AQAHY

A-level
COMPUTER SCIENCE
7517/1

Paper 1

Mark scheme

June 2021

Version: 1.0 Final

216 A7517 /1 /7 MmsS

N°09'1N0JdSaSIM MMM WOJ) JI0IN] [RUOSIS

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’'s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from aqga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third
party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

A-level Computer Science
Paper 1 (7517/1) — applicable to all programming languages A, B, C, D and E

June 2021

The following annotation is used in the mark scheme:

- means a single mark

H

I - means an alternative response

/ - means an alternative word or sub-phrase
A. - means an acceptable creditworthy answer
R. - means reject answer as not creditworthy
NE. - means not enough

. - means ignore

DPT. - means "Don't penalise twice". In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives

€g
In question 07.1, the marks available for the AO3 elements are as follows:

AO3 (design) 4 marks
AQ3 (programming) 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

01

All marks AO2 (apply)

0 1 2 3 4 [5]
3 5 8 1 6 4
First pass 3 5 1 6 4 8
Second pass 3 1 5 4 6 8
Third pass 1 3 4 5 6 8
Mark as follows:
1 mark: 15t row correct
1 mark: 2" row correct
1 mark: 3™ row correct
Alternative answer
0 1 2 3 4 [5]
3 5 8 1 6 4
First pass 1 3 5 8 4 6
Second pass 1 3 5 4 8 6
Third pass 1 3 4 5 6 8

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks
02 1 | All marks AO1 (knowledge) 2
Rooted (tree);
Where each node has at most two child nodes; R. each node has two child nodes
02 2 | All marks AO2 (apply) 2

ETHCYBOQ;;
If not fully correct award a maximum of 1 mark for any of the following:

¢ Having E followed by T then H
e Having Y followed by B then Q
e Having C as the 4™ output

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

02 | 3

All marks AO2 (apply)

Stack
Current | Pos [0] [1] [2] [3] OUTPUT
0 0 0
0 -1 C
0 4
1 1
1 0 I
1 3
2 2
2 1 E
3 0 H
4 -1 B
0 6
5
5 Y
-1 0

Mark as follows:

1.Stack[0] setto 0, Pos setto 0 and Current setto 0

2.Current setto 0, Pos set to —1 and output of C
3.Stack([0] setto 4 and Pos setto O

4.Stack[1] setto 1, then 3 and then 5 with no other values after being set to 5

5.Stack[2] setto 2 with no other values after this, Stack [0] having a 3" value
of 6 with no other values after this and Stack [3] column not used;

6. Pos column correct from 4" value (1) onwards and Current column set to the
value 1, then 2, 3, 4, 5, 6 with no further values after being set to 6

7. Correct order in output column for 2" value onwards (I, E, H, B, Y, Q)

Max 6 if any errors

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks
02 | 4 | Mark is for AO1 (understanding) 1
A subroutine that calls itself;
02 5 | Mark is for AO1 (understanding) 1
The circumstance(s) when a recursive subroutine does not call itself;
02 6 | All marks AO1 (knowledge) 2
local variables;
return address;
parameters;
register values; A. example of register that would be in stack frame
Max 2
Question Marks
03 One mark for AO1 (knowledge) and two marks for AO1 (understanding) 3
AO1 knowledge
Breaking a problem into smaller sub-problems;
AO1 understanding
Each of which solves an identifiable task;
Each of which might be further subdivided;
Question Marks
04 All marks AO1 (understanding) 5

Hash algorithm applied;

to key value; NE. to data/item

result is location in table where the record should be stored;
if location is not empty;

then use next free location; A. description of any feasible collision resolution method

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

05

1

All marks AO1 (understanding)
Simpler for a machine/computer to evaluate (A. easier R. to understand);
Simpler to code algorithm;

Do not need brackets (to show correct order of evaluation/calculation); A. RPN
expressions cannot be ambiguous as BOD

Operators appear in the order required for computation; No need for order of
precedence of operators;

No need to backtrack when evaluating;

Max 2

05

All marks AO1 (understanding)

(Starting at LHS of expression) push values/operands on to stack; R. if operators
are also pushed onto stack, unless they are immediately popped off the stack

Each time operator reached pop top two values off stack (and apply operator to
them) // Each time operator reached pop required number of values off stack (and
apply operator to them);

Push result (of applying operator) to stack;

When end of expression is reached the top item of the stack is the result // when
end of expression is reached pop one value off the stack;

Max 3 if any errors
Max 3 if more than one stack used

Note for examiners: award 0 marks if description is not about a stack / LIFO
structure even if the word “stack” has been used

10

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks
06 1 | All marks AO2 (analyse) 2
Current state | Input | New state
S2 a S5
S2 b S4
SO b S2
S5 b S2
Mark as follows:
¢ 1 mark: rows with current state of S2 are correct
¢ 1 mark: rows with new state of S2 are correct
I. order of rows
06 2 | All marks AO2 (analyse) 3

a(ba) *|b(ab) *

Il

(a(ba)*) | (b(ab)*)

/!

b(ab)*| a(ba)*

1/

(b(ab)*) | (a(ba)™*)
Il

alblb(ab)+| a(ba)+;;

Max 2 if not fully correct

If answer is not completely correct award marks for the following:
o Expression uses two * metacharacters and a | metacharacter;
(ba) * and (ab) * in expression; R. ba* R. ab*
Expression will match with single a and a single b
(ba) + and (ab) + in expression; R.ba+ R. ab+

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

11

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

07 | 1

4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description

Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
number, has at least one iterative structure and one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to determine if a number is a Harshad number,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. Itis
unlikely that any of the key design elements of the task
have been recognised.

1-3

12

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Guidance
Evidence of AO3 design — 4 points:
Evidence of design to look for in responses:

1. ldentifying that integer division is needed when calculating the sum of the digits
/I identifying that a character in string needs to be converted to a number data
type when calculating the sum of the digits

2. Identifying that a loop is needed that repeats a number of times determined by
the number entered by the user // identifying that a loop is needed that repeats
until the nth Harshad number is found

3. ldentifying that nested iteration is needed

4. Selection structure that compares sum of digits (I. incorrectly calculated) with a
number

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming — 8 points:
Evidence of programming to look for in response:

5. Suitable prompt asking user to enter a number followed by user input being
assigned to appropriate variable

6. Iterative structure that repeats a number of times sufficient to find all the digits of
a number

7. Calculates the sum of all the digits of a number

8. Calculates the remainder from dividing a number by its sum of digits A. incorrect
calculation for sum of digits

9. Resets the variable used to store the sum of digits to 0 in an appropriate place

10. Program works correctly for the first nine Harshad numbers (1 to 9)

11. Program will display 10/12/18 if the user enters the number 10/11/12

12. Program displays the correct value for the nth Harshad number under all
circumstances |. displaying Harshad numbers that appear before the nth
Harshad number

Alternative mark scheme
This mark scheme is to be used if solution uses a recursive subroutine to calculate
the sum of the digits.

3. Identifying that a recursive subroutine is needed to calculate the sum of the digits.

6. Recursive subroutine has an appropriate base case.
9. Sets the variable used to store the sum of digits to the result returned by the call
to the recursive subroutine in an appropriate place.

Max 11 if any errors.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

13

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

07

Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****

Must match code from 07.1, including prompts on screen capture matching those in
code.

Code for 07.1 must be sensible.

