                     | -16.3                 |
|       | 313                                                                     | 0.00319                   | $3.43 \times 10^{-7}$                       | -14.9                 |
|       | 318                                                                     |                           | 6.63 × 10 <sup>-7</sup>                     |                       |
|       | 323                                                                     | 0.00310                   | 1.26 × 10 <sup>−6</sup>                     | -13.6                 |



Complete Table 1.

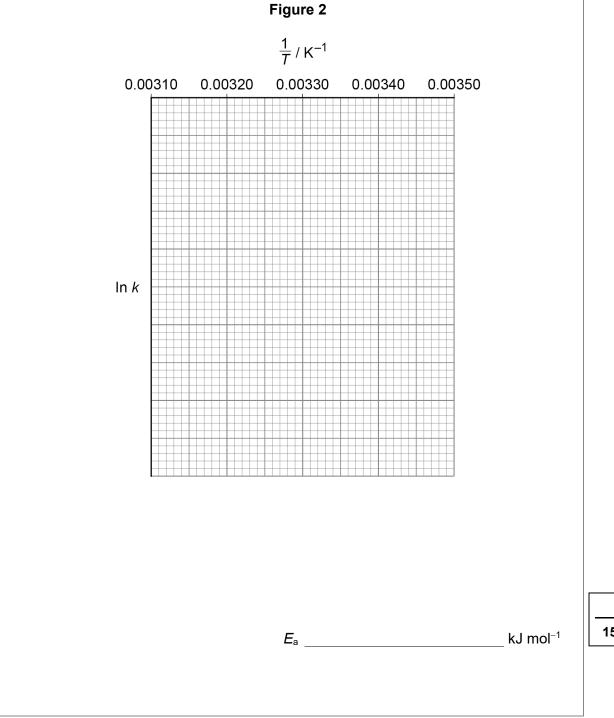
[2 marks]




[5 marks]

Find Personal Tutor from www.wisesprout.co.uk 找名校导师,用小草线上辅导(微信小程序同名)




Turn over ►



$$\ln k = \frac{-E_a}{RT} + \ln A$$

Use the data in **Table 1** to plot a graph of ln *k* against  $\frac{1}{T}$  on the grid in **Figure 2**. Calculate the activation energy,  $E_a$ , in kJ mol<sup>-1</sup>

The gas constant,  $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ 





|       |                                                                                                                                                       |                      | Do not writ        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
| 0 5   | A bomb calorimeter can be used for accurate determination of the heat chacombustion of a fuel.                                                        | ange during          | outside the<br>box |
|       | A bomb calorimeter is a container of fixed volume that withstands the char pressure during the reaction.                                              | ige in               |                    |
|       | The fuel is mixed with pure oxygen in the calorimeter, ignited and the temp change is recorded.                                                       | perature             |                    |
|       | The total heat capacity ( $C_{cal}$ ) of the calorimeter is calculated using a fuel for heat change is known.                                         | r which the          |                    |
|       | In an experiment to calculate $C_{cal}$ , 2.00 g of hexane ( $M_r$ = 86.0) is ignited.<br>A temperature change ( $\Delta T$ ) of 12.4 °C is recorded. |                      |                    |
|       | Under the conditions of the experiment, 1.00 mol of hexane releases 4154 energy when combusted.                                                       | kJ of                |                    |
| 0 5.1 | The heat energy released in the calorimeter, $q = C_{cal} \Delta T$                                                                                   |                      |                    |
|       | Calculate the heat capacity ( $C_{cal}$ ) in kJ K <sup>-1</sup>                                                                                       | [3 marks]            |                    |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       | C <sub>cal</sub>                                                                                                                                      | kJ K <sup>_1</sup>   |                    |
| 0 5.2 | When the experiment is repeated with 2.00 g of octane ( $M_r$ = 114.0) the temperature change recorded is 12.2 °C                                     |                      |                    |
|       | Calculate the heat change, in kJ mol <sup>-1</sup> , for octane in this combustion react                                                              | on.                  | Ĩ                  |
|       | If you were unable to calculate a value for $C_{cal}$ in Question <b>05.1</b> , use 6.52 k                                                            | kJ K⁻¹ (this         |                    |
|       | is <b>not</b> the correct value).                                                                                                                     | [2 marks]            | I                  |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       |                                                                                                                                                       |                      |                    |
|       | Heat change                                                                                                                                           | kJ mol <sup>-1</sup> |                    |
|       |                                                                                                                                                       |                      |                    |



