

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		_
Forename(s)		_
Candidate signature		_
	I declare this is my own work.	

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 2H

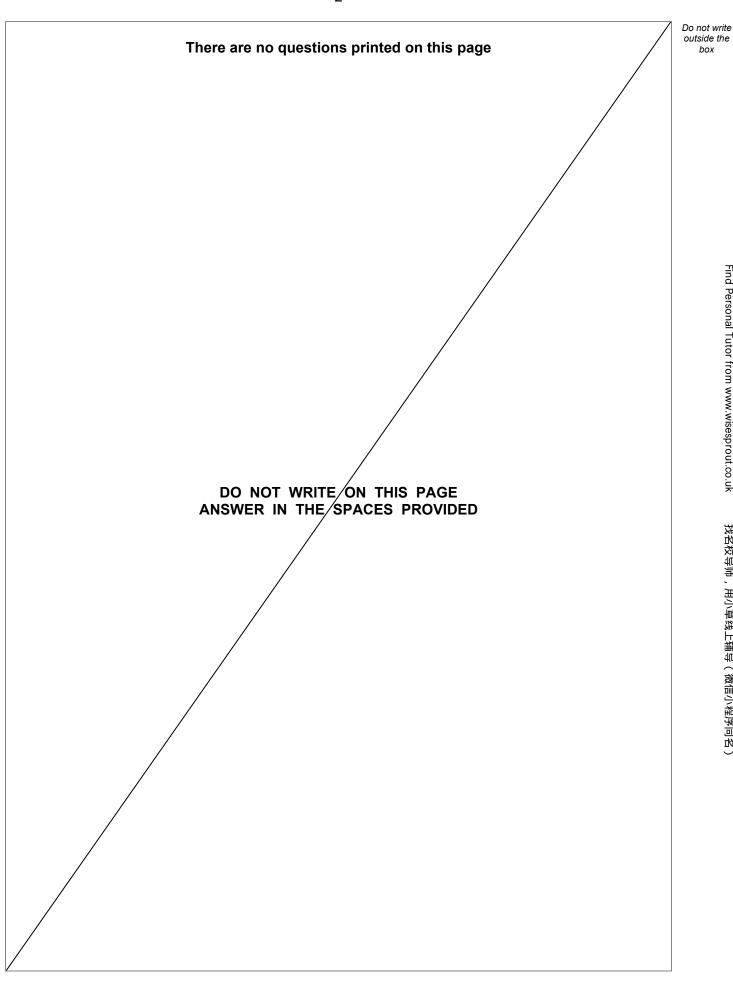
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

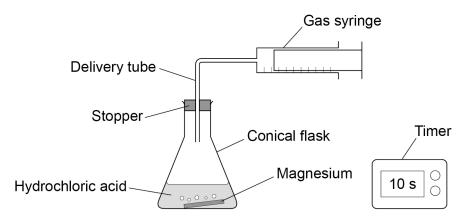
Instructions


- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	



A student investigated the reaction between magnesium and excess hydrochloric acid.

Figure 1 shows the apparatus.

Figure 1

This is the method used.

- 1. Pour 50 cm³ of hydrochloric acid into a conical flask.
- 2. Add a piece of magnesium.
- 3. Insert stopper and delivery tube and start a timer.
- 4. Collect the gas produced in a gas syringe.
- 5. Record the volume of gas produced every 20 seconds for 2 minutes.
- 6. Repeat steps 1 to 5 with higher concentrations of hydrochloric acid.

0	1 . 1	Give the independent variable and one control variable in this investigation.	
			[2 marks]
		Independent variable	
		Control variable	

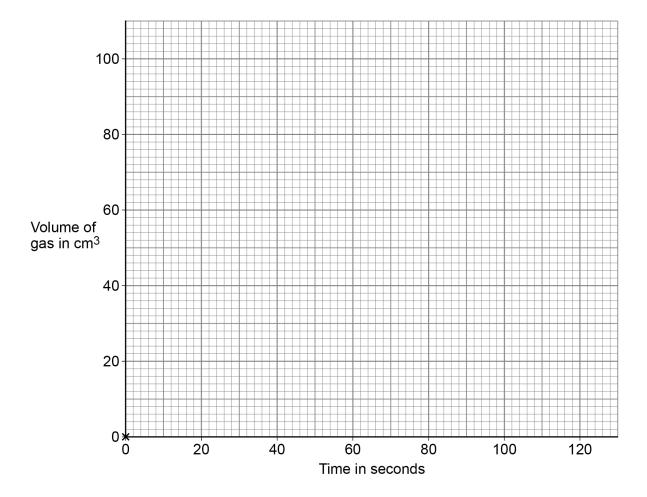
Question 1 continues on the next page

Turn over ▶

Table 1 shows the results from the first experiment using hydrochloric acid with a low concentration.