Screen capture showing the number 600 being entered and then a message
displayed saying 3102

Enter value for n: 6080
31

14

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks

08 1 | Mark is for AO2 (analyse) 1
If they have the same value as each other for one of their coordinates;

08 | 2 | Marks are for AO2 (analyse) 2
(The result of) the integer division by 2; on the x coordinate;

08 3 | Marks are for AO2 (analyse) 2
Change the 3 in the selection structure to a 7;
Change the 2 (3 in Python) in the for loop to a 6 (7 in Python);
If answer is incorrect award 1 mark for changing the 3to a 5 and the 2to a 4
Alternative answer
The number of elements in the items list now needs to be seven instead of three;
and would need to put three integers in the list for each tile;

Question Marks

09 1 | Mark is for AO2 (analyse) 1
The classes that inherit from Piece would not be able to use it;
A. answers that use a specific class that would not be able to use it (Baron, LESS,
PBDS).

09 | 2 | Marks are for AO2 (analyse) 2
When both players’ barons are destroyed in the same turn;
and it is not player two’s turn // and it is player one’s turn;

09 3 | Mark is for AO1 (understanding) 1

A method shared (up and down the inheritance hierarchy chain) but with each class
/ method implementing it differently

I

A single interface is provided to entities/objects of different classes / types

I

Objects of different classes / types respond differently to the use of a common
interface / the same usage

I

Allowing different classes to be used with the same interface

I

The ability to process objects differently depending on their class / type;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

15

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

10

1

Mark is for AO2 (analyse)

The structure of the data in the file does not match the expected format;
A. by example, eg there are not five items in the first line in the file

File is not a text file; A. any reasonable example of a file error that could cause an
exception apart from file not existing

The program tries to convert a non-integer (A. non-numeric) (A. string or other
example of an invalid data type) value to an integer;

Program tries to store a value which is too large to be an integer as an integer;

Max 1

10

Mark is for AO2 (analyse)

CheckMoveCommandFormat,;
CheckStandardCommandFormat;
CheckUpgradeCommandFormat;
hasMethod; (Java only)

readLine; (Java only)
executeCommandInTile; (Java only)

Max 1
R. if spelt incorrectly

R. if any additional code
l. case and spacing

Question

Marks

11

All marks are for AO2 (analyse)

It gets the largest of; the differences between the x coordinates, the y coordinates
and the z coordinates (of the two tiles);

16

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks
12 1 | All marks for AO3 (programming) 5
1. Correctly checks if a piece belongs to a player;
2. Correctly checks if a piece is a LESS piece;
3. Correct logic for selection structure for a player’s LESS piece and one added to
that player’s victory points if a piece is a LESS piece belonging to that player;
4. Mark points 1 to 3 done for other player;
5. Only adds victory points for LESS pieces if they have not been destroyed;
Max 4 if code contains errors
12 | 2 | Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****
Must match code from 12.1.
Code for 12.1 must be sensible.

Screen captures showing the correct VP totals for both players (2 for player one and
7 for player two);

in supp) Lumber: 5 Fuel: 5
n supp) Lumber: 5 Fuel: 5
nter to continue...

10 state your three commands, pressing

n supply: 2 Lumber: 5 Fuel: 5
n supply: 2 Lumber: 5 Fuel: 5

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

17

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

**** SCREEN CAPTURE ****
Must match code from 13.1.
Code for 13.1 must be sensible.

Screen capture(s) showing that two commands were executed and third command
wasn'’t followed by grid with R piece in 3" cell on top row;

g enter after each one.

"t be done
nen ! e i in sup 5 Lumber e

Lumber: 1@

g enter after each one.

Question Marks
13 1 | All marks for AO3 (programming) 7
1. Creating a new class called RangerPiece; R. other names for class |I. case
and minor typos
2. New class inherits from Piece and has a constuctor that overrides base class
constructor with call made to base class constructor; R. if incorrect parameters
3. Constructor sets PieceType to "R"; R. if before call to base class constructor R.
llrll
4. Subroutine called CheckMoveIsValid created that overrides base class
method and correct code for normal move R. if incorrect parameters
5. Selection structure with correct conditions that allow move from forest terrain to
forest terrain;
6. Correct fuel cost returned for all moves (forest to forest, distance of one, illegal
move, distance of one with peat bog as start terrain, distance of one with peat
bog as end terrain);
The following relates to the AddPiece subroutine:
7. Selection structure with correct condition in appropriate place in code which
results in call to constructor for new class;
Max 6 if code contains errors
13 | 2 | Mark is for AO3 (evaluate) 1

18

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question Marks
14 1 | All marks for AO3 (programming) 8
Marks for changes to the ExecuteCommand method:
1. selection structure with correct condition for burn command;
2. selection structures with correct condition to check that there is lumber in the
player’s supply;
3. returns correct string (A. minor typos, I. case) if player has no lumber;
4. generates a random integer;
5. random integer generated is in correct range;
6. reduces lumber by correct amount;
7. increases fuel by correct amount;
Marks for changes to other parts of program:
8. Returns True from CheckCommandIsValid if burn command was used;
Max 7 marks if code contains errors
14 | 2 | Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****
Must match code from 14.1.
Code for 14.1 must be sensible.

Screen capture(s) showing that Player One’s lumber has decreased by the same
amount as their fuel has increased; Notes for examiners: due to random numbers
in game exact values can vary; screen capture could show R or S below the B in
the top-left corner of the grid; lumber and fuel both had an initial value of 10.

n supply: 5 mber: 18 Fuel: 18
n supply: 5 mber: 18 Fuel: 18

Fuel: 19
n supply: 5 mber: 16 Fuel: 1@

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

19

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Question

Marks

15

1

All marks for AO3 (programming)

1. Created new method called Get FogOfWar; R. other names for method I.
case and minor typos

2. Method returns a Boolean value and takes the index of a tile as a parameter; A.
alternatives to passing index of tile eg tile itself I. other parameters

3. Check to see if tile passed as parameter to method contains a piece belonging
to the active player;

4. Gets all the neighbours of the tile passed as a parameter to the method;

5. Gets all the neighbours of the tiles identified in mark point 4 // gets all the
neighbours of the tiles indentified in mark point 4 not already got;

6. Checks at least one neigbouring tile contains a piece belonging to the active
player;

7. lterative structure that looks at each tile identified as being within two of the tile

passed to the method; A. not all tiles identified correctly

Every time a tile is checked the PieceID in the tile is obtained;

Returns a value of False if it correctly identifies, for the tiles checked, that the

tile contains a piece belonging to the active player;

10. Method GetFogOfWar returns the correct value under all circumstances;

11. Modified GetPieceTypeInTile so thatit calls GetFogOfWar; A.
alternative identifier used as long as match that used for mark point 1

12.GetPieceTypeInTile returns a space character if the value returned by
GetFogOfWar is True;

13.GetPieceTypeInTile returns the piece in the tile if there is a piece in the
tile and a space character if either there is not a piece in the tile or when the
value returned by GetFogOfWar is True; R. if no attempt for either mark
points 11 or 12

© ®

Alternative answer for mark points 4, 5 and 7

4. Iterative structure that is used to check every tile;

5. Gets the distance of each tile from the tile passed as a parameter to the method;

7. Gets all tiles within a distance of two from the tile passed as a parameter to the
method;

Note: award mark points 4, 5 and 7 (both methods) for solutions where loop could
terminate early if value of false is returned due to identification of a tile containing

the player’s piece that is within distance of two from tile passed as a parameter to
the method, before all tiles that need to be checked have been identified.

Max 12 if code contains errors or if other parts of the subroutine
GetPieceTypeInTile no longer work correctly

13

15

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 15.1, including prompts on screen capture matching those in
code.

Code for 15.1 must be sensible.

