

Mark Scheme (Results)

October 2021

Pearson Edexcel GCE In Mathematics (9MA0) Paper 02 Pure Mathematics 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P68732A Publications Code 9MA0_02_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which</u> <u>response they wish to submit</u>, examiners should mark this response.

If there are several attempts at a question <u>which have not been crossed</u> <u>out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs
1(a)	$16 + (21 - 1) \times d = 24 \Longrightarrow d = \dots$	M1	1.1b
_	d = 0.4	A1	1.1b
-	Answer only scores both marks.		
		(2)	
(b)	$S_n = \frac{1}{2}n\{2a + (n-1)d\} \Longrightarrow S_{500} = \frac{1}{2} \times 500\{2 \times 16 + 499 \times "0.4"\}$	M1	1.1b
	= 57 900	A1	1.1b
-	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_n = \frac{1}{2}n\{a+l\}$		
	$l = 16 + (500 - 1) \times "0.4" = 215.6 \Longrightarrow S_{500} = \frac{1}{2} \times 500 \{16 + "215.6"\}$	M1	1.1b
	= 57 900	A1	1.1b
		(4	marks)

(a)

M1: Correct strategy to find the common difference – must be a correct method using a = 16, and n = 21 and the 24. The method may be implied by their working.

If the AP term formula is quoted it must be correct, so use of e.g. $u_n = a + nd$ scores M0

A1: Correct value. Accept equivalents e.g. $\frac{8}{20}$, $\frac{4}{10}$, $\frac{2}{5}$ etc.

(b)

M1: Attempts to use a correct sum formula with a = 16, n = 500 and their numerical d from part (a)

If a formula is quoted it must be correct (it is in the formula book)

A1: Correct value

Alternative:

M1: Correct method for the 500th term and then uses $S_n = \frac{1}{2}n\{a+l\}$ with their l

A1: Correct value

Note that some candidates are showing implied use of $u_n = a + nd$ by showing the following:

(a)
$$d = \frac{24-16}{21} = \frac{8}{21}$$
 (b) $S_{500} = \frac{1}{2} \times 500 \left\{ 2 \times 16 + 499 \times \frac{8}{21} \right\} = 55523.80952...$
This scores (a) M0A0 (b) M1A0

Question	Scheme	Marks	AOs
2(a)	<i>y</i> ≤ 7	B1	2.5
		(1)	
(b)	$f(1.8) = 7 - 2 \times 1.8^2 = 0.52 \Longrightarrow gf(1.8) = g(0.52) = \frac{3 \times 0.52}{5 \times 0.52 - 1} = \dots$	M1	1.1b
	$gf(1.8) = 0.975$ oe e.g. $\frac{39}{40}$	A1	1.1b
		(2)	
(c)	$y = \frac{3x}{5x-1} \Longrightarrow 5xy - y = 3x \Longrightarrow x(5y-3) = y$	M1	1.1b
	$\left(g^{-1}\left(x\right)=\right)\frac{x}{5x-3}$	A1	2.2a
		(2)	
		(5	marks)
	Notes		
(b) M1: Full r Also	ct range. Allow f (x) or f for y. Allow e.g. $\{y \in \mathbb{R} : y \leq 7\}, -\infty < y \leq 7,$ method to find f (1.8) and substitutes the result into g to obtain a value. allow for an attempt to substitute $x = 1.8$ into an attempt at gf (x). gf $(x) = \frac{3(7-2x^2)}{5(7-2x^2)-1} = \frac{3(7-2(1.8)^2)}{5(7-2\times(1.8)^2)-1} =$	(−∞,7]	
and and and If the attem	ct value ect attempt to cross multiply, followed by an attempt to factorise out x f n x term. y swap x and y at the start then it will be for an attempt to cross multipl pt to factorise out y from an xy term and a y term. ct expression. Allow equivalent correct expressions e.g. $\frac{-x}{3-5x}$, $\frac{1}{5} + \frac{3}{25x}$.	y followe	

Question	Scheme	Marks	AOs			
3	$\log_3(12y+5) - \log_3(1-3y) = 2 \Longrightarrow \log_3\frac{12y+5}{1-3y} = 2$ or e.g. $2 = \log_3 9$	B1 M1 on EPEN	1.1b			
	$\log_3 \frac{12y+5}{1-3y} = 2 \Rightarrow \frac{12y+5}{1-3y} = 3^2 \Rightarrow 9-27y = 12y+5 \Rightarrow y = \dots$ or e.g. $\log_3 (12y+5) = \log_3 (3^2 (1-3y)) \Rightarrow (12y+5) = 3^2 (1-3y) \Rightarrow y = \dots$	M1	2.1			
	$y = \frac{4}{39}$	A1	1.1b			
		(3)				
		(3	marks)			
	Notes					
B1(M1 or	B1(M1 on EPEN): Applies at least one addition or subtraction law of logs correctly. Can also be awarded for using $2 = \log_3 9$. This may be implied by e.g.					
	$\log_3 \dots = 2 \Longrightarrow \dots = 9$					
obta	orous argument with no incorrect working to remove the log or logs co ain a <u>correct</u> equation in any form and solve for y. ect exact value. Allow equivalent fractions.	rrectly an	d			

Guidance on how to mark particular cases:

$$\log_3(12y+5) - \log_3(1-3y) = 2 \Rightarrow \frac{\log_3(12y+5)}{\log_3(1-3y)} = 2$$
$$\Rightarrow \frac{12y+5}{1-3y} = 3^2 \Rightarrow 9 - 27y = 12y + 5 \Rightarrow y = \frac{4}{39}$$

B1M0A0

$$\log_3(12y+5) - \log_3(1-3y) = 2 \Rightarrow \frac{\log_3(12y+5)}{\log_3(1-3y)} = 2 \Rightarrow \log_3\frac{12y+5}{1-3y} = 2$$
$$\Rightarrow \frac{12y+5}{1-3y} = 3^2 \Rightarrow 9 - 27y = 12y + 5 \Rightarrow y = \frac{4}{39}$$