Table 1

Time in seconds	0	20	40	60	80	100	120
Volume of gas in cm ³	0	48	72	90	97	98	98


0 1 . 2 Complete Figure 2.

You should:

- plot the data from **Table 1** (the point 0,0 has been plotted for you)
- draw a line of best fit.

[3 marks]

Figure 2

co.uk
_
ᄌ
K
找名校导师
苡
ШL
¥
`
#
宁
用小草线上辅导
纵
H
盐
加
410
\subseteq
鹨
ΠII
9
微信小程序同名
承
回
πk

0 1.3	How does the rate of this reaction change with time?	
	Use Table 1.	[1 mark]
	Tick (✓) one box.	[i iliai k]
	The rate decreases.	
	The rate stays the same.	
	The rate increases.	
0 1.4	The student repeated the experiment using hydrochloric acid with a higher concentration.	
	Which statement is correct?	[4 mouls]
	Tick (✓) one box.	[1 mark]
	The activation energy for the reaction was higher.	
	The magnesium reacted more quickly.	
	The reaction finished at the same time.	
	The total volume of gas collected was smaller.	
	Question 1 continues on the next page	

			5
0 1 . 5	Temperature also affects the rate of the reaction.		Do not write outside the box
	Explain how increasing the temperature affects the rate of the reaction.		
	You should refer to particles and collisions.		
	[1	3 marks]	
			10
			10
			(= 5
			2
			ž
			28 178 4 %
			- + - -
			7) + 24 + 110 47 (184 E. C. 184 E. 184 E. C.
			ر آ
			H. J I.
			Ī

0 2	Crude oil is a resource found in rocks.	
	Most of the compounds in crude oil are hydrocarbons.	
0 2.1	Complete the sentence.	[1 mark]
	Crude oil is formed by the decomposition of	
0 2 . 2	Alkanes are hydrocarbons.	
	Give the name of the alkane molecule that has three carbon atoms.	[1 mark]

Question 2 continues on the next page

0 2 . 3

Figure 3 shows two alkane molecules.

Figure 3

 Methane
 Hexane

 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 <t

Table 2 shows the melting points and boiling points of methane and hexane.

Table 2

	Melting point in °C	Boiling point in °C
Methane	-183	-162
Hexane	-95	69

[6 marks

	_
	≟
	_
	C
	π
	ring reisonal
	۳
	ĭ
	\bar{a}
	=
	Ξ
	\subseteq
	Ξ
	2
	_
	-
	C
	Ξ
	_
	≶
	S
	2
	:
	S
	2
	Ä
	ä
•	Ċ
	Lator Horn www.wisesproat.co.u
	C
	⊆
	Ξ
	۶
	۲
	⊆

m www.wisesprout.co.uk
CO.UK
戈伯汶 心言,
氏小叶戏二错p(
(別) 同小(主/古

Hydrocarbons are cracked to produce more useful alkanes and alkenes.

Decane $(C_{10}H_{22})$ is cracked to produce **two** products.

Complete the equation for the reaction.

[1 mark] $C_{10}H_{22} \rightarrow \underline{\hspace{1cm}} + C_2H_4$ Decane $C_{10}H_{22} \rightarrow \underline{\hspace{1cm}} + C_2H_4$ The second of the test for alkenes and alkene is present.

[2 marks]