20

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Screen capture(s) showing that for the game from game1.txt the grid is displayed
correctly at the start of both player’s turns;

n supp) Lumber: 5
in supp Lumber: 5

commar

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

21

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

VB.Net
Question Marks
07 1 Console.Write ("Enter value for n: ") 12

Dim Number As Integer = Console.ReadLine
Dim NumbersFoundSoFar As Integer = 0
Dim CurrentNumber As Integer = 1
Dim SumOfDigits As Integer
While NumbersFoundSoFar <> Number
SumOfDigits = 0
Dim NumAsString As String = CStr (CurrentNumber)
For count = 0 To NumAsString.Length - 1
SumOfDigits += Val (NumAsString (count))
Next
If CurrentNumber Mod SumOfDigits = 0 Then
NumbersFoundSoFar += 1
If NumbersFoundSoFar = Number Then
Console.WritelLine (CurrentNumber)
End If
End If
CurrentNumber += 1

End While

Alternative answer

Console.Write ("Enter value for n: ")
Dim Number As Integer = Console.ReadLine
Dim NumbersFoundSoFar As Integer = 0
Dim CurrentNumber As Integer = 1
Dim SumOfDigits As Integer
While NumbersFoundSoFar <> Number
Dim Temp As Integer = CurrentNumber
SumOfDigits = 0
While Temp > 0
SumOfDigits += Temp Mod 10
Temp \= 10
End While
If CurrentNumber Mod SumOfDigits = 0 Then
NumbersFoundSoFar += 1

If NumbersFoundSoFar = Number Then
Console.WritelLine (CurrentNumber)
End If
End If
CurrentNumber += 1
End While

Recursive answer

Function SumDigits (ByVal Num As Integer) As Integer
Dim Sum As Integer
If Num = 0 Then

Sum = 0
Else

Sum = Num Mod 10 + SumDigits (Num\10)
End If

Return Sum

22

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

End Function

Sub Main ()
Console.Write ("Enter value for n: ")
Dim n As Integer = Console.ReadLine()
Dim NthHarshad As Integer = 0
Dim Counter As Integer = 1
Dim Value As Integer
While n <> NthHarshad
Value = SumDigits (Counter)
If Counter Mod Value = 0 Then
NthHarshad += 1
End If
If n = NthHarshad Then
Console.WriteLine (Counter)
End If
Counter = Counter + 1
End While
End Sub

12

Public Function DestroyPiecesAndCountVPs (ByRef PlayerlVPs As
Integer, ByRef Player2VPs As Integer) As Boolean
Dim BaronDestroyed As Boolean = False
Dim ListOfTilesContainingDestroyedPieces As New List (Of Tile)
For Each T In Tiles
If T.GetPieceInTile() IsNotNothing Then

Dim ListOfNeighbours As List (Of Tile) = New List (Of
Tile) (T.GetNeighbours())
Dim NoOfConnections As Integer = 0

For Each N In ListOfNeighbours
If N.GetPieceInTile() IsNot Nothing Then
NoOfConnections += 1
End If
Next
Dim ThePiece As Piece = T.GetPieceInTile()
If NoOfConnections >= ThePiece.GetConnectionsNeededToDestroy ()
Then
ThePiece.DestroyPiece ()
If ThePiece.GetPieceType () .ToUpper () = "B" Then
BaronDestroyed = True
End If
ListOfTilesContainingDestroyedPieces.Add (T)
If ThePiece.GetBelongsToPlayerl () Then
Player2VPs += ThePiece.GetVPs ()
Else
PlayerlVPs += ThePiece.GetVPs ()
End If
Else
If ThePiece.GetPieceType() = "L" Then
PlayerlVPs += 1
Elself ThePiece.GetPieceType() = "1" Then
Player2VPs += 1
End If
End If
End If
Next
For Each T In ListOfTilesContainingDestroyedPieces
T.SetPiece (Nothing)
Next

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

23

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Return BaronDestroyed
End Function

Alternative answer

Else
If ThePiece.GetBelongsToPlayerl() And ThePiece.GetPieceType ()
= "L" Then
PlayerlVPs += 1
ElseIf Not ThePiece.GetBelongsToPlayerl () And
ThePiece.GetPieceType() = "1" Then
Player2VPs += 1

13

Class RangerPiece
Inherits Piece
Public Sub New (ByVal Playerl As Boolean)
MyBase.New (Playerl)
PieceType = "R"
End Sub

Public Overrides Function CheckMoveIsValid (ByVal
DistanceBetweenTiles As Integer, ByVal StartTerrain As String, ByVal
EndTerrain As String) As Integer

If DistanceBetweenTiles = 1 Then
If StartTerrain = "~" Or EndTerrain = "~" Then
Return FuelCostOfMove * 2
Else
Return FuelCostOfMove
End If
End If
If StartTerrain = "#" And EndTerrain = "#" Then
Return FuelCostOfMove
End If

Return -1
End Function
End Class

Public Sub AddPiece (ByVal BelongsToPlayerl As Boolean, ByVal
TypeOfPiece As String, ByVal Location As Integer)
Dim NewPiece As Piece

If TypeOfPiece = "Baron" Then

NewPiece = New BaronPiece (BelongsToPlayerl)
ElseIf TypeOfPiece = "LESS" Then

NewPiece = New LESSPiece (BelongsToPlayerl)
ElselIf TypeOfPiece = "PBDS" Then

NewPiece = New PBDSPiece (BelongsToPlayerl)
Elself TypeOfPiece = "Ranger" Then

NewPiece = New RangerPiece (BelongsToPlayerl)
Else

NewPiece = New Piece (BelongsToPlayerl)
End If

Pieces.Add (NewPiece)
Tiles (Location) .SetPiece (NewPiece)
End Sub

24

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Alternative answer

Public Overrides Function CheckMoveIsValid (ByVal
DistanceBetweenTiles As Integer, ByVal StartTerrain As String, ByVal
EndTerrain As String) As Integer

If StartTerrain = "#" And EndTerrain = "#" Then
Return FuelCostOfMove
End If

Return MyBase.CheckMoveIsValid (DistanceBetweenTiles,
StartTerrain, EndTerrain)
End Function

14 Function CheckCommandIsValid (ByVal Items As List (Of String)) As 8
Boolean
If Items.Count > 0 Then
Select Case Items (0)
Case "move"
Return CheckMoveCommandFormat (Items)
Case "dig", "saw", "spawn"
Return CheckStandardCommandFormat (Items)
Case "move"
Return CheckUpgradeCommandFormat (Items)
Case "burn"
Return True
End Select
End If
Return False
End Function
Public Function ExecuteCommand (ByVal Items As List (Of String), ByRef
FuelChange As Integer, ByRef LumberChange As Integer, ByRef
SupplyChange As Integer, ByVal FuelAvailable As Integer, ByVal
LumberAvailable As Integer, ByVal TilesInSupply As Integer) As
String
Select Case Items (0)
Case "move"
Case "burn"
If LumberAvailable < 1 Then
Return "Cannot burn lumber"
End If
Dim Rno As Integer = RNoGen.NextDouble() * (LumberAvailable -
1) + 1
LumberChange = -Rno
FuelChange = Rno
End Select
Return "Command executed"
End Function
Alternative answer
Dim Rno As Integer = Rnd() * (LumberAvailable - 1) + 1
15 Private Function GetFogOfWar (ByVal ID As Integer) As Boolean 13

Dim ListOfNeighbours As List (Of Tile) = New List (Of
Tile) (Tiles (ID) .GetNeighbours())

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

25

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Dim ListToCheck As List(Of Tile) = New List (Of
Tile) (Tiles (ID) .GetNeighbours())
ListToCheck.Add (Tiles (ID))
For Each N In ListOfNeighbours
ListToCheck.AddRange (N.GetNeighbours())
Next
For Each N In ListToCheck
Dim ThePiece As Piece = N.GetPiecelInTile()
If ThePiece IsNot Nothing Then
If ThePiece.GetBelongsToPlayerl() = PlayerlTurn Then
Return False
End If
End If
Next
Return True
End Function