Find Personal Tutor from www.wisesprout.co.uk

找名校导师,用小草线上辅导(微信小程序同名)

| 0 5.3 | State why the heat change calculated from the bomb calorimeter experiment is <b>not</b> an enthalpy change. [1 mark]                                                                                                                                                                                                                                             | Do not<br>outside<br>box | the                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|
| 0 5.4 | The thermometer used to measure the temperature change of 12.2 °C in<br>Question <b>05.2</b> has an uncertainty of ± 0.1 °C in each reading.<br>Calculate the percentage uncertainty in this use of the thermometer.<br>Suggest <b>one</b> change to this experiment that decreases the percentage uncertainty<br>while using the same thermometer.<br>[2 marks] |                          | Find Personal Tutor from www.wisesprout.co.uk |
|       | Percentage uncertainty                                                                                                                                                                                                                                                                                                                                           |                          |                                               |
|       | Turn over for the next question                                                                                                                                                                                                                                                                                                                                  | 8                        | 找名校导师,用小草线上辅导(微信小程序同名)<br>一                   |
|       |                                                                                                                                                                                                                                                                                                                                                                  |                          |                                               |



| 0 6   | Standard electrode potentials are measured by comparison with the standard hydrogen electrode.                                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 6.1 | State the substances and conditions needed in a standard hydrogen electrode.<br>[3 marks]                                                                                                                                            |
|       |                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                      |
|       | It is difficult to ensure consistency with the setup of a standard hydrogen electrode.                                                                                                                                               |
|       | A Cu <sup>2+</sup> (aq)/Cu(s) electrode ( $E^{e}$ = +0.34 V) can be used as a secondary standard.                                                                                                                                    |
|       | A student does an experiment to measure the standard electrode potential for the $TiO^{2+}(aq)/Ti(s)$ electrode using the $Cu^{2+}(aq)/Cu(s)$ electrode as a secondary standard.                                                     |
|       | A suitable solution containing the acidified TiO <sup>2+</sup> (aq) ion is formed when titanium(IV) oxysulfate (TiOSO <sub>4</sub> ) is dissolved in 0.50 mol dm <sup>-3</sup> sulfuric acid to make 50 cm <sup>3</sup> of solution. |
| 0 6.2 | Describe an experiment the student does to show that the standard electrode potential for the TiO <sup>2+</sup> (aq)/Ti(s) electrode is $-0.88$ V                                                                                    |
|       | The student is provided with:                                                                                                                                                                                                        |
|       | • the Cu <sup>2+</sup> (aq)/Cu(s) electrode set up ready to use                                                                                                                                                                      |
|       | <ul> <li>solid titanium(IV) oxysulfate (<i>M</i><sub>r</sub> = 159.9)</li> <li>0.50 mol dm<sup>-3</sup> sulfuric acid</li> </ul>                                                                                                     |
|       | <ul> <li>a strip of titanium</li> </ul>                                                                                                                                                                                              |
|       | <ul> <li>laboratory apparatus and chemicals.</li> </ul>                                                                                                                                                                              |
|       | <ul> <li>Your answer should include details of:</li> <li>how to prepare the solution of acidified TiO<sup>2+</sup>(aq)</li> <li>how to connect the electrodes</li> </ul>                                                             |
|       | <ul> <li>measurements taken</li> <li>how the measurements should be used to calculate the standard electrode potential</li> </ul>                                                                                                    |
|       | for the TiO <sup>2+</sup> (aq)/Ti(s) electrode.<br>[6 marks]                                                                                                                                                                         |
|       |                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                      |





Turn over ►







| acidic                     | conditions.                                                                                                                                                                                                                                                                      |                | [1 mark]            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|
|                            |                                                                                                                                                                                                                                                                                  |                |                     |
|                            |                                                                                                                                                                                                                                                                                  |                |                     |
|                            |                                                                                                                                                                                                                                                                                  |                |                     |
|                            |                                                                                                                                                                                                                                                                                  |                |                     |
| . 4 Table                  | 2 shows some electrode potential data.                                                                                                                                                                                                                                           |                |                     |
|                            | Table 2                                                                                                                                                                                                                                                                          |                |                     |
|                            | Electrode reaction                                                                                                                                                                                                                                                               | <i>E</i> ∘ / V |                     |
|                            | $2 H^+(aq) + 2 e^- \rightarrow H_2(g)$                                                                                                                                                                                                                                           | 0.00           |                     |
|                            | $Cu^{2+}(aq) + 2e^- → Cu(s)$                                                                                                                                                                                                                                                     | +0.34          | ]                   |
|                            |                                                                                                                                                                                                                                                                                  |                |                     |
| does r                     | NO <sub>3</sub> <sup>-</sup> (aq) + 4 H <sup>+</sup> (aq) + 3 e <sup>-</sup> →NO(g) + 2H <sub>2</sub> O(l)<br>e data in <b>Table 2</b> to explain why copper does <b>not</b> react with<br>eact with nitric acid.<br>n equation for the reaction between copper and nitric acid. |                |                     |
| does i                     | e data in <b>Table 2</b> to explain why copper does <b>not</b> react wit<br>eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.                                                                                                                | th most aci    | ds but<br>[3 marks] |
| does r<br>Give a           | e data in <b>Table 2</b> to explain why copper does <b>not</b> react wit<br>eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.                                                                                                                | th most aci    |                     |
| does r<br>Give a           | e data in <b>Table 2</b> to explain why copper does <b>not</b> react wit<br>eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.                                                                                                                | th most aci    |                     |
| does r<br>Give a           | e data in <b>Table 2</b> to explain why copper does <b>not</b> react wit<br>eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.                                                                                                                | th most aci    |                     |
| does r<br>Give a<br>Explan | e data in <b>Table 2</b> to explain why copper does <b>not</b> react with eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.<br>nation                                                                                                        | th most aci    |                     |
| does r<br>Give a           | e data in <b>Table 2</b> to explain why copper does <b>not</b> react with eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.<br>nation                                                                                                        | th most aci    |                     |
| does r<br>Give a<br>Explan | e data in <b>Table 2</b> to explain why copper does <b>not</b> react with eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.<br>nation                                                                                                        | th most aci    |                     |
| does r<br>Give a<br>Explan | e data in <b>Table 2</b> to explain why copper does <b>not</b> react with eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.<br>nation                                                                                                        | th most aci    |                     |
| does r<br>Give a<br>Explar | e data in <b>Table 2</b> to explain why copper does <b>not</b> react with eact with nitric acid.<br>n equation for the reaction between copper and nitric acid.<br>nation                                                                                                        | th most aci    |                     |