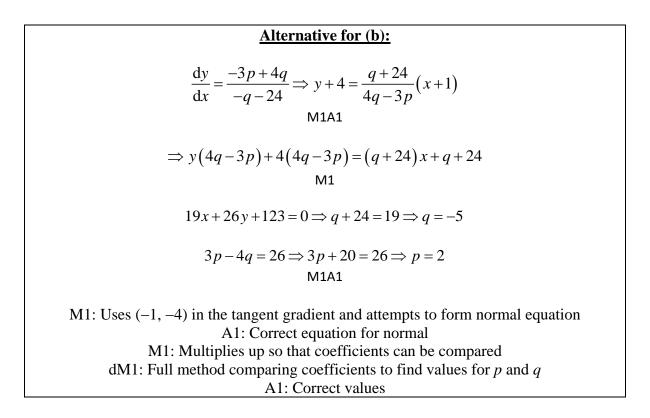
B1M0A0

$$\log_3(12y+5) - \log_3(1-3y) = 2 \Longrightarrow \frac{12y+5}{1-3y} = 3^2 \Longrightarrow 9 - 27y = 12y+5 \Longrightarrow y = \frac{4}{39}$$

B1M1A1

	Scheme	Marks	AOs		
4	Examples:				
	$4\sin\frac{\theta}{2} \approx 4\left(\frac{\theta}{2}\right), \ 3\cos^2\theta \approx 3\left(1-\frac{\theta^2}{2}\right)^2$				
	$3\cos^2\theta = 3(1-\sin^2\theta) \approx 3(1-\theta^2)$	M1	1.1a		
	$3\cos^2\theta = 3\frac{\left(\cos 2\theta + 1\right)}{2} \approx \frac{3}{2}\left(1 - \frac{4\theta^2}{2} + 1\right)$				
	Examples:				
	$4\sin\frac{\theta}{2} + 3\cos^2\theta \approx 4\left(\frac{\theta}{2}\right) + 3\left(1 - \frac{\theta^2}{2}\right)^2$				
	$4\sin\frac{\theta}{2} + 3\cos^2\theta = 4\left(\frac{\theta}{2}\right) + 3\left(1 - \sin^2\theta\right) \approx 2\theta + 3\left(1 - \theta^2\right)$	dM1	1.1b		
	$4\sin\frac{\theta}{2} + 3\cos^2\theta = 4\sin\frac{\theta}{2} + 3\frac{(\cos 2\theta + 1)}{2} \approx 4\left(\frac{\theta}{2}\right) + \frac{3}{2}\left(1 - \frac{4\theta^2}{2} + 1\right)$				
	$= 2\theta + 3(1 - \theta^2 + \dots) = 3 + 2\theta - 3\theta^2$	A1	2.1		
		(3)			
	NT	(3	marks)		
	Notes				
	pts to use at least one correct approximation within the given express				
	$\sin \frac{\theta}{2} \approx \frac{\theta}{2}$ or $\cos \theta \approx 1 - \frac{\theta^2}{2}$ or e.g. $\sin \theta \approx \theta$ if they write $\cos^2 \theta$ as $1 - \frac{\theta}{2}$		e.g.		
$\cos 2\theta$	$\cos 2\theta \approx 1 - \frac{(2\theta)^2}{2}$ (condone missing brackets) if they write $\cos^2 \theta$ as $\frac{1 + \cos 2\theta}{2}$.				
Allow	v sign slips only with any identities used but the appropriate approximated.	tions mu	st be		
dM1: Atter	mpts to use correct approximations with the given expression to obtai	n an expr	ession		
	rms of θ only. Depends on the first method mark.	ra any av	tra		
	et terms following correct work. Allow the terms in any order and ignoring given correct or incorrect.	ie any ex	ua		

Question	Scheme	Marks	AOs
5(a)(i)	$\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$	M1 A1	1.1b 1.1b
(ii)	$\frac{d^2 y}{dx^2} = 60x^2 - 144x + 84$	A1ft	1.1b
-		(3)	
(b)(i)	$x = 1 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 20 - 72 + 84 - 32$	M1	1.1b
	$\frac{dy}{dx} = 0$ so there is a stationary point at $x = 1$	A1	2.1
	Alternative for (b)(i)		
-	$20x^{3} - 72x^{2} + 84x - 32 = 4(x-1)^{2}(5x-8) = 0 \Longrightarrow x = \dots$	M1	1.1b
	When $x = 1$, $\frac{dy}{dx} = 0$ so there is a stationary point	A1	2.1
(b)(ii)	Note that in (b)(ii) there are no marks for <u>just</u> evaluating $\left(\frac{d^2 y}{dx^2}\right)_{x=1}$		
	$E.g.\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} = \dots \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} = \dots$ $\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} > 0, \qquad \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} < 0$	M1	2.1
		A1	2.2a
-	Hence point of inflection	(4)	
	Alternative 1 for (b)(ii)	(4)	
	$\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 60x^2 - 144x + 84 = 0 \text{ (is inconclusive)}$ $\left(\frac{d^3 y}{dx^3}\right) = 120x - 144 \Longrightarrow \left(\frac{d^3 y}{dx^3}\right)_{x=1} = \dots$	M1	2.1
	$\left(\frac{dx^3}{dx^2}\right)_{x=1}^{x=1} = 0 \text{and} \left(\frac{d^3y}{dx^3}\right)_{x=1} \neq 0$ Hence point of inflection	A1	2.2a
	Alternative 2 for (b)(ii)		
	E.g. $\left(\frac{dy}{dx}\right)_{x=0.8} = \dots \left(\frac{dy}{dx}\right)_{x=1.2} = \dots$	M1	2.1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=0.8} < 0, \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=1.2} < 0$	A1	2.2a
	Hence point of inflection		
	Notes	(7	marks)
-	x^{n-1} for at least one power of x $20x^3 - 72x^2 + 84x - 32$		