Public Function GetPieceTypeInTile (ByVal ID As Integer) As String

Dim ThePiece As Piece = Tiles(ID) .GetPieceInTile ()
If PieceInTile Is Nothing Then

Return " "
Else

If GetFogOfWar (ID) Then

Return " "

End If

Return ThePiece.GetPieceType ()
End If

End Function

26

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Python2

Question

Marks

07 | 1

Number = int (raw_input ("Enter value for n:

NumbersFoundSoFar = 0
CurrentNumber = 1
while NumbersFoundSoFar != Number:
SumOfDigits = 0
NumAsString = str (CurrentNumber)
for count in range (0, len(NumAsString))
SumOfDigits += int (NumAsString[count])
if CurrentNumber % SumOfDigits ==
NumbersFoundSoFar += 1
if NumbersFoundSoFar == Number:
print CurrentNumber
CurrentNumber += 1

Alternative answer

Number = int (raw_input ("Enter value for n:

NumbersFoundSoFar = 0
CurrentNumber = 1
while NumbersFoundSoFar != Number:
Temp = CurrentNumber
SumOfDigits = 0
while Temp > O0:
SumOfDigits += Temp % 10
Temp = Temp // 10
if CurrentNumber % SumOfDigits ==
NumbersFoundSoFar += 1
if NumbersFoundSoFar == Number:
print CurrentNumber
CurrentNumber += 1

Recursive answer

def SumDigits (Num) :
if Num ==
Sum = 0
else:
Sum = Num % 10 + SumDigits (Num//10)
return Sum

n = int (raw_input ("Enter value for n: "))
NthHarshad = 0
Counter = 1
while n != NthHarshad:
Value = SumDigits (Counter)
if Counter % Value ==
NthHarshad += 1
if n == NthHarshad:
print Counter
Counter = Counter + 1

"))

"))

12

12 | 1

def DestroyPiecesAndCountVPs (self):

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

27

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

BaronDestroyed = False
PlayerlVPs = 0
Player2VPs = 0
ListOfTilesContainingDestroyedPieces = []
for T in self. Tiles:
if T.GetPieceInTile() is not None:
ListOfNeighbours = T.GetNeighbours ()
NoOfConnections = 0
for N in ListOfNeighbours:
if N.GetPieceInTile() 1is not None:
NoOfConnections += 1
ThePiece = T.GetPiecelInTile ()
if NoOfConnections >=
ThePiece.GetConnectionsNeededToDestroy () :
ThePiece.DestroyPiece ()
if ThePiece.GetPieceType () .upper() == "B":
BaronDestroyed = True
ListOfTilesContainingDestroyedPieces.append (T)
if ThePiece.GetBelongsToPlayerl () :
Player2VPs += ThePiece.GetVPs ()

else:
PlayerlVPs += ThePiece.GetVPs ()
else:
if ThePiece.GetPieceType() == "L":

PlayerlVPs += 1
elif ThePiece.GetPieceType() == "1":
Player2VPs += 1
for T in ListOfTilesContainingDestroyedPieces:
T.SetPiece (None)
return BaronDestroyed, PlayerlVPs, Player2VPs

Alternative answer

else:
if ThePiece.GetBelongsToPlayerl () and ThePiece.GetPieceType ()
PlayerlVPs += 1
elif not ThePiece.GetBelongsToPlayerl () and
ThePiece.GetPieceType() == "1":
Player2VPs += 1

13

class RangerPiece (Piece):
def _ init__ (self, Playerl):
super (RangerPiece, self). init (Playerl)
self. PieceType = "R"

def CheckMoveIsValid(self, DistanceBetweenTiles, StartTerrain,

EndTerrain) :
if DistanceBetweenTiles ==
if StartTerrain == "~" or EndTerrain == "~":
return self. FuelCostOfMove * 2
else:
return self. FuelCostOfMove
if StartTerrain == "#" and EndTerrain == "#":

return self. FuelCostOfMove
return -1

def AddPiece(self, BelongsToPlayerl, TypeOfPiece, Location):

28

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

if TypeOfPiece == "Baron":

NewPiece = BaronPiece (BelongsToPlayerl)
elif TypeOfPiece == "LESS":

NewPiece = LESSPiece (BelongsToPlayerl)
elif TypeOfPiece == "PBDS":

NewPiece = PBDSPiece (BelongsToPlayerl)
elif TypeOfPiece == "Ranger":

NewPiece = RangerPiece (BelongsToPlayerl)
else:

NewPiece = Piece(BelongsToPlayerl)

self. Pieces.append (NewPiece)
self. Tiles[Location].SetPiece (NewPiece)

Alternative answer

def CheckMovelsValid(self, DistanceBetweenTiles, StartTerrain,
EndTerrain) :
if StartTerrain == "#" and EndTerrain == "#":
return self. FuelCostOfMove
return super (RangerPiece,
self) .CheckMoveIsValid (DistanceBetweenTiles, StartTerrain,
EndTerrain)

14

def CheckCommandIsValid(Items) :
if len(Items) > O0:
if Items[0] == "move":
return CheckMoveCommandformat (Items)
elif Items([0] in ["dig", "saw", "spawn"]:
return CheckStandardCommandformat (Items)
elif Items[0] == "upgrade":
return CheckUpgradeCommandformat (Items)
elif Items[0] == "burn":
return True
return False

def ExecuteCommand(self, Items, FuelAvailable, LumberAvailable,
PiecesInSupply) :

FuelChange = 0

LumberChange = 0

SupplyChange = 0

if Items[0] == "move":

elif Items[0] == "burn":
if LumberAvailable < 1:
return "Cannot burn lumber"
Rno = random.randint(l, LumberAvailable)
LumberChange = -Rno
FuelChange = Rno
return "Command executed", FuelChange, LumberChange, SupplyChange

15

def GetFogOfWar (self, ID):
ListOfNeighbours = []
ListOfNeighbours.extend(self. Tiles[ID] .GetNeighbours())
ListToCheck = []
ListToCheck.extend(self. Tiles[ID] .GetNeighbours())
ListToCheck.append(self. Tiles[ID])
for N in ListOfNeighbours:

ListToCheck.extend (N.GetNeighbours())

13

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

29

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

for N in ListToCheck:
ThePiece = N.GetPieceInTile ()
if ThePiece is not None:
if ThePiece.GetBelongsToPlayerl() == self. PlayerlTurn:
return False
return True

def GetPieceTypelInTile(self, ID):

ThePiece = self. Tiles[ID].GetPieceInTile()
if ThePiece is None:

return " "
else:

if self.GetFogOfWar (ID) :

return " "
return ThePiece.GetPieceType ()

30

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Python3

Question

Marks

07 | 1

Number = int (input ("Enter value for n: "))
NumbersFoundSoFar = 0
CurrentNumber = 1
while NumbersFoundSoFar != Number:
SumOfDigits = 0
NumAsString = str (CurrentNumber)

for count in range (0, len (NumAsString)):

SumOfDigits += int (NumAsString[count])
if CurrentNumber % SumOfDigits ==
NumbersFoundSoFar += 1
if NumbersFoundSoFar == Number:
print (CurrentNumber)
CurrentNumber += 1

Alternative answer

Number = int (input ("Enter value for n: "))
NumbersFoundSoFar = 0
CurrentNumber = 1
while NumbersFoundSoFar != Number:
Temp = CurrentNumber
SumOfDigits = 0
while Temp > O0:
SumOfDigits += Temp % 10
Temp = Temp // 10
if CurrentNumber % SumOfDigits ==
NumbersFoundSoFar += 1
if NumbersFoundSoFar == Number:
print (CurrentNumber)
CurrentNumber += 1