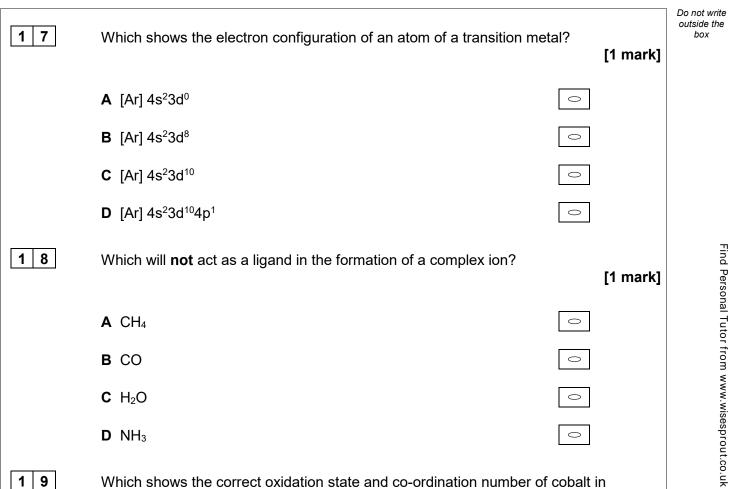
IB/M/Jun20/7405/3

|                                                                                       | Section B                                                                                                                                  | Do not write<br>outside the<br>box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | Answer <b>all</b> questions in this section.                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| For each q<br>CORREN<br>METHO<br>If you want<br>If you wish<br>as shown.<br>You may d | to return to an answer previously crossed out, ring the answer you now wish to select                                                      | Find Personal Tutor from www.wisesprout.co.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 7                                                                                   | When heated, a sample of potassium chlorate(V) (KClO <sub>3</sub> ) produced 67.2 cm <sup>3</sup> of oxygen, measured at 298 K and 110 kPa | www.wisesprout.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                       | $2 \operatorname{KClO}_3(s) \to 2 \operatorname{KCl}(s) + 3 \operatorname{O}_2(g)$                                                         | co.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                       | What is the amount, in moles, of potassium chlorate(V) that has decomposed?                                                                | لل<br>تك                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                       | The gas constant, $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$ [1 mark]                                                           | 找名校导师,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                       | A 9.95 × 10 <sup>−4</sup>                                                                                                                  | <b>王</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                       | B 1.99 × 10 <sup>−3</sup>                                                                                                                  | [线上辅]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                       | <b>C</b> 2.99 × 10 <sup>−3</sup>                                                                                                           | 「「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」、「」」では、「」」では、「」」、」、「」」では、「」」、」、「」、」、」、」、」、」、」、」、」、」、」、」、」、」、」、」 |
|                                                                                       | D 4.48 × 10 <sup>−3</sup>                                                                                                                  | 小卓线上辅导(微信小程序回名)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| 08 | Which has a bond a                                              | ngle of 109.5°?   |                              |                        | [1 mark]                        | Do not write<br>outside the<br>box            |
|----|-----------------------------------------------------------------|-------------------|------------------------------|------------------------|---------------------------------|-----------------------------------------------|
|    | A C (diamond)                                                   |                   |                              |                        | 0                               |                                               |
|    | B C (graphite)                                                  |                   |                              |                        | 0                               |                                               |
|    | $C NH_2^-$                                                      |                   |                              |                        | 0                               |                                               |
|    | D NH <sub>3</sub>                                               |                   |                              |                        | 0                               |                                               |
| 09 | Which reaction has silver iodide?                               | an enthalpy cha   | ange equal to the            | e standard entha       | Ipy of formation of<br>[1 mark] | Find Personal Tutor from www.wisesprout.co.uk |
|    | <b>A</b> Ag(g) + $\frac{1}{2}$ I <sub>2</sub> (g) $\rightarrow$ | AgI(s)            |                              |                        | 0                               | l Tutor fi                                    |
|    | <b>B</b> Ag(s) + $\frac{1}{2}$ I <sub>2</sub> (s) $\rightarrow$ | Agl(s)            |                              |                        | 0                               | rom ww                                        |
|    | <b>C</b> Ag <sup>+</sup> (g) + I <sup>-</sup> (g) $\rightarrow$ | AgI(s)            |                              |                        | 0                               | w.wisesp                                      |
|    | <b>D</b> Ag⁺(aq) + I⁻(aq) -                                     | → Agl(s)          |                              |                        | 0                               | orout.co.                                     |
| 10 | Some bond enthalp                                               | ies are given.    |                              |                        |                                 |                                               |
|    | Bond                                                            | C–H               | O–H                          | 0=0                    | C=0                             | 找名校导师,用                                       |
|    | Bond enthalpy/<br>kJ mol <sup>−1</sup>                          | 412               | 463                          | 496                    | 743                             |                                               |
|    | Which is the enthal                                             | by change of this | s reaction in kJ r           | nol⁻¹?                 |                                 | 上辅导(常                                         |
|    |                                                                 | CH₄(g) + 2C       | $D_2(g) \rightarrow CO_2(g)$ | + 2H <sub>2</sub> O(g) | [1 mark]                        | 小卑线上辅导(                                       |
|    | <b>A</b> +698                                                   |                   |                              |                        | 0                               |                                               |
|    | <b>B</b> +228                                                   |                   |                              |                        | 0                               |                                               |
|    | <b>C</b> –228                                                   |                   |                              |                        | 0                               |                                               |
|    | <b>D</b> –698                                                   |                   |                              |                        | 0                               |                                               |
|    |                                                                 |                   |                              |                        |                                 |                                               |
|    |                                                                 |                   |                              |                        |                                 |                                               |