A1ft: Achieves a correct $\frac{d^2 y}{dx^2}$ for their $\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$ (b)(i) M1: Substitutes x = 1 into their $\frac{dy}{dx}$ A1: Obtains $\frac{dy}{dx} = 0$ following a correct derivative and makes a conclusion which can be minimal e.g. tick, QED etc. which may be in a preamble e.g. stationary point when $\frac{dy}{dt} = 0$ and then shows $\frac{dy}{dx} = 0$ **Alternative:** M1: Attempts to solve $\frac{dy}{dx} = 0$ by factorisation. This may be by using the factor of (x - 1) or possibly using a calculator to find the roots and showing the factorisation. Note that they may divide by 4 before factorising which is acceptable. Need to either see either $4(x-1)^2(5x-8)$ or $(x-1)^2(5x-8)$ for the factorisation or $x=\frac{8}{5}$ and x=1 seen as the roots. A1: Obtains x = 1 and makes a conclusion as above (b)(ii)M1: Considers the value of the second derivative either side of x = 1. Do not be too concerned with the interval for the method mark. (NB $\frac{d^2 y}{dx^2} = (x-1)(60x-84)$ so may use this factorised form when considering x < 1, x > 1 for sign change of second derivative) A1: Fully correct work including a correct $\frac{d^2y}{dr^2}$ with a reasoned conclusion indicating that the stationary point is a point of inflection. Sufficient reason is e.g. "sign change"/ ">0, < 0". If values are given they should be correct (but be generous with accuracy) but also just allow ">0" and "< 0" provided they are correctly paired. The interval must be where x < 1.4Alternative 1 for (b)(ii) M1: Shows that second derivative at x = 1 is zero and then finds the third derivative at x = 1A1: Fully correct work including a correct $\frac{d^2y}{dr^2}$ with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is " $\neq 0$ " but must follow a correct third derivative and a correct value if evaluated. For reference $\left(\frac{d^3y}{dx^3}\right) = -24$ Alternative 2 for (b)(ii) M1: Considers the value of the first derivative either side of x = 1. Do not be too concerned with the interval for the method mark. A1: Fully correct work with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is e.g. "same sign"/"both negative"/"< 0, < 0". If values are given they should be correct (but be generous with accuracy). The interval must be where x < 1.40.7 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 x -32 -12.74 -8.64 -5.5 -3.2 -1.62 -0.64 -0.14 f'(x) -24.3 -17.92 0 70.2 57.6 46.2 f''(x)84 36 27 19.2 12.6 7.2 3 0 x 1.4 1.6 1.1 1.2 1.3 1.5 1.7 f'(x)-0.1 -0.54 -0.64 -0.5 0 -0.32 0.98 f''(x) -1.8 -2.4 7.2 -1.8 0 3 12.6

Oursetien	Find Personal Tutor from www.wisesprout.co.uk 找名校导师,用小草线上辅导(微信小程序同名)					
Question	Scheme	Marks	AOs			
6(a)	Angle $AOB = \frac{\pi - \theta}{2}$	B1	2.2a			
-	2	(1)				
(b)	Area = $2 \times \frac{1}{2} r^2 \left(\frac{\pi - \theta}{2}\right) + \frac{1}{2} (2r)^2 \theta$	M1	2.1			
_	$=\frac{1}{2}r^{2}\pi - \frac{1}{2}r^{2}\theta + 2r^{2}\theta = \frac{3}{2}r^{2}\theta + \frac{1}{2}r^{2}\pi = \frac{1}{2}r^{2}(3\theta + \pi)^{*}$	A1*	1.1b			
		(2)				
(c)	Perimeter = $4r + 2r\left(\frac{\pi - \theta}{2}\right) + 2r\theta$	M1	3.1a			
	$=4r+r\pi+r\theta$ or e.g. $r(4+\pi+\theta)$	A1	1.1b			
		(2)				
		(5	marks)			
	Notes					
Need to part (a) A1*: Corre long The f (c) M1: Fully o	correct strategy for the area using their angle from (a) appropriately. to see $2 \times \frac{1}{2}r^2 \alpha$ or just $r^2 \alpha$ where α is their angle in terms of θ from $0 + \frac{1}{2}(2r)^2 \theta$ with or without the brackets. ct proof. For this mark you can condone the omission of the bracket as they are recovered in subsequent work e.g. when this term becom- first term must be seen expanded as e.g. $\frac{1}{2}r^2\pi - \frac{1}{2}r^2\theta$ or equivalent correct strategy for the perimeter using their angle from (a) appropri- tion see $4r + 2r\alpha + 2r\theta$ where α is their angle from part (a) in terms of θ	ts in $\frac{1}{2}(2r)$ mes $2r^2\theta$ ately	$^{2}\theta$ as			
	t simplified expression					
	ome candidates may change the angle to degrees at the start and all	marks are av	vailable			
e.g. (a) $\frac{180 - \frac{18}{2}}{2}$			vailable			

Question	Scheme	Marks	AOs
7(a)	$y = x^{3} - 10x^{2} + 27x - 23 \Longrightarrow \frac{dy}{dx} = 3x^{2} - 20x + 27$	B1	1.1b
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=5} = 3 \times 5^2 - 20 \times 5 + 27 \left(=2\right)$	M1	1.1b
	y+13=2(x-5)	M 1	2.1
	y = 2x - 23	A1	1.1b
		(4)	
(b)	Both <i>C</i> and <i>l</i> pass through $(0, -23)$ and so <i>C</i> meets <i>l</i> again on the <i>y</i> -axis	B1	2.2a
		(1)	
(c)	$\pm \int \left(x^3 - 10x^2 + 27x - 23 - (2x - 23) \right) dx$ $= \pm \left(\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{25}{2}x^2 \right)$	M1 A1ft	1.1b 1.1b
	$\left[\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{25}{2}x^2\right]_0^5$ $= \left(\frac{625}{4} - \frac{1250}{3} + \frac{625}{2}\right)(-0)$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
		(4)	
	(c) Alternative:		
	$\pm \int \left(x^3 - 10x^2 + 27x - 23 \right) dx$ $= \pm \left(\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{27}{2}x^2 - 23x \right)$	M1 A1	1.1b 1.1b
	$\left[\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{27}{2}x^2 - 23x\right]_0^5 + \frac{1}{2} \times 5(23 + 13)$ $= -\frac{455}{12} + 90$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
		(9	marks)