Recursive answer

def SumDigits (Num) :
if Num ==
Sum = 0
else:
Sum = Num % 10 + SumDigits (Num//10)
return Sum
n = int (input ("Enter value for n: "))
NthHarshad = 0
Counter = 1
while n != NthHarshad:
Value = SumDigits (Counter)
if Counter % Value ==
NthHarshad += 1
if n == NthHarshad:
print (Counter)
Counter = Counter + 1

12

12 | 1

def DestroyPiecesAndCountVPs (self):

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

31

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

BaronDestroyed = False
PlayerlVPs = 0
Player2VPs = 0
ListOfTilesContainingDestroyedPieces = []
for T in self. Tiles:
if T.GetPieceInTile() is not None:
ListOfNeighbours = T.GetNeighbours ()
NoOfConnections = 0
for N in ListOfNeighbours:
if N.GetPieceInTile() 1is not None:
NoOfConnections += 1
ThePiece = T.GetPiecelInTile ()
if NoOfConnections >=
ThePiece.GetConnectionsNeededToDestroy () :
ThePiece.DestroyPiece ()
if ThePiece.GetPieceType () .upper() == "B":
BaronDestroyed = True
ListOfTilesContainingDestroyedPieces.append (T)
if ThePiece.GetBelongsToPlayerl () :
Player2VPs += ThePiece.GetVPs ()

else:
PlayerlVPs += ThePiece.GetVPs ()
else:
if ThePiece.GetPieceType() == "L":

PlayerlVPs += 1
elif ThePiece.GetPieceType() == "1":
Player2VPs += 1
for T in ListOfTilesContainingDestroyedPieces:
T.SetPiece (None)
return BaronDestroyed, PlayerlVPs, Player2VPs

Alternative answer

else:
if ThePiece.GetBelongsToPlayerl () and ThePiece.GetPieceType ()
PlayerlVPs += 1
elif not ThePiece.GetBelongsToPlayerl () and
ThePiece.GetPieceType() == "1":
Player2VPs += 1

13

class RangerPiece (Piece):
def _ init__ (self, Playerl):
super (RangerPiece, self). init (Playerl)
self. PieceType = "R"

def CheckMoveIsValid(self, DistanceBetweenTiles, StartTerrain,

EndTerrain) :
if DistanceBetweenTiles ==
if StartTerrain == "~" or EndTerrain == "~":
return self. FuelCostOfMove * 2
else:
return self. FuelCostOfMove
if StartTerrain == "#" and EndTerrain == "#":

return self. FuelCostOfMove
return -1

def AddPiece(self, BelongsToPlayerl, TypeOfPiece, Location):

32

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

if TypeOfPiece == "Baron":

NewPiece = BaronPiece (BelongsToPlayerl)
elif TypeOfPiece == "LESS":

NewPiece = LESSPiece (BelongsToPlayerl)
elif TypeOfPiece == "PBDS":

NewPiece = PBDSPiece (BelongsToPlayerl)
elif TypeOfPiece == "Ranger":

NewPiece = RangerPiece (BelongsToPlayerl)
else:

NewPiece = Piece(BelongsToPlayerl)

self. Pieces.append (NewPiece)
self. Tiles[Location].SetPiece (NewPiece)

Alternative answer

def CheckMovelsValid(self, DistanceBetweenTiles, StartTerrain,
EndTerrain) :
if StartTerrain == "#" and EndTerrain == "#":
return self. FuelCostOfMove
return super (RangerPiece,
self) .CheckMoveIsValid (DistanceBetweenTiles, StartTerrain,
EndTerrain)

14

def CheckCommandIsValid(Items) :
if len(Items) > O0:
if Items[0] == "move":
return CheckMoveCommandformat (Items)
elif Items[0] in ["dig", "saw", "spawn"]:
return CheckStandardCommandformat (Items)
elif Items[0] == "upgrade":
return CheckUpgradeCommandformat (Items)
elif Items[0] == "burn":
return True
return False

def ExecuteCommand(self, Items, FuelAvailable, LumberAvailable,
PiecesInSupply) :

FuelChange = 0

LumberChange = 0

SupplyChange = 0

if Items[0] == "move":

elif Items[0] == "burn":
if LumberAvailable < 1:
return "Cannot burn lumber"
Rno = random.randint(1l, LumberAvailable)
LumberChange = -Rno
FuelChange = Rno
return "Command executed", FuelChange, LumberChange, SupplyChange

15

def GetFogOfWar (self, ID):
ListOfNeighbours = []
ListOfNeighbours.extend(self. Tiles[ID] .GetNeighbours())
ListToCheck = []
ListToCheck.extend(self. Tiles[ID] .GetNeighbours())
ListToCheck.append(self. Tiles[ID])
for N in ListOfNeighbours:

ListToCheck.extend (N.GetNeighbours())

13

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

33

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

for N in ListToCheck:
ThePiece = N.GetPieceInTile ()
if ThePiece is not None:
if ThePiece.GetBelongsToPlayerl() == self. PlayerlTurn:
return False
return True

def GetPieceTypelInTile(self, ID):

ThePiece = self. Tiles[ID].GetPieceInTile()
if ThePiece is None:

return " "
else:

if self.GetFogOfWar (ID) :

return " "
return ThePiece.GetPieceType ()

34

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

C#
Question Marks
07 1 | Console.Write ("Enter value for n: "); 12

int number = Convert.ToInt32 (Console.ReadLine())
int numbersFoundSoFar = 0;
int currentNumber = 1;
int sumOfDigits;
while ((numbersFoundSoFar != number))
{
int temp = currentNumber;
sumOfDigits = 0;
string numAsString = currentNumber.ToString() ;

for (int count = 0; (count <= (numAsString.Length - 1));

count++)
{
sumOfDigits = (sumOfDigits +
Convert.ToInt32 (numAsString[count].ToString()))
}

o)

if (((currentNumber % sumOfDigits) == 0))
{
numbersFoundSoFar++;
if ((numbersFoundSoFar == number))
{
Console.WriteLine (currentNumber) ;

}
}

currentNumber++;
}

Console.ReadLine () ;

Alternative answer

Console.Write ("Enter value for n: ");
int number = Convert.ToInt32 (Console.ReadLine()):;
int numbersFoundSoFar = 0;
int currentNumber = 1;
int sumOfDigits;
while ((numbersFoundSoFar != number))
{
int temp = currentNumber;
sumOfDigits = 0;
while (temp > 0)
{
sumOfDigits +=temp % 10;
temp = temp / 10;
}
if (currentNumber % sumOfDigits == 0)
{
numbersFoundSoFar++;
if (numbersFoundSoFar == number)
{

Console.WriteLine (currentNumber) ;

}

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

35

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

currentNumber++;

}
Console.ReadLine () ;
Recursive answer

static int SumDigits (int num)

{

int sum;
if (num == 0)
{
sum = 0;
}
else
{
sum = num % 10 + SumDigits (num / 10);

}

return sum;

}

static void Main (string[] args)
{
Console.Write ("Enter value for n: ");
int n = Convert.ToInt32 (Console.ReadLine()):;
int nthHarshad = 0;
int counter = 1;
int value;
while ((n != nthHarshad))
{
value = SumDigits (counter);
if ((counter % value) == 0)
{
nthHarshad++;
}
if ((n == nthHarshad))
{
Console.WriteLine (counter) ;
}
counter = (counter + 1);
}

Console.ReadLine () ;

12

public bool DestroyPiecesAndCountVPs (ref int playerlVPs,
player2VPs)
{

bool baronDestroyed = false;