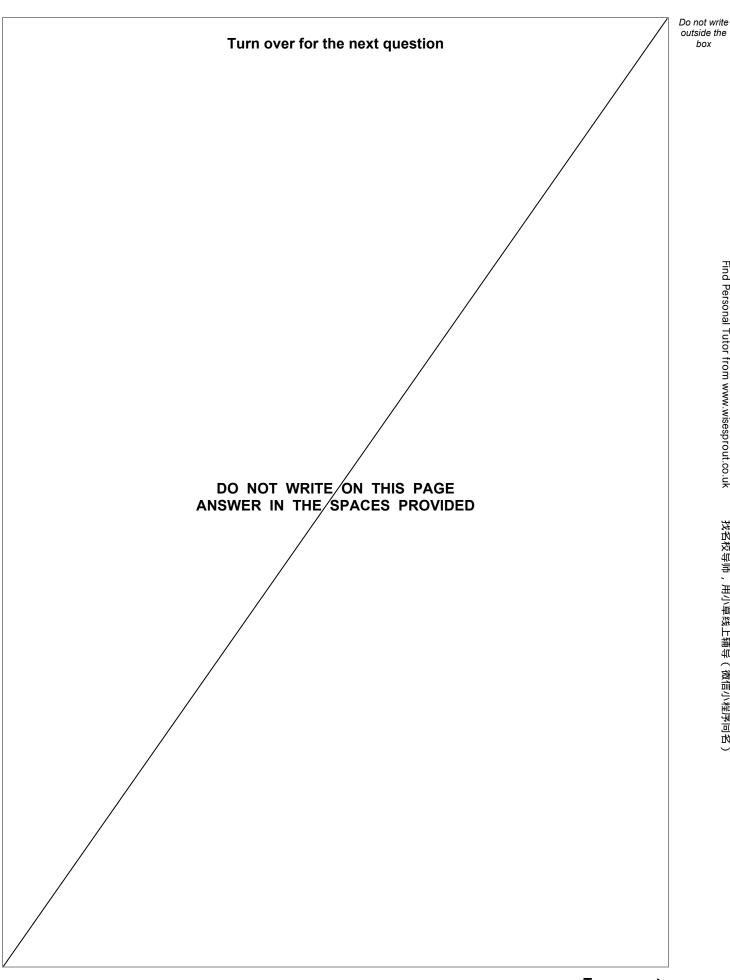
Test

Result

Result

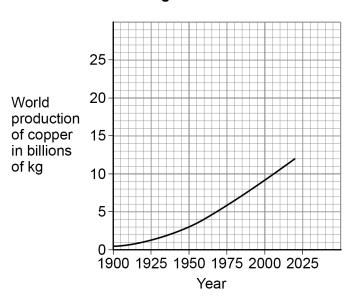
Turn over for the next question

0 3	The methods used to produce potable water depend upon available sources of water.
0 3. 1	Suggest how copper sulfate can be used as a test for the presence of water. [3 marks]
	The boiling point is used to check the purity of a sample of water.
0 3 . 2	In chemistry, what is meant by a 'pure substance'? [1 mark]



0 3 . 3	The boiling point of a 250 g sample of water was 100.60 °C.	
	The boiling point of pure water in a data book is 100.00 °C.	
	Each 1% of impurity increases the boiling point of water by 0.12 °C.	
	Calculate the mass of the impurity in the sample of water.	[3 marks]
	Mass of the impurity =	g
0 3 . 4	Explain how distillation is used to obtain potable water from salty water.	[4 marks]
	Question 3 continues on the next page	

0 3.5	Obtaining potable water from salty water is more expensive than obtaining potable water from ground water.	Do not write outside the box
	Explain why.	
	Refer to the processes used in both methods in your answer. [2 marks]	
		13 Find Pers



Industries use the Earth's natural copper resources to produce useful products.

Figure 4 shows the world production of copper from 1900 to 2020.

Figure 4

0 4.1	Describe the trend shown by the graph in Figure 4 .	[2 marks]
0 4.2	Suggest one reason for the trend in Figure 4 .	[1 mark]

0 4.3	Suggest one reason why the trend cannot be used to accurately predict the future world production of copper.	[1 mark]
	Question 4 continues on the next page	

0 4 . 4	High-grade copper resources are now difficult to find.		
	Phytomining is used to extract copper from low-grade ores.		
	There are five stages, A , B , C , D and E , in phytomining.		
	The stages are not in the correct order.		
	Stage A Copper compounds from ash are dissolved in acid.		
	Stage B Plants absorb metal compounds.		
	Stage C Plants are burned.		
	Stage D Plants are harvested.		
	Stage E Solution of copper compound is electrolysed.		
	What is the correct order of stages A , B , C , D , and E ?		
	[1 Tick (✓) one box.	mark]	
	B, C, D, E, A		
	B, D, C, A, E		
	D, B, C, E, A		
	D, C, B, A, E		

Give two disadvantages of phytomining compared with traditional mining methods.		
Do not refer to cost in your answer. [2 marks]		
1		
2		
In one year, 8.89×10^9 kg of copper was produced.		
41.0% of this copper was produced from recycled copper.		
The energy needed to produce 1 kg of copper from copper ore is 70.4 MJ.		
The energy needed to produce 1 kg of recycled copper is 27.2 MJ.		
Calculate the difference in energy used if all the copper was produced from recycling.		
Give your answer to 3 significant figures. [5 marks]		
· ·		
Difference in energy used (3 significant figures) = MJ		

0 5	Atmospheric pollution is emitted by cars.
	Some car emissions contain nitrogen dioxide.
0 5.1	Describe how nitrogen dioxide (NO ₂) is produced in the engine of a car that burns fossil fuels.
	[3 marks]

Table 3 shows the concentration of nitrogen dioxide in the air in three different areas for 1 week.