19


Turn over ►

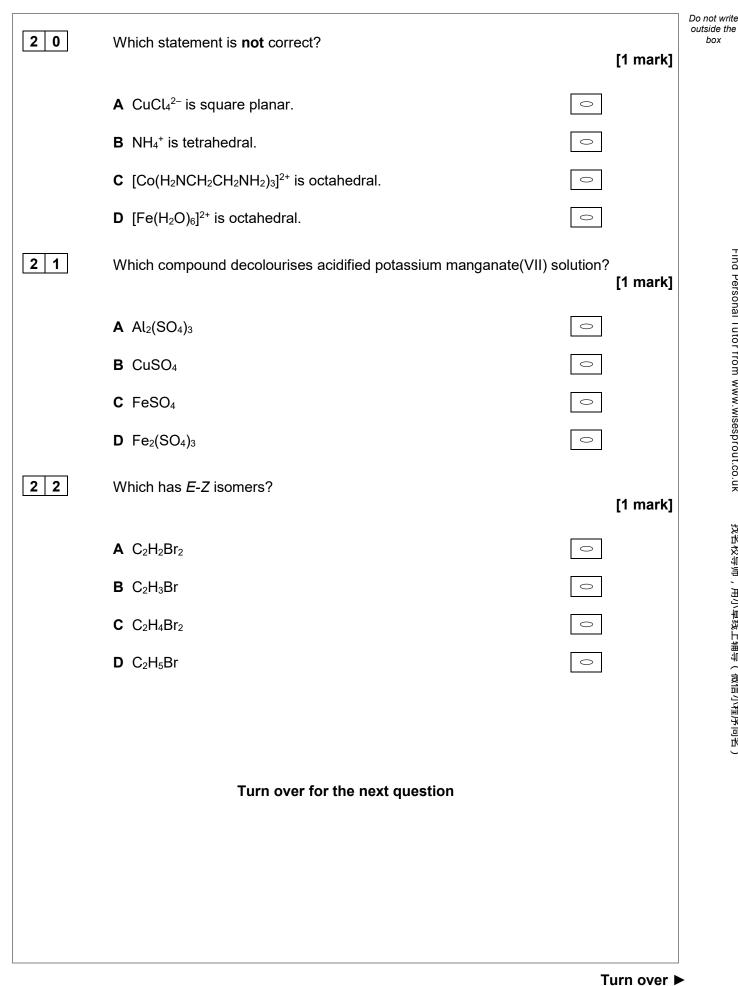
| 1 1 | In which conversion is the metal reduced?                                                                                               |   | [1 mark] | Do not write<br>outside the<br>box            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---|----------|-----------------------------------------------|
|     | $\textbf{A}  Cr_2O_7^{2-} \rightarrow CrO_4^{2-}$                                                                                       | 0 |          |                                               |
|     | <b>B</b> $MnO_4^{2-} \rightarrow MnO_4^{-}$                                                                                             | 0 |          |                                               |
|     | <b>C</b> $TiO_2 \rightarrow TiO_3^{2-}$                                                                                                 | 0 |          |                                               |
|     | <b>D</b> $VO_3^- \rightarrow VO^{2+}$                                                                                                   | 0 |          |                                               |
| 1 2 | The rate expression for the reaction between ${f X}$ and ${f Y}$ is                                                                     |   |          | Find P                                        |
|     | rate = $k [\mathbf{X}]^2 [\mathbf{Y}]$                                                                                                  |   |          | ersonal                                       |
|     | Which statement is correct?                                                                                                             |   | [1 mark] | Find Personal Tutor from www.wisesprout.co.uk |
|     | <b>A</b> The rate constant has units mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup>                                                  | 0 |          | n www.                                        |
|     | <b>B</b> The rate of the reaction is halved if the concentration of <b>X</b> is halved and the concentration of <b>Y</b> is doubled.    |   |          | <i>w</i> isesprou                             |
|     | <b>C</b> The rate increases by a factor of 16 if the concentration of <b>X</b> is tripled and the concentration of <b>Y</b> is doubled. | 0 |          | t.co.uk                                       |
|     | <b>D</b> The rate constant is independent of temperature.                                                                               | 0 |          | 扶                                             |
| 1 3 | Which statement about pH is correct?                                                                                                    |   | [1 mark] | 找名校导师,用小草线上辅导(微信小程序同名)                        |
|     | <b>A</b> The pH of a weak base is independent of temperature.                                                                           | 0 |          | 小草线上                                          |
|     | <b>B</b> At temperatures above 298 K, the pH of pure water is less than 7.                                                              | 0 |          | 捕导(                                           |
|     | <b>C</b> The pH of 2.0 mol dm <sup><math>-3</math></sup> nitric acid is approximately 0.30                                              | 0 |          | (信小程)                                         |
|     | D The pH of 0.10 mol dm <sup>-3</sup> sulfuric acid is greater than that of 0.10 mol dm <sup>-3</sup> hydrochloric acid.                | 0 |          | 李同名)                                          |
|     |                                                                                                                                         |   |          |                                               |
|     |                                                                                                                                         |   |          |                                               |
|     |                                                                                                                                         |   |          |                                               |
|     |                                                                                                                                         |   |          |                                               |