List<Tile> 1istOfTilesContainingDestroyedPieces = new

List<Tile> () ;
foreach (var t in tiles)
{
if (t.GetPieceInTile() != null)
{
List<Tile> listOfNeighbours = new
List<Tile>(t.GetNeighbours());
int noOfConnections = 0;
foreach (var n in listOfNeighbours)

ref int

36

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

thePiece.GetConnectionsNeededToDestroy())

Alternative answer

else

{

"L"

theP

if (n.GetPieceInTile() != null)
{
noOfConnections += 1;
}
}
Piece thePiece = t.GetPiecelInTile();
if (noOfConnections >=

{
thePiece.DestroyPiece();
if (thePiece.GetPieceType () .ToUpper () == "B")
baronDestroyed = true;
listOfTilesContainingDestroyedPieces.Add (t) ;
if (thePiece.GetBelongsToPlayerl ())
{
player2VPs += thePiece.GetVPs();
}
else
{
playerlVPs += thePiece.GetVPs () ;
}
}
else
{
if (thePiece.GetPieceType() == "L")
{
playerlVPs += 1;
}
else if (thePiece.GetPieceType() == "1")
{
player2VPs += 1;
}

}
}
foreach (var t in listOfTilesContainingDestroyedPieces)
{

t.SetPiece (null) ;

}

return baronDestroyed;

if (thePiece.GetBelongsToPlayerl() && thePiece.GetPieceType() ==
)
{
playerlVPs += 1;
}
else if (!'thePiece.GetBelongsToPlayerl () &&
iece.GetPieceType () == "1")
{
player2VPs += 1;
}

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

37

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

13

class RangerPiece : Piece 7

{

string startTerrain, string endTerrain)

}

public void AddPiece (bool belongsToPlayerl, string typeOfPiece, int
location)

{

public RangerPiece (bool playerl)
:base (playerl)

{
pieceType = "R";

}

public override int CheckMoveIsValid(int distanceBetweenTiles,

{
if (distanceBetweenTiles == 1)
{
if (startTerrain == "~" || endTerrain == "~")
{
return fuelCostOfMove * 2;
}
else
{
return fuelCostOfMove;
}
}
if (startTerrain == "#" && endTerrain == "#")
{

return fuelCostOfMove;

}

return -1;

Piece newPiece;
if (typeOfPiece == "Baron")
{
newPiece = new BaronPiece (belongsToPlayerl);

}

else if (typeOfPiece == "LESS")
{
newPiece = new LESSPiece (belongsToPlayerl);
}
else if (typeOfPiece == "PBDS")

{

newPiece = new PBDSPiece (belongsToPlayerl);

}
else if (typeOfPiece == "Ranger")

{

newPiece = new RangerPiece (belongsToPlayerl) ;

}

else

{

newPiece = new Piece (belongsToPlayerl);

}
pieces.Add (newPiece) ;
tiles[location] .SetPiece (newPiece) ;

38

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Alternative answer

public override int CheckMovelIsValid(int distanceBetweenTiles,
string startTerrain, string endTerrain)
{

if (startTerrain == "#" && endTerrain == "#")

{

return fuelCostOfMove;

}

return
base.CheckMovelsValid(distanceBetweenTiles,startTerrain,endTerrain) ;

}

14

public static bool CheckCommandIsValid(List<string> items)
{
if (items.Count > 0)
{
switch (items[0])
{
case "move":
{
return CheckMoveCommandFormat (items) ;

}

case "dig":

case "saw":

case "spawn":
{

return CheckStandardCommandFormat (items) ;

}

case "upgrade":
{
return CheckUpgradeCommandFormat (items) ;
}
case "burn":
{
return true;
}
}
}
return false;

}

public string ExecuteCommand (List<string> items, ref int fuelChange,
ref int lumberChange, ref int supplyChange, int fuelAvailable, int
lumberAvailable, int piecesInSupply)
{

switch (items[0])

{

case "move":

case "burn":
{
Random rnd = new Random() ;
if (lumberAvailable < 1)
{

return "Cannot burn lumber";

}

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

39

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

int rno = rnd.Next(1l, lumberAvailable + 1);

lumberChange = -rno;
fuelChange = rno;
break;
}
}

return "Command executed";

15

private bool GetFogOfWar (int ID)
{
List<Tile> listOfNeighbours = new
List<Tile>(tiles[ID] .GetNeighbours()) ;
List<Tile> ListToCheck = new
List<Tile>(tiles[ID] .GetNeighbours()) ;
ListToCheck.Add(tiles[ID]) ;
foreach (var n in listOfNeighbours)

{

ListToCheck.AddRange (n.GetNeighbours()) ;

}
foreach (var n in ListToCheck)
{
Piece thePiece = n.GetPieceInTile() ;
if (thePiece != null)
{
if (thePiece.GetBelongsToPlayerl ()
{
return false;
}
}
}

return true;

}

public string GetPieceTypeInTile (int ID)
{

== playerlTurn)

Piece thePiece = tiles[ID].GetPiecelInTile ()
if (thePiece == null)
{
return " ";
}
else

{
if (GetFogOfWar (ID))

{

return " ";

}

return thePiece.GetPieceType() ;

13

40

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

PASCAL/Delphi

Question

Marks

07

1

var
Number : integer;
NumbersFoundSoFar : integer;
CurrentNumber : integer;
SumOfDigits : integer;
NumAsString : string;
Count : integer;
begin
write ('Enter value for n: ');
readln (Number) ;
NumbersFoundSoFar := 0;
CurrentNumber := 1;
while (NumbersFoundSoFar <> Number) do

begin
SumOfDigits := 0;
NumAsString := inttostr (CurrentNumber) ;
for Count := 1 to length (NumAsString) do
SumOfDigits := SumOfDigits + strtoint (NumAsString[Count]);

if CurrentNumber mod SumOfDigits = 0 then
begin
inc (NumbersFoundSoFar) ;
if NumbersFoundSoFar = Number then
writeln (CurrentNumber) ;
end;
inc (CurrentNumber) ;
end;
readln;
end.

Alternative answer

var
Number : integer;
NumbersFoundSoFar : integer;
CurrentNumber : integer;
SumOfDigits : integer;
Temp : integer;
begin
write ('Enter value for n: ');
readln (Number) ;
NumbersFoundSoFar := 0;
CurrentNumber := 1;
while NumbersFoundSoFar <> Number do
begin
Temp := CurrentNumber;
SumOfDigits := 0;
while Temp > 0 do
begin

12

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

41

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

SumOfDigits := SumOfDigits + (Temp mod 10);
Temp := Temp div 10;
end;
if CurrentNumber mod SumOfDigits = 0 then
begin

inc (NumbersFoundSoFar) ;
if NumbersFoundSoFar = Number then
writeln (inttostr (CurrentNumber)) ;
end;
inc (CurrentNumber) ;
end;
readln;
end.

Recursive answer

function SumDigits (Num : integer) : integer;
var
Sum : integer;
begin
if Num = 0 then
Sum := 0
else
Sum := (Num mod 10) + SumDigits (Num div 10);
SumDigits := Sum;

end;

var
N, NthHarshad, Counter, Value : integer;

begin

write ('Enter value for n: ');

readln (N) ;

NthHarshad := 0;

Counter := 1;

while (N <> NthHarshad) do

begin
Value := SumDigits (Counter);
if Counter mod Value = 0 then

inc (NthHarshad) ;
if N = NthHarshad then
writeln (inttostr (Counter)) ;
inc (Counter) ;
end;
readln;
end.