Notes (a) **B1:** Correct derivative M1: Substitutes x = 5 into their derivative. This may be implied by their value for $\frac{dy}{dr}$ M1: Fully correct straight line method using (5, -13) and their $\frac{dy}{dx}$ at x = 5A1: cao. Must see the full equation in the required form. (b) B1: Makes a suitable deduction. Alternative via equating *l* and *C* and factorising e.g. $x^{3}-10x^{2}+27x-23=2x-23$ $x^{3} - 10x^{2} + 25x = 0$ $x(x^2-10x+25) = 0 \Longrightarrow x = 0$ So they meet on the y-axis (c) M1: For an attempt to integrate $x^n \rightarrow x^{n+1}$ for $\pm C - l^n$ A1ft: Correct integration in any form which may be simplified or unsimplified. (follow through their equation from (a)) If they attempt as 2 separate integrals e.g. $(x^3 - 10x^2 + 27x - 23) dx - (2x - 23) dx$ then award this mark for the correct integration of the curve as in the alternative. If they combine the curve with the line first then the subsequent integration must be correct or a correct ft for their line and allow for \pm "C - l" dM1: Fully correct strategy for the area. Award for use of 5 as the limit and condone the omission of the "- 0". Depends on the first method mark. A1: Correct exact value Alternative: M1: For an attempt to integrate $x^n \rightarrow x^{n+1}$ for $\pm C$ A1: Correct integration for $\pm C$ dM1: Fully correct strategy for the area e.g. correctly attempts the area of the trapezium and subtracts the area enclosed between the curve and the x-axis. Need to see the use of 5 as the limit condoning the omission of the "-0" and a correct attempt at the trapezium and the subtraction. May see the trapezium area attempted as (2x-23) dx in which case the integration and use of the limits needs to be correct or correct follow through for their straight line equation. Depends on the first method mark. A1: Correct exact value Note if they do l - C rather than C - l and the working is otherwise correct allow full marks if their final answer is given as a positive value. E.g. correct work with l - C leading to $-\frac{625}{12}$ and then e.g. hence area is $\frac{625}{12}$ is acceptable for full marks. If the answer is left as $-\frac{625}{12}$ then score A0

Question	Scheme	Marks	AOs
8 (a)	$\frac{d}{dx}(3y^2) = 6y\frac{dy}{dx}$		
	di di	M1	2.1
	$d \qquad or \qquad dy$	111	2.1
	$\frac{\mathrm{d}}{\mathrm{d}x}(qxy) = qx\frac{\mathrm{d}y}{\mathrm{d}x} + qy$		
	$3px^2 + qx\frac{dy}{dx} + qy + 6y\frac{dy}{dx} = 0$	A1	1.1b
	$(qx+6y)\frac{dy}{dx} = -3px^2 - qy \Longrightarrow \frac{dy}{dx} = \dots$	dM1	2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3px^2 - qy}{qx + 6y}$	A1	1.1b
		(4)	
(b)	$p(-1)^{3} + q(-1)(-4) + 3(-4)^{2} = 26$	M1	1.1b
	$19x + 26y + 123 = 0 \Longrightarrow m = -\frac{19}{26}$	B1	2.2a
	$\frac{-3p(-1)^2 - q(-4)}{q(-1) + 6(-4)} = \frac{26}{19} \text{or} \frac{q(-1) + 6(-4)}{3p(-1)^2 + q(-4)} = -\frac{19}{26}$	M1	3.1a
	$p-4q = 22, 57 p-102q = 624 \Longrightarrow p =, q =$	dM1	1.1b
	p = 2, q = -5	A1	1.1b
		(5)	
	Nut	(9	marks)
(a)	Notes		
	electing the appropriate method of differentiating:		
Allov	w this mark for either $3y^2 \rightarrow \alpha y \frac{dy}{dx}$ or $qxy \rightarrow \alpha x \frac{dy}{dx} + \beta y$		
A1: Fully	correct differentiation. Ignore any spurious $\frac{dy}{dx} = \dots$		
dM1: A v	alid attempt to make $\frac{dy}{dx}$ the subject with 2 terms only in $\frac{dy}{dx}$ coming fr	om <i>qxy</i> and	$1 3y^2$
Depe	ends on the first method mark.		
•	correct expression		
(b) M1· Uses	x = -1 and $y = -4$ in the equation of C to obtain an equation in p and	a	
	x = 1 and $y = -1$ in the equation of C to obtain an equation in p and ces the correct gradient of the given normal.	9	
	may be implied by e.g.		
This 1			
This 1	$26y+123 = 0 \Rightarrow y = -\frac{19}{26}x + \Rightarrow \text{Tangent equation is } y = \frac{26}{19}x +$		
This 1 $19x +$ M1: Fully	$26y+123 = 0 \Rightarrow y = -\frac{19}{26}x + \Rightarrow$ Tangent equation is $y = \frac{26}{19}x +$ correct strategy to establish an equation connecting <i>p</i> and <i>q</i> using <i>x</i> =		= -4 in
This 1 $19x +$ M1: Fully	$26y+123 = 0 \Rightarrow y = -\frac{19}{26}x + \Rightarrow \text{Tangent equation is } y = \frac{26}{19}x +$		=4 in
This 1 19x+ M1: Fully their	$26y+123 = 0 \Rightarrow y = -\frac{19}{26}x + \Rightarrow$ Tangent equation is $y = \frac{26}{19}x +$ correct strategy to establish an equation connecting <i>p</i> and <i>q</i> using <i>x</i> =		=4 in

Question	Scheme	Marks	AOs
9	$a = \left(\frac{3}{4}\right)^2 \text{ or } a = \frac{9}{16}$ or $r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{\frac{9}{16}}{1 - \left(-\frac{3}{4}\right)} = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
		(3)	
	Alternative 1:		
	$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{-\frac{3}{4}}{1 - \left(-\frac{3}{4}\right)} = \dots \text{ or } r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = -\frac{3}{7} - \left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots$ $\left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) \text{ or } - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots = -\left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$ $\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^{n} \cos\left(180n\right)^{\circ} = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) - \left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = S = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^2 \left(1 - \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 - \dots\right) = \left(\frac{3}{4}\right)^2 \left(\frac{1}{4} + S\right) \Longrightarrow \frac{7}{16}S = \frac{9}{64} \Longrightarrow S = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
		(3	marks)
	Notes	<i>a</i>	
B1: Deduc	ees the correct value of the first term or the common ratio. The correct	tirst term	can be

seen as part of them writing down the sequence but must be the **first** term. M1: Recognises that the series is infinite geometric and applies the sum to infinity GP formula

with $a = \frac{9}{16}$ and $r = \pm \frac{3}{4}$

A1*: Correct proof

Alternative 1:

B1: Deduces the correct value for the sum to infinity (starting at n = 1) or the common ratio

M1: Calculates the required value by subtracting the first term from their sum to infinity

A1*: Correct proof

Alternative 2:

B1: Deduces the correct value of the **first** term or the common ratio.