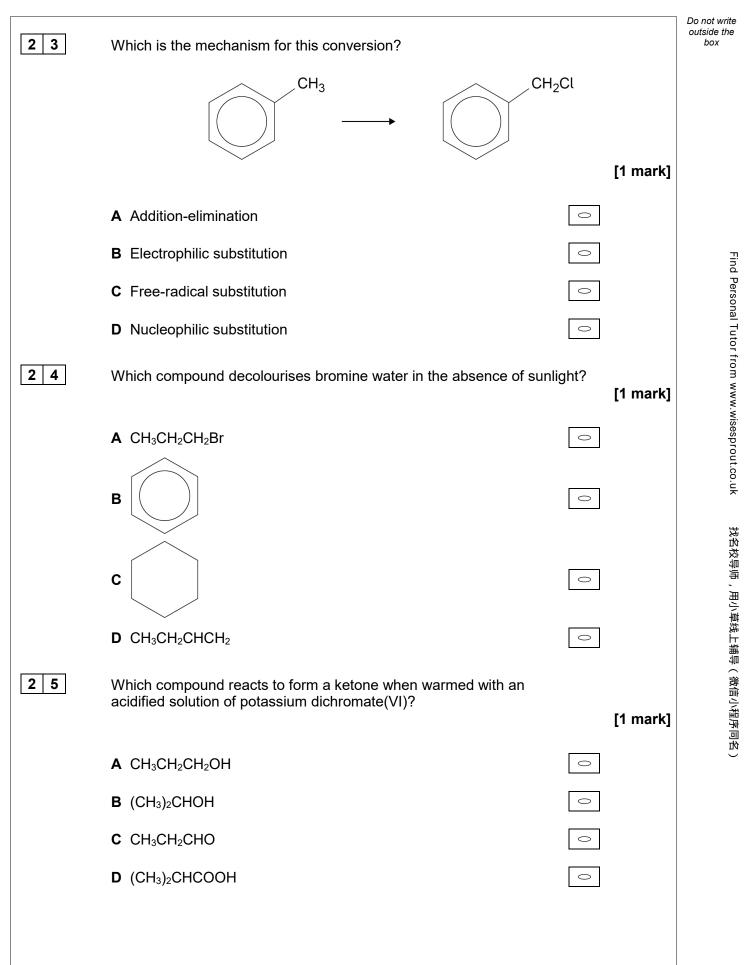
| 1 4 | A 0.10 mol dm <sup>-3</sup> aqueous solution of an acid is added slowly to $25 \text{ cm}^3$ 0.10 mol dm <sup>-3</sup> aqueous solution of a base. | <sup>3</sup> of a | Do not write<br>outside the<br>box            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------|
|     | Which acid–base pair has the highest pH at the equivalence point?                                                                                  | [1 mark]          |                                               |
|     | A CH₃COOH and NaOH                                                                                                                                 | 0                 |                                               |
|     | B CH <sub>3</sub> COOH and NH <sub>3</sub>                                                                                                         | 0                 |                                               |
|     | C HCl and NaOH                                                                                                                                     | 0                 | _                                             |
|     | D HCl and NH <sub>3</sub>                                                                                                                          | 0                 | -ind Per                                      |
| 1 5 | In the test for a halide ion in aqueous solution, dilute nitric acid is adde<br>addition of silver nitrate solution.                               | ed before the     | Find Personal Tutor from www.wisesprout.co.uk |
|     | Why is nitric acid added?                                                                                                                          | [1 mark]          | from ww                                       |
|     | <b>A</b> It increases the concentration of nitrate ions.                                                                                           | 0                 | v.wisespro                                    |
|     | <b>B</b> It prevents the precipitation of silver compounds other than halides                                                                      | . •               | out.co.u                                      |
|     | <b>C</b> It prevents the silver nitrate being precipitated.                                                                                        | 0                 |                                               |
|     | <b>D</b> It provides the acidic solution required for precipitation.                                                                               | 0                 | 找 光<br>松<br>松<br>将<br>「                       |
| 1 6 | Which shows the major product(s) formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide?                                          | [1 mark]          | <b>找</b> 名校导师,用小卑线」                           |
|     | A NaCl only                                                                                                                                        | 0                 |                                               |
|     | B NaClO only                                                                                                                                       | 0                 | 早线上辅导(微信小程序回台                                 |
|     | C NaCl and NaClO                                                                                                                                   | 0                 | 予回光<br>)<br>)                                 |
|     | <b>D</b> NaCl and NaClO <sub>3</sub>                                                                                                               | 0                 |                                               |
|     |                                                                                                                                                    |                   |                                               |
|     |                                                                                                                                                    |                   |                                               |
|     |                                                                                                                                                    |                   |                                               |