12

function HexGrid.DestroyPiecesAndCountVPs (var PlayerlVPs:
var Player2VPs: integer): boolean;

var
BaronDestroyed: boolean;
ListOfTilesContainingDestroyedPieces: TTileArray;

integer;

42

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

ListOfNeighbours: TTileArray;
NoOfConnections: integer;
ThePiece: Piece;
N: integer;
T: integer;
begin
BaronDestroyed := false;
setlength (ListOfTilesContainingDestroyedPieces, 0);
for T := low(Tiles) to high(Tiles) do
begin
if not(Tiles|[T].GetPieceInTile() = nil) then
begin
ListOfNeighbours := Tiles[T].GetNeighbours();
NoOfConnections := 0;

for N := low(ListOfNeighbours) to high (ListOfNeighbours) do

if not (ListOfNeighbours[N].GetPieceInTile() = nil)
inc (NoOfConnections) ;
ThePiece := Tiles|[T].GetPieceInTile();
if (NoOfConnections >=
ThePiece.GetConnectionsNeededToDestroy()) then
begin
ThePiece.DestroyPiece();
if uppercase (ThePiece.GetPieceType()) = 'B' then
BaronDestroyed := true;
setlength (ListOfTilesContainingDestroyedPieces,

then

length (ListOfTilesContainingDestroyedPieces) + 1);

ListOfTilesContainingDestroyedPieces
[high(ListOfTilesContainingDestroyedPieces)] :=
if ThePiece.GetBelongsToPlayerl () then
Player2VPs := Player2VPs + ThePiece.GetVPs ()
else
PlayerlVPs := PlayerlVPs + ThePiece.GetVPs();
end
else
begin
if ThePiece.GetPieceType() = 'L' then
inc (PlayerlVPs)
else if ThePiece.GetPieceType() = 'l' then
inc (Player2VPs) ;
end;
end;
end;
for T := low(ListOfTilesContainingDestroyedPieces)
to high(ListOfTilesContainingDestroyedPieces) do
ListOfTilesContainingDestroyedPieces[T].SetPiece(nil);

Tiles([T];

DestroyPiecesAndCountVPs := BaronDestroyed;
end;
13 type 7
RangerPiece = class (Piece)
public

constructor Init(Playerl: boolean) ;

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

43

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

function CheckMovelIsValid(DistanceBetweenTiles: integer;
StartTerrain: string; EndTerrain: string): integer; override;
end;

constructor RangerPiece.Init(Playerl: boolean) ;
begin

inherited;

PieceType := 'R';
end;

function RangerPiece.CheckMoveIsValid (DistanceBetweenTiles: integer;
StartTerrain: string; EndTerrain: string): integer;
begin
if DistanceBetweenTiles = 1 then
begin
if (StartTerrain = '~') or (EndTerrain = '~') then
begin
CheckMovelIsValid
exit;
end
else
begin
CheckMovelIsValid := FuelCostOfMove;
exit;
end;
end;
if (StartTerrain = '#') and (EndTerrain = '#') then
begin
CheckMovelIsValid := FuelCostOfMove;
exit;
end;
CheckMoveIsValid := -1;
end;

FuelCostOfMove * 2;

procedure HexGrid.AddPiece (BelongsToPlayerl: boolean; TypeOfPiece:
string;

Location: integer);
var

NewPiece: Piece;

begin

if TypeOfPiece = 'Baron' then
begin

NewPiece := BaronPiece.Init (BelongsToPlayerl);
end
else if TypeOfPiece = 'LESS' then

NewPiece := LESSPiece.Init (BelongsToPlayerl)
else if TypeOfPiece = 'PBDS' then

NewPiece := PBDSPiece.Init (BelongsToPlayerl)
else if TypeOfPiece = 'Ranger' then

NewPiece := RangerPiece.Init(BelongsToPlayerl)
else

NewPiece := Piece.Init (BelongsToPlayerl);

setlength (Pieces, (length(Pieces) + 1));

44

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Pieces[High (Pieces)] := NewPiece;
Tiles[Location].SetPiece (NewPiece) ;
end;

14

function CheckCommandIsValid(Items: TStringArray) boolean;
begin
if Length(Items) > 0 then
begin
if Items[0] = 'move' then
begin
CheckCommandIsValid := CheckMoveCommandFormat (Items) ;
exit;
end
else if (Items[0] = 'dig') or (Items[0] = 'saw') or (Items[0] =
'spawn')
then
begin
CheckCommandIsValid := CheckStandardCommandFormat (Items) ;
exit;
end
else if Items[0] = 'upgrade' then
begin
CheckCommandIsValid := CheckUpgradeCommandFormat (Items) ;
exit;
end
else if Items[0] = 'burn' then
begin
CheckCommandIsValid := true;
exit;
end;
end;
CheckCommandIsValid := false;
end;

function HexGrid.ExecuteCommand (Items: TStringArray; var FuelChange:

integer;

var LumberChange: integer; var SupplyChange: integer;

FuelAvailable: integer;

LumberAvailable: integer; PiecesInSupply: integer):

var
FuelCost: integer;
LumberCost: integer;
RNo : integer;
begin
if Items[0] = 'move' then
begin
FuelCost := ExecuteMoveCommand (Items,
if FuelCost < 0 then
begin

string;

FuelAvailable) ;

ExecuteCommand := 'That move can''t be done';

exit;
end;

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

45

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

FuelChange := -FuelCost;
end
else if (Items[0] = 'saw') or (Items[0] = 'dig') then
begin

if not (ExecuteCommandInTile (Items, FuelChange, LumberChange))
then

begin
ExecuteCommand := 'Couldn''t do that';
exit;
end;
end
else if Items[0] = 'spawn' then
begin
LumberCost := ExecuteSpawnCommand (Items, LumberAvailable,
PiecesInSupply);
if LumberCost < 0 then
begin
ExecuteCommand := 'Spawning did not occur';
exit;
end;
LumberChange := -LumberCost;
SupplyChange := 1;
end
else if Items[0] = 'upgrade' then
begin
LumberCost := ExecuteUpgradeCommand (Items, LumberAvailable);
if LumberCost < 0 then
begin
ExecuteCommand := 'Upgrade not possible';
exit;
end;
LumberChange := -LumberCost;
end
else if Items[0] = 'burn' then
begin
if LumberAvailable < 1 then
begin
ExecuteCommand := 'Cannot burn lumber';
exit;
end;
RNo := trunc(random() * (LumberAvailable -1)) + 1;
LumberChange := -RNo;
FuelChange := RNo;
end;
ExecuteCommand := 'Command Executed';
end;
15 type 13
HexGrid = class
protected

Tiles: TTileArray;
Pieces: TPieceArray;
Size: integer;

46

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

PlayerlTurn: boolean;
public
constructor Init(N: integer);
procedure SetUpGridTerrain (ListOfTerrain: TStringArray);
procedure AddPiece (BelongsToPlayerl: boolean; TypeOfPiece:
string;
Location: integer);
function ExecuteCommand (Items: TStringArray; var FuelChange:
integer;
var LumberChange: integer; wvar SupplyChange: integer;
FuelAvailable: integer; LumberAvailable: integer;
PiecesInSupply: integer): string;
function DestroyPiecesAndCountVPs (var PlayerlVPs: integer;
var Player2VPs: integer): boolean;

function GetGridAsString (P1lTurn: boolean): string;
function GetPieceTypeInTile (ID: integer): string;
private

function CheckTileIndexIsValid(TileToCheck: integer): boolean;

function GetFogOfWar (ID : integer) : boolean;
end;

function HexGrid.GetFogOfWar (ID : integer) : boolean;
var
ListOfNeighbours : TTileArray;
ListToCheck : TTileArray;
N : Tile;
ThePiece : Piece;
Index : integer;
NeighbourIndex : integer;
begin
ListOfNeighbours := Tiles[ID] .GetNeighbours() ;
ListToCheck := Tiles[ID].GetNeighbours() ;
setlength (ListToCheck, length (ListToCheck) + 1);