M1: Splits the series into "odds" and "evens", attempts the sum of both parts and calculates the required value by adding both sums

A1*: Correct proof

Alternative 3:

B1: Deduces the correct value of the **first** term

M1: A complete method by taking out the first term, expresses the rhs in terms of the original sum and rearranges for "S"

A1*: Correct proof

Question	Scheme	Marks	AOs
10(a)	$T = al^b \Longrightarrow \log_{10} T = \log_{10} a + \log_{10} l^b$	M1	2.1
	$\Rightarrow \log_{10} T = \log_{10} a + b \log_{10} l^*$		
	or	A1*	1.1b
	$\Rightarrow \log_{10} T = b \log_{10} l + \log_{10} a *$		
(b)	45	(2)	
	$b = 0.495$ or $b = \frac{45}{91}$	B 1	2.2a
	$0 = "0.495" \times -0.7 + \log_{10} a \Longrightarrow a = 10^{0.346}$		
	or	M1	3.1a
	$0.45 = "0.495" \times 0.21 + \log_{10} a \Longrightarrow a = 10^{0.346}$		
	$T = 2.22l^{0.495}$	A1	3.3
		(3)	
(c)	The time taken for one swing of a pendulum of length 1 m	B1 (1)	3.2a
		(1)	marks
	Notes	(*	
Implied by A1*: Uses the missing	bgs of both sides and shows the addition law. $T = al^b \Rightarrow \log_{10} a + \log_{10} l^b$ the power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How t rather than T and A rather than a	e bases to be	e
Implied by A1*: Uses the missing	$T = al^b \Rightarrow \log_{10} a + \log_{10} l^b$ he power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How t rather than T and A rather than a.	e bases to be	e
Implied by A1*: Uses the missing	$T = al^b \Rightarrow \log_{10} a + \log_{10} l^b$ he power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How t rather than T and A rather than a. Allow working backwards e.g.	e bases to be	e
Implied by A1*: Uses the missing	$T = al^b \Rightarrow \log_{10} a + \log_{10} l^b$ he power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How t rather than T and A rather than a.	e bases to be	2
Implied by A1*: Uses the missin Also a	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ the power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How t rather than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a$		2
Implied by A1*: Uses the missin Also a M	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How trather than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a$ $\Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law A1: Reaches the given equation with no errors as above		2
Implied by A1*: Uses the missin Also a M	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ the power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How trather than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a$ $\Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law		2
Implied by Z A1*: Uses th missin Also a M (b) B1: Deduces M1: Correct	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. How trather than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a$ $\Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law A1: Reaches the given equation with no errors as above the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) strategy to find the value of a.	correctly	
Implied by 2 A1*: Uses the missing Also a M(b) B1: Deduces M1: Correct E.g. substitu	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. Solution that the there is a state of the present in the final answer. Solution the theorem is a state of the present in the final answer. Solution the theorem is a state of the present in the final answer. Solution the present is a state of the present in the final answer. Solution the present is a state of the present of the present in the final answer. Solution the present is a state of the present of the prese	correctly $a_{10} a + b \log_1$	₀ <i>l</i>
Implied by 2 A1*: Uses the missing Also a M (b) B1: Deduces M1: Correct E.g. substitute and uses cor	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the gin the working but they must be present in the final answer. Solution that the thermal term is the final answer. Solution that the term is the term is the final answer. Solution the term is t	correctly $a_{10} a + b \log_1$	₀ <i>l</i>
Implied by A1*: Uses the missing Also a Mission (b) B1: Deduces M1: Correct E.g. substitut and uses correct must be correct by the correct be correct be correct by the correct by the correct be correct by the correct be correct by the correct b	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the g in the working but they must be present in the final answer. Solution that the there is a state of the present in the final answer. Solution the theorem is a state of the present in the final answer. Solution the theorem is a state of the present in the final answer. Solution the present is a state of the present in the final answer. Solution the present is a state of the present of the present in the final answer. Solution the present is a state of the present of the prese	correctly $a + b \log_1$ their equati	₀ <i>l</i> on but
Implied by A1*: Uses the missing Also a Also a Missing Alternatively correct log v	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the gin the working but they must be present in the final answer. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a$ $\Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law Al: Reaches the given equation with no errors as above a the correct value for <i>b</i> (Allow awrt 0.495 or $\frac{45}{91}$) strategy to find the value of <i>a</i> . tes one of the given points and their value for <i>b</i> into $\log_{10} T = \log_{10} T = \log_{10} T = \log_{10} T$ rect log work to identify the value of <i>a</i> . Allow slips in rearranging ect log work to find <i>a</i> . <i>y</i> finds the equation of the straight line and equates the constant to work to identify the value of <i>a</i> .	correctly $a + b \log_1$ their equati	₀ <i>l</i> on but
Implied by 2 A1*: Uses the missing Also a Model of Model	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the given have the present in the final answer. Solve the working but they must be present in the final answer. Solve the working but they must be present in the final answer. Solve the working but they must be present in the final answer. Solve the given the they must be present in the final answer. Solve the given and the they must be present in the final answer. Solve the given answer and uses the power law and addition law Allow and the given equation with no errors as above Solve the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) Solve the given points and their value for b into $\log_{10} T = \log_{10} T = \log$	correctly $a + b \log_1$ their equati	₀ <i>l</i> on but
Implied by 7 A1*: Uses the missing Also a Model of Model	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the given have the present in the final answer. Solve the working but they must be present in the final answer. Solve the than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a \Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law Al: Reaches the given equation with no errors as above at the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) strategy to find the value of a. tes one of the given points and their value for b into $\log_{10} T = \log_{10} T = \log_{10} T$ rect log work to identify the value of a. Allow slips in rearranging ect log work to find a. The equation of the straight line and equates the constant to work to identify the value of a. $5 = "0.495"(x - 0.21) \Rightarrow y = "0.495" x + 0.346 \Rightarrow a = 10^{0.346} =$	correctly $a + b \log_1$ their equati	₀ <i>l</i> on but
Implied by 7 A1*: Uses the missing Also a Model of Model	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the given have the present in the final answer. Solve the working but they must be present in the final answer. Solve the working but they must be present in the final answer. Solve the working but they must be present in the final answer. Solve the given the they must be present in the final answer. Solve the given and the they must be present in the final answer. Solve the given answer and uses the power law and addition law Allow and the given equation with no errors as above Solve the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) Solve the given points and their value for b into $\log_{10} T = \log_{10} T = \log$	correctly $a + b \log_1$ their equati	₀ <i>l</i> on but
Implied by 2^{2} A1*: Uses the missing Also a mission of the mi	$T = al^{b} \Rightarrow \log_{10} a + \log_{10} l^{b}$ The power law to obtain the given equation with no errors. Allow the given have the present in the final answer. Solve the working but they must be present in the final answer. Solve the than T and A rather than a. Allow working backwards e.g. $\log_{10} T = b \log_{10} l + \log_{10} a \Rightarrow \log_{10} T = \log_{10} l^{b} + \log_{10} a \Rightarrow \log_{10} T = \log_{10} al^{b} \Rightarrow T = al^{b} *$ 1: Uses the given answer and uses the power law and addition law Al: Reaches the given equation with no errors as above at the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) strategy to find the value of a. tes one of the given points and their value for b into $\log_{10} T = \log_{10} T = \log_{10} T$ rect log work to identify the value of a. Allow slips in rearranging ect log work to find a. The equation of the straight line and equates the constant to work to identify the value of a. $5 = "0.495"(x - 0.21) \Rightarrow y = "0.495" x + 0.346 \Rightarrow a = 10^{0.346} =$	correctly $a + b \log_{10} a$ their equaticlog a and	₀ <i>l</i> on but uses