Table 3

Concentration of nitrogen dioxide in the air

	in r	micrograms per i	m³
Day	City centre	Countryside	Motorway
Monday	35	8	22
Tuesday	37	8	23
Wednesday	37	8	23
Thursday	34	8	23
Friday	37	8	23
Saturday	29	7	20
Sunday	Х	6	17

0 5.2	The mean value for nitrogen dioxide in the air for the whole week in the city centre is 33 micrograms per m³.
	Calculate the value (X) for the concentration of nitrogen dioxide in the air in the city centre on Sunday. [2 marks]
	X = micrograms per m ³
0 5 . 3	Each value in Table 3 has an uncertainty of ± 2 micrograms per m ³ . Explain why this uncertainty is most significant for countryside data. [2 marks]

Question 5 continues on the next page

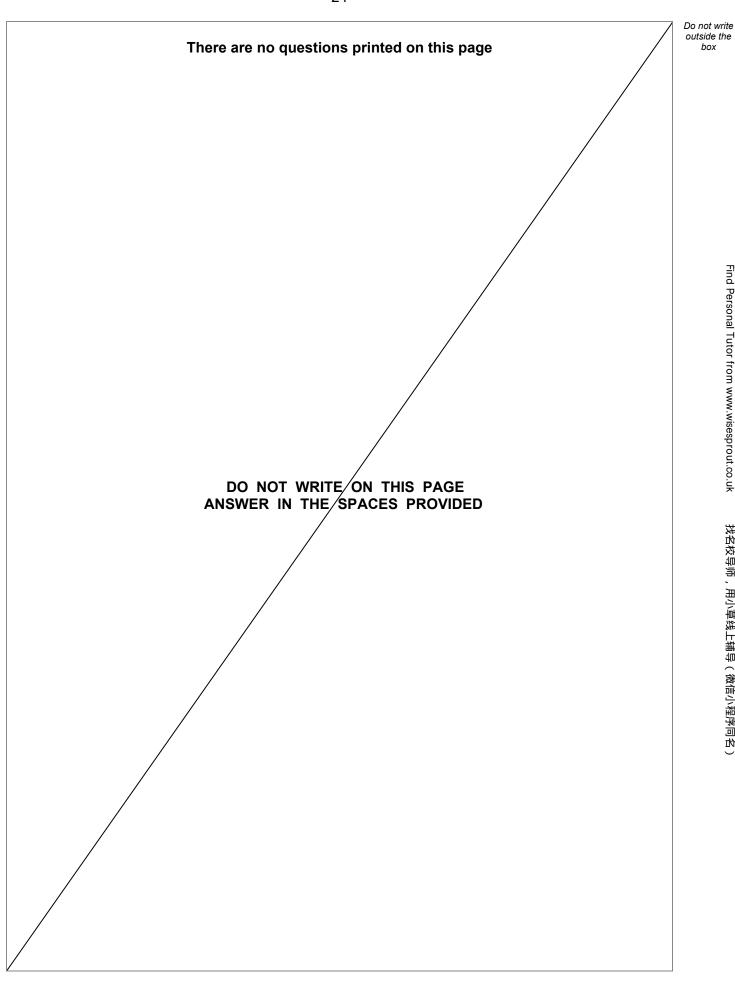
	Nitrogen dioxide is removed from car emissions by catalytic converters.
0 5.4	In a catalytic converter nitrogen dioxide (NO ₂) reacts to produce nitrogen and oxygen.
	Complete the equation for the reaction.
	You should balance the equation. [2 marks]
	$NO_2 \rightarrow $ +
0 5.5	The catalyst in a catalytic converter contains platinum.
	Platinum is a finite resource.
	What is meant by a 'finite resource'? [1 mark]
0 5.6	Emissions from cars contain carbon dioxide.
	Explain why carbon dioxide emissions during use and operation are not the total carbon footprint for a car.
	Refer to the stages of the life cycle assessment of a car in your answer. [3 marks]

0 6	Ammonia is produced when a mixture of nitrogen and hydrogen reacts.	
	The equation for the reaction is:	
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	
0 6 . 1	Nitrogen is obtained from the air.	
0,0,	The mixture of nitrogen and hydrogen must not contain carbon dioxide and oxygen.	
	Explain how a sample can be tested to show that carbon dioxide is not present in the mixture.	
	[2 marks]	
0 6.2	A catalyst is used in the reaction.	
	Explain how a catalyst increases the rate of a reaction. [2 marks]	

Question 6 continues on the next page

Turn over ▶

ww.wisesprout.co.uk	
戈伯 公 以	
五小早发二错	
(


	The equation for the reaction to produce ammonia is repeated here.
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
0 6.3	The reaction reaches equilibrium. Explain how an equilibrium is reached. [2 marks]
0 6.4	Suggest how the catalyst affects the equilibrium position. Give one reason for your answer. [2 marks]
0 6.5	What is the effect of increasing the pressure on the reaction to produce ammonia? [1 mark] Tick (✓) one box. The yield of ammonia decreases. The yield of ammonia stays the same. The yield of ammonia increases.

0 6 . 6	The forward reaction is exothermic.	Do not writ outside the box	
	Explain the effect of increasing the temperature on the yield of ammonia gas produced at equilibrium. [2 marks]		
		11	_

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