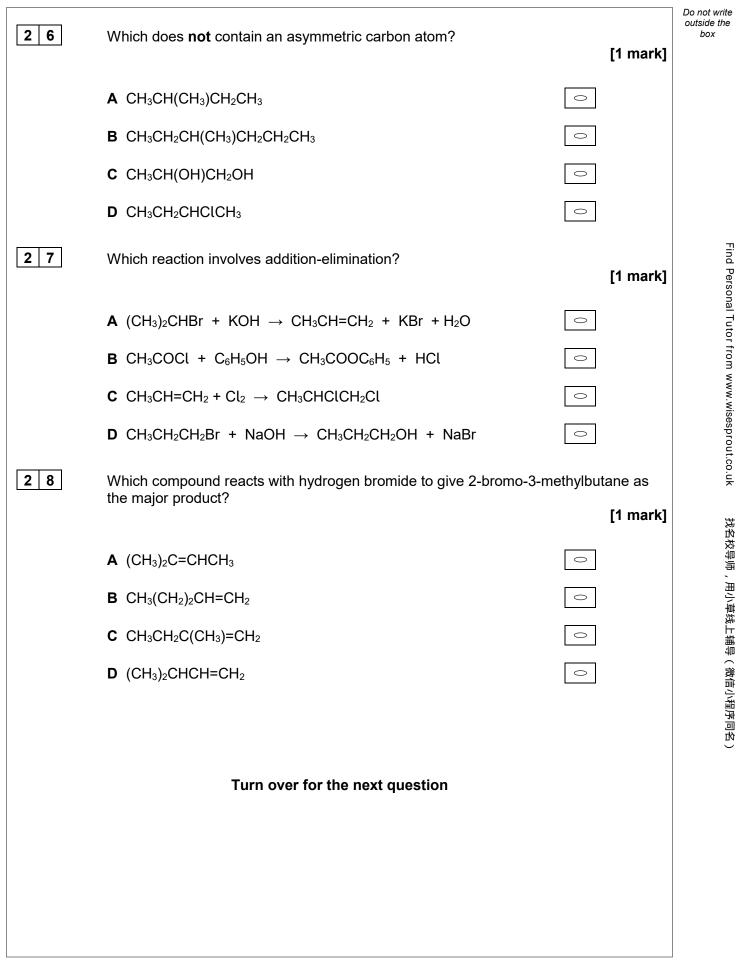



1 9

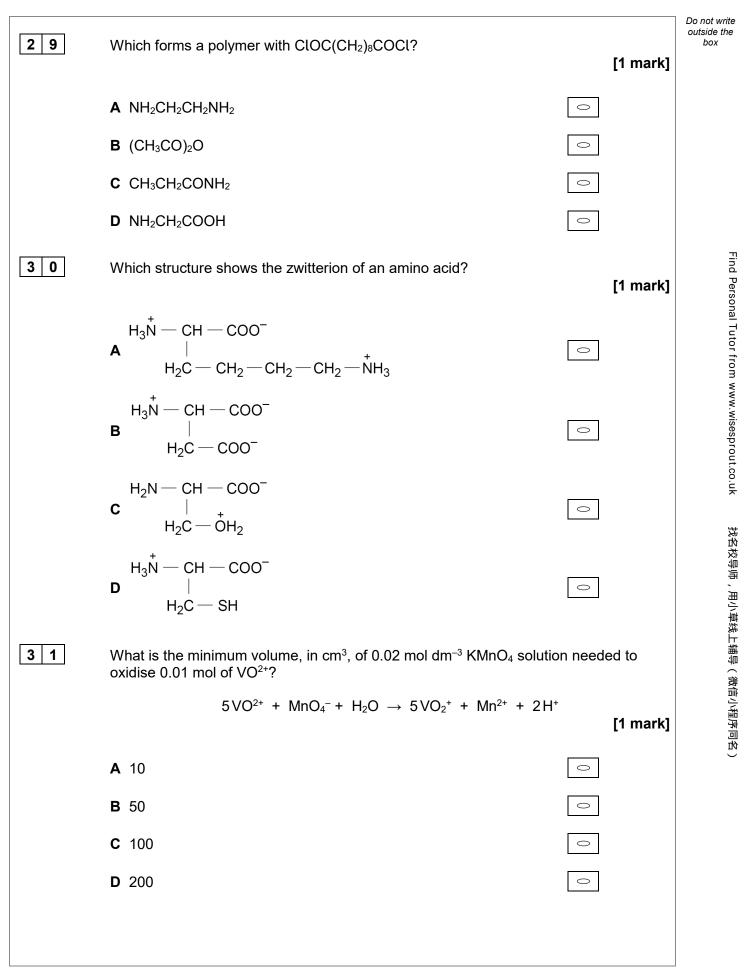
Which shows the correct oxidation state and co-ordination number of cobalt in [Co(NH<sub>3</sub>)<sub>5</sub>Cl]Cl<sub>2</sub>?


|   | oxidation<br>state | co-ordination<br>number |   |
|---|--------------------|-------------------------|---|
| Α | +2                 | 5                       | 0 |
| в | +2                 | 6                       | 0 |
| с | +3                 | 5                       | 0 |
| D | +3                 | 6                       | 0 |

[1 mark]