Question	Scheme	Marks	AOs
11(a)	(1.5k, k) (1.5k, k) (1.		
	\wedge shape in any position	B1	1.1b
	Correct <i>x</i> -intercepts or coordinates	B1	1.1b
	Correct y-intercept or coordinates	B1	1.1b
	Correct coordinates for the vertex of a \wedge shape	B1	1.1b
		(4)	
(b)	x = k	B1	2.2a
	$k - (2x - 3k) = x - k \Longrightarrow x = \dots$	M1	3.1a
	$x = \frac{5k}{3}$	A1	1.1b
	Set notation is required here for this mark $\left\{x: x < \frac{5k}{3}\right\} \cap \left\{x: x > k\right\}$	A1	2.5
		(4)	
(c)	x = 3k or $y = 3 - 5k$	B1ft	2.2a
	x = 3k and $y = 3 - 5k$	B1ft	2.2a
	•	(2)	
			marks)

(a) Note that the sketch may be seen on Figure 4

B1: See scheme

B1: Correct *x*-intercepts. Allow as shown or written as (k, 0) and (2k, 0) and condone coordinates written as (0, k) and (0, 2k) as long as they are in the correct places.

B1: Correct *y*-intercept. Allow as shown or written as (0, -2k) or (-2k, 0) as long as it is in the correct place. Condone k - 3k for -2k.

B1: Correct coordinates as shown

Note that the marks for the intercepts and the maximum can be seen away from the sketch but the coordinates must be the right way round or e.g. as y = 0, x = k etc. These marks can be awarded without a sketch but if there is a sketch, such points must not contradict the sketch.

(b)

B1: Deduces the correct critical value of x = k. May be implied by e.g. x > k or x < k

M1: Attempts to solve k - (2x - 3k) = x - k or an equivalent equation/inequality to find the other critical value. Allow this mark for reaching k = ... or x = ... as long as they are solving the required equation.

A1: Correct value

A1: Correct answer using the correct set notation.

Allow e.g.
$$\left\{x: x \in \mathbb{R}, k < x < \frac{5k}{3}\right\}$$
, $\left\{x: k < x < \frac{5k}{3}\right\}$, $x \in \left(k, \frac{5k}{3}\right)$ and allow "|" for ":"
But $\left\{x: x < \frac{5k}{3}\right\} \cup \left\{x: x > k\right\}$ scores A0 $\left\{x: k < x, x < \frac{5k}{3}\right\}$ scores A0 (c)

B1ft: Deduces one correct coordinate. Follow through their maximum coordinates from (a) so allow $x = 2 \times 1.5k$ or $y = 3 - 5 \times k$ but must be in terms of *k*.

Allow as coordinates or x = ..., y = ...

B1ft: Deduces both correct coordinates. Follow through their maximum coordinates from (a) so allow $x = 2 \times 1.5k$ and $y = 3 - 5 \times k$ but must be in terms of k.

Allow as coordinates or x = ..., y = ...

If coordinates are given the wrong way round and not seen correctly as x = ..., y = ...e.g. (3 - 5k, 3k) this is B0B0

Question	Scheme	Marks	AOs
12(a)	$u = 1 + \sqrt{x} \Longrightarrow x = (u - 1)^{2} \Longrightarrow \frac{dx}{du} = 2(u - 1)$ or $u = 1 + \sqrt{x} \Longrightarrow \frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	B1	1.1b
	$\int \frac{x}{1+\sqrt{x}} dx = \int \frac{(u-1)^2}{u} 2(u-1) du$ or $\int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times 2x^{\frac{1}{2}} du = \int \frac{2x^{\frac{3}{2}}}{u} du = \int \frac{2(u-1)^3}{u} du$	M1	2.1
	$\int_{0}^{16} \frac{x}{1+\sqrt{x}} dx = \int_{1}^{5} \frac{2(u-1)^{3}}{u} du$	A1	1.1b
		(3)	
(b)	$2\int \frac{u^3 - 3u^2 + 3u - 1}{u} du = 2\int \left(u^2 - 3u + 3 - \frac{1}{u}\right) du = \dots$	M1	3.1a
	$= (2) \left[\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u \right]$	A1	1.1b
	$= 2\left[\frac{5^{3}}{3} - \frac{3(5)^{2}}{2} + 3(5) - \ln 5 - \left(\frac{1}{3} - \frac{3}{2} + 3 - \ln 1\right)\right]$	dM1	2.1
	$=\frac{104}{3}-2\ln 5$	A1	1.1b
		(4)	
	.	(7	marks)
	Notes		
	ct expression for $\frac{dx}{du}$ or $\frac{du}{dx}$ (or u') or dx in terms of du or du in term plete method using the given substitution.	ns of dx	
-	needs to be a correct method for their $\frac{dx}{du}$ or $\frac{du}{dx}$ leading to an integral	in terms	ofu
	d <i>u</i> d <i>x</i>		51 <i>U</i>
-	(ignore any limits if present) so for each case you need to see:		
$\frac{\mathrm{d}x}{\mathrm{d}u} =$	$f(u) \rightarrow \int \frac{x}{1+\sqrt{x}} dx = \int \frac{(u-1)^2}{u} f(u) du$		
$\frac{\mathrm{d}u}{\mathrm{d}x}$	$=g(x) \rightarrow \int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times \frac{du}{g(x)} = \int h(u) du$. In this case you can	n condon	e
slip	s with coefficients e.g. allow $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times \frac{x^{\frac{1}{2}}}{2} dx$	$u = \int h($	(u)d u