ListToCheck[high (ListToCheck)] := Tiles[ID];
for Index := 0 to high(ListOfNeighbours) do
begin

N := ListOfNeighbours[Index];
for NeighbourIndex := 0 to (length(N.GetNeighbours()) - 1) do
begin
SetLength (ListToCheck, length(ListToCheck) + 1)
ListToCheck[High (ListToCheck)] :=
N.GetNeighbours () [NeighbourIndex] ;

end;
end;
for Index := 0 to high(ListToCheck) do
begin

N := ListToCheck[Index];

ThePiece := N.GetPieceInTile();

if ThePiece <> nil then
if ThePiece.GetBelongsToPlayerl () = PlayerlTurn then
begin
GetFogOfWar := False;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

47

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

exit;
end;
end;
GetFogOfWar := True;
end;
function HexGrid.GetPieceTypeInTile (ID: integer): string;
var

ThePiece: Piece;
begin
ThePiece := Tiles[ID].GetPieceInTile();
if (ThePiece = nil) then
GetPieceTypeInTile := ' '
else
begin
if GetFogOfWar (ID) then
GetPieceTypelInTile
else
GetPieceTypeInTile := ThePiece.GetPieceType();
end;
end;

48

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

JAVA

Question

Marks

07 1 Console.write ("Enter value for n: ");
int number = Integer.parselnt (Console.readLine());
int numbersFoundSoFar = 0;
int currentNumber = 1;
int sumOfDigits;
while (numbersFoundSoFar != number) {
int temp = currentNumber;
sumOfDigits = 0;
String numAsString

wn o,
’

currentNumber +

sumOfDigits +
Integer.parselnt (numAsString.charAt (count)+"");

}

if (currentNumber % sumOfDigits == 0) {
numbersFoundSoFar++;
if (numbersFoundSoFar == number) {

Console.writeLine (currentNumber) ;

}
}

currentNumber++;

Alternative answer

Console.write ("Enter value for n: ");
int number = Integer.parselnt (Console.readLine());
int numbersFoundSoFar = 0;
int currentNumber = 1;
int sumOfDigits;
while (numbersFoundSoFar != number) ({
int temp = currentNumber;
sumOfDigits = 0;
while (temp > 0) {
sumOfDigits += temp % 10;
temp /= 10;
}

[

if (currentNumber % sumOfDigits == 0) {
numbersFoundSoFar++;
if (numbersFoundSoFar == number) {
Console.writeLine (currentNumber) ;
}
}

currentNumber++;

for (int count = 0; count < numAsString.length(); count++)

{

12

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

49

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

Recursive answer
static int sumDigits (int num) {

(num == 0) {

return sum;

public static void main(String[] args) {

Console.write ("Enter value for n: ");

int number = Integer.parselnt (Console.readLine());
int nthHarshad = 0;

int counter = 1;

int value;

(number != nthHarshad) {

(counter % value == 0) {
nthHarshad += 1;

(number == nthHarshad) {
Console.writeline (counter) ;

0;

[

num % 10 + sumDigits (num/10);

= sumDigits (counter)

Q

counter = counter + 1;
12 public Object[] destroyPiecesAndCountVPs (int playerlVPs, int 5
player2VPs)
boolean baronDestroyed = false;
List<Tile> 1istOfTilesContainingDestroyedPieces = new
ArrayList<>();

(Tile t : tiles) {

(t.getPieceInTile() != null) {
List<Tile> listOfNeighbours = new
ArrayList<> (t.getNeighbours());

int noOfConnections = 0;

for (Tile n : listOfNeighbours) {

Piece thePiece = t.getPiecelInTile();
if (noOfConnections >=
thePiece.getConnectionsNeededToDestroy ()) {
thePiece.destroyPiece () ;
if
(thePiece.getPieceType () .toUpperCase () .equals ("B")) {

if (n.getPieceInTile() != null) {
noOfConnections += 1;

}

baronDestroyed = true;

}
1listOfTilesContainingDestroyedPieces.add (t);

if (thePiece.getBelongsToplayerl ()) {
player2VPs += thePiece.getVPs () ;
} else {

playerlVPs += thePiece.getVPs();
}

50

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

} else {

if (thePiece.getPieceType () . toUpperCase () .equals("L")) {
if (thePiece.getBelongsToplayerl()) ({
playerlVPs += 1;
} else {
player2VPs += 1;
}

}

}

for (Tile t : 1listOfTilesContainingDestroyedPieces) {
t.setPiece(null);

}

return new Object[] {baronDestroyed, playerlVPs, player2VPs};

13

public void addPiece (boolean belongsToPlayerl, String
typeOfPiece, int location) {
Piece newPiece;
switch (typeOfPiece) {
case "Baron":

newPiece new BaronPiece (belongsToPlayerl);
break;
case "LESS":

newPiece

new LESSPiece (belongsToPlayerl);
break;

case "PBDS":
newPiece

new PBDSPiece (belongsToPlayerl);
break;
case "Ranger":
newPiece = new RangerPiece (belongsToPlayerl) ;
break;
default:
newPiece = new Piece (belongsToPlayerl);
break;
}
pieces.add (newPiece);
tiles.get (location) .setPiece (newPiece);

class RangerPiece extends Piece {
public RangerPiece (boolean playerl) {

super (playerl) ;
pieceType = "R";
}
@Override

public int checkMovelIsValid(int distanceBetweenTiles, String
startTerrain, String endTerrain) ({
if (startTerrain.equals("#") &&
startTerrain.equals (endTerrain))

{

return fuelCostOfMove;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

51

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

}
if (distanceBetweenTiles == 1) {
if (startTerrain.equals("~") || endTerrain.equals("~"))

return fuelCostOfMove * 2;

} else {
return fuelCostOfMove;

return -1;

14

boolean checkCommandIsValid(List<String> items) ({
if (items.size () > 0) {
switch (items.get(0)) {
case "move'":
return checkMoveCommandFormat (items) ;
case "dig":
case "saw":
case "spawn'":
return checkStandardCommandFormat (items) ;
case "upgrade":
return checkUpgradeCommandFormat (items) ;
case "burn":
return true;

}

return false;

public Object[] executeCommand (List<String> items, int
fuelChange, int lumberChange,
int supplyChange, int
fuelAvailable , int lumberAvailable,
int piecesInSupply) {
int lumberCost;
switch (items.get(0))
{

case "move":

case "burn":
if (lumberAvailable < 1) {
return new Object[] {"Cannot burn lumber ",
fuelChange, lumberChange, supplyChange};
}

Random rNoGen = new Random() ;

int burnAmount = rNoGen.nextInt (lumberAvailable)+1;

lumberChange -= burnAmount;
fuelChange += burnAmount;

52

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2021

return new Object[] {"Command executed", fuelChange,
lumberChange, supplyChange};
}

15

public boolean getFogOfWar (int index) {

List<Tile> listOfNeighbours = tiles.get(index) .getNeighbours() ;
List<Tile> listToCheck = new ArrayList<>();
listToCheck.add(tiles.get (index)) ;
for (Tile n : listOfNeighbours) {

listToCheck.addAll (n.getNeighbours()) ;
}
for (Tile n : listToCheck) {

Piece thePiece = n.getPieceInTile() ;

if (thePiece != null) {

if (thePiece.getBelongsToPlayerl() == playerlTurn) ({
return false;

}

return true;

public String getPieceTypelInTile (int id) {

Piece thePiece = tiles.get (id) .getPieceInTile();
if (thePiece == null) {
return " ";
} else {
if (getFogOfWar (id)) {
return " ";

}

return thePiece.getPieceType();

13

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

53