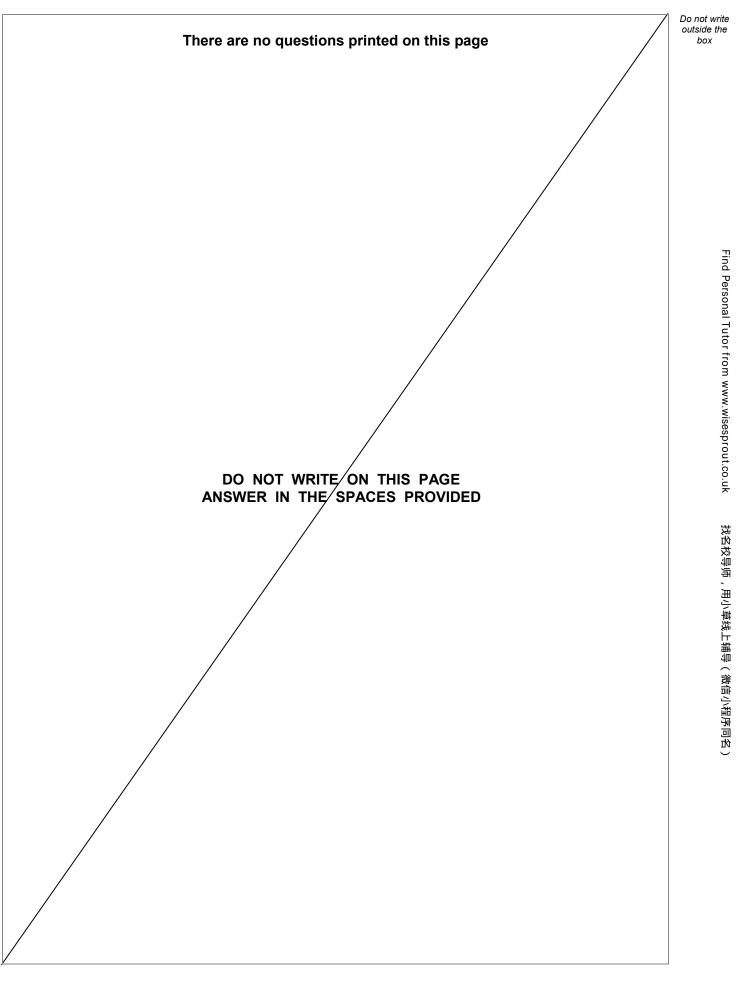












| 3 2 | Which is the concentration of NaOH(aq), in mol dm <sup><math>-3</math></sup> , that has pH = | 14.30?   | Do not write<br>outside the<br>box            |
|-----|----------------------------------------------------------------------------------------------|----------|-----------------------------------------------|
|     | $K_{\rm w}$ = 1.00 × 10 <sup>-14</sup> mol <sup>2</sup> dm <sup>-6</sup> at 25 °C            | [1 mark] |                                               |
|     | <b>A</b> −1.16                                                                               | 0        |                                               |
|     | <b>B</b> $5.01 \times 10^{-15}$                                                              | 0        |                                               |
|     | <b>C</b> $2.00 \times 10^{14}$                                                               | 0        |                                               |
|     | <b>D</b> 2.00                                                                                | 0        | Find                                          |
| 3 3 | What are the units of the rate constant for a third order reaction?                          | [1 mark] | Find Personal Tutor from www.wisesprout.co.uk |
|     | <b>A</b> mol dm <sup><math>-3</math></sup> s <sup><math>-1</math></sup>                      | 0        | or from                                       |
|     | <b>B</b> mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup>                                   | 0        | WWW.W                                         |
|     | <b>C</b> mol <sup>2</sup> dm <sup>-6</sup> s <sup>-1</sup>                                   | 0        | isesprou                                      |
|     | <b>D</b> mol <sup>-2</sup> dm <sup>6</sup> s <sup>-1</sup>                                   | 0        | ut.co.uk                                      |
| 3 4 | What is the pH of 0.015 mol dm <sup>-3</sup> sulfuric acid?                                  | [1 mark] | 找名校导师,                                        |
|     | <b>A</b> –1.82                                                                               | 0        | 学师<br>                                        |
|     | <b>B</b> –1.52                                                                               | 0        |                                               |
|     | <b>C</b> 1.52                                                                                | 0        | - 辅导(                                         |
|     | <b>D</b> 1.82                                                                                | 0        | 溦信·小程                                         |
|     |                                                                                              |          | 小草线上辅导(微信小程序同名)                               |
|     |                                                                                              |          |                                               |
|     | Turn over for the next question                                                              |          |                                               |
|     |                                                                                              |          |                                               |
|     |                                                                                              |          |                                               |
|     |                                                                                              |          |                                               |
|     |                                                                                              |          |                                               |



Turn over ►

| 3 5 | Which compound is formed when phenyl benzenecarboxylate is hydro acidic conditions?                                                                                       | olysed u | under     | Do not write<br>outside the<br>box            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------------------------------------------|
|     |                                                                                                                                                                           |          | [1 mark]  |                                               |
|     | A C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH                                                                                                                        | 0        |           |                                               |
|     | B C <sub>6</sub> H₅CHO                                                                                                                                                    | 0        |           |                                               |