but not
$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{d}x = \int \frac{x}{u} \times \frac{x^{-\frac{1}{2}}}{2} \mathrm{d}u = \int \mathrm{h}(u)\mathrm{d}u$$

A1: All correct with correct limits and no errors. The "du" must be present but may have been omitted along the way but it must have been seen at least once before the final answer. The limits can be seen as part of the integral or stated separately.

(b)

M1: Realises the requirement to cube the bracket and divide through by *u* and makes progress

- with the integration to obtain at least 3 terms of the required form e.g. 3 from ku^3 , ku^2 , ku, $k \ln u$
- A1: Correct integration. This mark can be scored with the "2" still outside the integral or even if it has been omitted. But if the "2" has been combined with the integrand, the integration must be correct.
- dM1: Completes the process by applying their "changed" limits and subtracts the right way round **Depends on the first method mark.**

A1: Cao (Allow equivalents for $\frac{104}{3}$ e.g. $\frac{208}{6}$)

Question	Scheme	Marks	AOs
13(a)	$y = \csc^3\theta \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = -3\csc^2\theta\csc\theta\cot\theta$	B1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3\mathrm{cosec}^3\theta\cot\theta}{2\cos2\theta}$	A1	1.1b
		(3)	
(b)	$y = 8 \Rightarrow \csc^3 \theta = 8 \Rightarrow \sin^3 \theta = \frac{1}{8} \Rightarrow \sin \theta = \frac{1}{2}$	M1	3.1a
	$\theta = \frac{\pi}{6} \Rightarrow \frac{dy}{dx} = \frac{-3\csc^3\left(\frac{\pi}{6}\right)\cot\left(\frac{\pi}{6}\right)}{2\cos\left(\frac{2\pi}{6}\right)} = \dots$		
	or $\sin \theta = \frac{1}{2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{-3}{\sin^3 \theta} \times \frac{\cos \theta}{\sin \theta}}{2\left(1 - 2\sin^2 \theta\right)} = \frac{\frac{-3 \times 8 \times \frac{\sqrt{3}}{2}}{2\left(1 - 2 \times \frac{1}{4}\right)}}{2\left(1 - 2 \times \frac{1}{4}\right)}$	M1	2.1
	$=-24\sqrt{3}$	A1	2.2a
		(3)	
		(6	marks)
	Notes		
M1: Obtai and a A1: Corre	ct expression for $\frac{dy}{d\theta}$ seen or implied in any form e.g. $\frac{-3\cos\theta}{\sin^4\theta}$ ins $\frac{dx}{d\theta} = k\cos 2\theta$ or $\alpha\cos^2\theta + \beta\sin^2\theta$ (from product rule on $\sin\theta\cos\theta$) ttempts $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ ct expression in any form.		
(b)	May see e.g. $\frac{-3\cos\theta}{2\sin^4\theta\cos2\theta}$, $-\frac{3}{4\sin^4\theta\cos\theta-2\sin^3\theta\tan\theta}$	9	
	gnises the need to find the value of $\sin \theta$ or θ when $y = 8$ and uses the		ter to
	ts value. This should be correct work leading to $\sin \theta = \frac{1}{2}$ or e.g. $\theta = \frac{\pi}{6}$,	
	their value of $\sin \theta$ or θ in their $\frac{dy}{dx}$ from part (a) (working in exact for	rm) in an	attempt
	an exact value for $\frac{dy}{dx}$. May be implied by a correct exact answer.		
If no work $\frac{dy}{dx}$.	king is shown but an exact answer is given you may need to check that	this follow	ws their
	ces the correct gradient		

Question	Scheme	Marks	AOs
14(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h$	B1	3.1b
	$V = 24h \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}h} = 24$ or $\frac{\mathrm{d}h}{\mathrm{d}V} = \frac{1}{24}$	B1	3.1b
	$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Longrightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$	M1	2.1
	$1200\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h \ast$	A1*	1.1b
		(4)	
(b)	$1200\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h \Longrightarrow \int \frac{1200}{24 - 5h} \mathrm{d}h = \int \mathrm{d}t$	M1	3.1a
	$\Rightarrow e.g. \ \alpha \ln (24-5h) = t(+c) \text{ oe}$ or $1200 \frac{dh}{dt} = 24-5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24-5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln (24-5h) \text{ oe}$		
	$t = -240\ln(24-5h)(+c)$ oe	A1	1.1b
	$t = 0, h = 2 \Longrightarrow 0 = -240 \ln (24 - 10) + c \Longrightarrow c =(240 \ln 14)$	M1	3.4
	$t = 240\ln(14) - 240\ln(24 - 5h)$	A1	1.1b
	$t = 240 \ln \frac{14}{24 - 5h} \Longrightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Longrightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$	ddM1	2.1
	$\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$		
	$h = 4.8 - 2.8e^{-\frac{t}{240}}$ oe e.g. $h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$	A1	3.3
	<u> </u>	(6)	
(c)	Examples:		
	• As $t \to \infty$, $e^{-\frac{t}{240}} \to 0$		
	• When $h > 4.8$, $\frac{\mathrm{d}V}{\mathrm{d}t} < 0$		
	• Flow in = flow out at max h so $0.1h = 4.8 \rightarrow h = 4.8$	MI	2 11
	• As $e^{-\frac{t}{240}} > 0$, $h < 4.8$	M1	3.1b
	• $h = 5 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}t} = -0.02 \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{1200}$		
	• $\frac{\mathrm{d}h}{\mathrm{d}t} = 0 \Longrightarrow h = 4.8$ • $h = 5 \Longrightarrow 4.8 - 2.8\mathrm{e}^{-\frac{t}{240}} = 5 \Longrightarrow \mathrm{e}^{-\frac{t}{240}} < 0$		
	• $h = 5 \Rightarrow 4.8 - 2.8e^{-2.0} = 5 \Rightarrow e^{-2.0} < 0$ • The limit for <i>h</i> (according to the model) is 4.8m and the tank		
	is 5m high so the tank will never become full	A1	3.2a
	• If $h = 5$ the tank would be emptying so can never be full	AI	5.2a
	• The equation can't be solved when $h = 5$		