|     | C C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>                                                                                                                         | 0        |           |                                               |
|     | D C <sub>6</sub> H <sub>5</sub> COOH                                                                                                                                      | 0        |           | т                                             |
| 36  | A student rinsed the apparatus before starting an acid-base titration.<br>The results of the titration showed that the volume of acid added from<br>larger than expected. | the bu   | rette was | Find Personal Tutor from www.wisesprout.co.uk |
|     | Which is a possible reason for this?                                                                                                                                      |          | [1 mark]  | itor from v                                   |
|     | <b>A</b> The conical flask was rinsed with water before the titration.                                                                                                    | 0        |           | vww.wis                                       |
|     | <b>B</b> The walls of the conical flask were rinsed with water during the titration.                                                                                      | 0        |           | sesprout.                                     |
|     | <b>C</b> The pipette was rinsed only with water.                                                                                                                          | 0        |           | co.uk                                         |
|     | <b>D</b> The burette was rinsed only with water.                                                                                                                          | 0        |           | <b>30</b>                                     |
|     |                                                                                                                                                                           |          |           | 松导师                                           |
|     |                                                                                                                                                                           |          |           | ,<br>用小草                                      |
|     | END OF QUESTIONS                                                                                                                                                          |          |           | 找名校导师,用小草线上辅导(微信小程序同名)<br>                    |
|     |                                                                                                                                                                           |          |           |                                               |
|     |                                                                                                                                                                           |          |           |                                               |
|     |                                                                                                                                                                           |          |           |                                               |
|     |                                                                                                                                                                           |          |           |                                               |
|     |                                                                                                                                                                           |          |           |                                               |







| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin.                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    | Copyright information<br>For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet                                                                                                                    |
|                    | is published after each live examination series and is available for free download from www.aqa.org.uk.                                                                                                                                                                            |
|                    | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |
|                    | Copyright © 2020 AQA and its licensors. All rights reserved.                                                                                                                                                                                                                       |