Question	Scheme	Marks	AOs
15(a)	$R = \sqrt{5}$	B1	1.1b
	$\tan \alpha = \frac{1}{2} \text{ or } \sin \alpha = \frac{1}{\sqrt{5}} \text{ or } \cos \alpha = \frac{2}{\sqrt{5}} \Longrightarrow \alpha = \dots$	M1	1.1b
	$\alpha = 0.464$	A1	1.1b
		(3)	
(b)(i)	$3 + 2\sqrt{5}$	B1ft	3.4
(ii)	$\cos(0.5t + 0.464) = 1 \Longrightarrow 0.5t + 0.464 = 2\pi$ $\implies t = \dots$	M1	3.4
-	<i>t</i> = 11.6	A1	1.1b
		(3)	-
(c)	$3 + 2\sqrt{5}\cos(0.5t + 0.464) = 0$		
	$\cos(0.5t + 0.464) = -\frac{3}{2\sqrt{5}}$	M1	3.4
	$\cos(0.5t + 0.464) = -\frac{3}{2\sqrt{5}} \Rightarrow 0.5t + 0.464 = \cos^{-1}\left(-\frac{3}{2\sqrt{5}}\right)$ $\Rightarrow t = 2\left(\cos^{-1}\left(-\frac{3}{2\sqrt{5}}\right) - 0.464\right)$	dM1	1.1b
	So the time required is e.g.: 2(3.9770.464) - 2(2.3060.464)	dM1	3.1b
	= 3.34	A1	1.1b
		(4)	
(d)	e.g. the "3" would need to vary	B1	3.5c
		(1)	• ``
	NT 4	(11	marks)
	Notes		
(a) B1: $R = \sqrt{2}$)	
It is in A1: $\alpha = av$ (b)(i)		L	
	$(3+2\sqrt{5})$ m or awrt 7.47 m and remember to isw. Condone lack of us ow through on their <i>R</i> value so allow $3+2\times$ Their <i>R</i> . (Allow in decima		least
(b)(ii) M1: Uses Follow	accuracy) $0.5t \pm "0.464" = 2\pi$ to obtain a value for t w through on their 0.464 but this angle must be in radians. ossible in degrees but only using $0.5t \pm "26.6" = 360$		

Alternative for (b):

$$H = 3 + 4\cos(0.5t) - 2\sin(0.5t) \Rightarrow \frac{dH}{dt} = -2\sin(0.5t) - \cos(0.5t) = 0$$

$$\Rightarrow \tan(0.5t) = -\frac{1}{2} \Rightarrow 0.5t = 2.677..., 5.819... \Rightarrow t = 5.36, 11.6$$

$$t = 11.6 \Rightarrow H = 7.47$$
Score as follows:
M1: For a complete method:
M1: For a complete method:
Attempts $\frac{dH}{dt}$ and attempts to solve $\frac{dH}{dt} = 0$ for t
A1: For t = awrt 11.6
B1ft: For awrt 7.47 or 3 + 2 \times Their R

(c)
M1: Uses the model and sets
$$3 + 2"\sqrt{5}"\cos(...) = 0$$
 and proceeds to $\cos(...) = k$ where $|k| < 1$.
Allow e.g. $3 + 2"\sqrt{5}"\cos(...) < 0$
dM1: Solves $\cos(0.5t \pm "0.464") = k$ where $|k| < 1$ to obtain at least one value for t
This requires e.g. $2\left(\pi + \cos^{-1}(k) \pm \tan^{-1}\left(\frac{1}{2}\right)\right)$ or e.g. $2\left(\pi - \cos^{-1}(k) \pm \tan^{-1}\left(\frac{1}{2}\right)\right)$
Depends on the previous method mark.
dM1: A fully correct strategy to find the required duration. E.g. finds 2 consecutive values of t
when $H = 0$ and subtracts. Alternatively finds t when H is minimum and uses the times found
correctly to find the required duration.
Depends on the previous method mark.
 $Examples:$
Second time at water level – first time at water level:
 $2\left(\pi + \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = 7.02685... - 3.68492...$
 $2 \times (first time at minimum point – first time at water level):
 $2\left(2\left(\pi - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right)\right) = 2(5.35589... - 3.68492...)$
Note that both of these examples equate to $4\cos^{-1}\left(\frac{3}{2\sqrt{5}}\right)$ which is not immediately obvious
but may be seen as an overall method.
There may be other methods – if you are not sure if they deserve credit send to review.
A1: Correct value. Must be 3.34 (not awrt).
Special Cases in (c):
Note that if candidates have an incorrect α and have e.g. $3 + 2\sqrt{5} \cos(0.5t - 0.464)$, this has no
impact on the final answer. So for candidates using $3 + 2\sqrt{5} \cos(0.5t \pm \alpha)$ in (c) allow all the
marks including the A mark as a correct method should always lead to 3.34
Some values to look for:
 $0.5t \pm "0.464" = \pm 2.306, \pm 3.977, \pm 8.598, \pm 10.26$
(d)$

B1: Correct refinement e.g. As in scheme. If they suggest a specific function to replace the "3" then it must be sensible e.g. a trigonometric function rather than e.g. a quadratic/linear one.