

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

Answer all questions in the spaces provided.

- **0** 1 This question is about enthalpy changes for calcium chloride and magnesium chloride.
- 0 1 . 1 State the meaning of the term enthalpy change.

[1 mark]

Figure 1 shows an incomplete Born–Haber cycle for the formation of calcium chloride.

Figure 1

$$Ca^{2+}(g) + 2e^{-} + 2Cl(g)$$

$$Ca^{+}(g) + e^{-} + Cl_{2}(g)$$

$$Ca(g) + Cl_{2}(g)$$

$$CaCl_{2}(s)$$

0 1. 2 Complete **Figure 1** by writing the formulas, including state symbols, of the appropriate species on each of the three blank lines.

[3 marks]

0 1 . 3

Table 1 shows some enthalpy data.

Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation of calcium chloride	- 795
Enthalpy of atomisation of calcium	+193
First ionisation energy of calcium	+590
Second ionisation energy of calcium	+1150
Enthalpy of atomisation of chlorine	+121
Electron affinity of chlorine	-364

Use **Figure 1** and the data in **Table 1** to calculate a value for the enthalpy of lattice dissociation of calcium chloride.

[2 marks]

Enthalpy of lattice dissociation kJ mol⁻¹

Question 1 continues on the next page

Turn over ▶

[1 mark]		on of magnesium chloride is mea	
		enthalpy data.	1.5 Table 2 shows some
		Table 2	
	Enthalpy change / kJ mol ⁻¹		
	+2493	lattice dissociation of MgCl ₂	Enthalpy of
	-1920	hydration of Mg ²⁺ (g)	Enthalpy of
	-364	hydration of Cl ⁻ (g)	Enthalpy of
_ kJ mol ⁻¹		Enthalpy of solution_	
_ kJ mol ⁻¹	1	Enthalpy of solution_ ation of $Ca^{2+}(g)$ is -1650 kJ mol-	1 . 6 The enthalpy of hydra

This question is about atomic structure.

	_
	_
	-
	7
	_
	-
	ä
	Y
	c
	ř
	⋍
	=
	U
	_
	-
	c
	2
	c
	Ξ
	Ξ
	r
	_
	=
	S
	2
	⋜
	≤
	:
	<
	_
	u
	a
	u
-	C
	-
	c
	ē
	=
	Ç
	C
	÷
	_
	7

找名校导师
-
草气
用小草线上辅导
金銭
颤
程序
微信小程序同名)
$\overline{}$

0 2 . 1	Define the mass number of an atom.	[1 mark]

0 2.2 Complete **Table 3** to show the numbers of neutrons and electrons in the species shown.

[2 marks]

Table 3

	Number of protons	Number of neutrons	Number of electrons
⁴⁶ Ti	22		
⁴⁹ Ti ²⁺	22		

0 2. **3** A sample of titanium contains four isotopes, ⁴⁶Ti, ⁴⁷Ti, ⁴⁸Ti and ⁴⁹Ti This sample has a relative atomic mass of 47.8 In this sample the ratio of abundance of isotopes ⁴⁶Ti, ⁴⁷Ti and ⁴⁹Ti is 2:2:1

Calculate the percentage abundance of ⁴⁶Ti in this sample.

[3 marks]

Abundance of ⁴⁶ Ti	 %

0 2

0 3	This question is about elements in Period 3 and their compounds.
0 3.1	When a piece of sodium is added to 200 cm³ of water in a large beaker a vigorous reaction occurs. The temperature of the water increases by 25 °C
	Give an equation, including state symbols, for the reaction of sodium with water.
	Suggest why it is dangerous to react a similar piece of sodium with 10 cm ³ of water in
	a boiling tube. [2 marks]
	Equation
	Why it is dangerous
	why kilo dangerode
0 3.2	Give an equation for the reaction of phosphorus(V) oxide with water.
	Suggest a pH for the solution formed. [2 marks]
	Equation
	pH
0 3.3	Explain, in terms of crystal structure and bonding, why silicon(IV) oxide has a higher melting point than phosphorus(V) oxide. [4 marks]

	rout.co.uk
	发化核叫引
	,用小阜线上辅导(微信小程序
1	(微信 小桂)
ı	∜₩

			1,用小早线工铺净(微信小程序间右)
_	12	 2	三 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
			7Д

0 3 . 4	An element in Period 3 forms an oxide that is insoluble in water. This oxide reacts with sulfuric acid and with aqueous potassium hydroxide. Give the formula for this oxide.	
	Give an equation for the reaction of this oxide with sulfuric acid.	[2 marks]
	Equation	
0 3.5	Give the formula of a hydroxide of an element in Period 3 used in medicine.	[1 mark]
0 3.6	Identify the element in Period 3, from sodium to chlorine, that has the largest atomic radius.	[1 mark]
	Turn over for the next question	

0 4	This question is about iron and its ions.	
0 4 . 1	Discuss the role of iron as a heterogeneous catalyst in the Haber process.	
	$3 H_2 + N_2 \rightleftharpoons 2 NH_3$	
	Your answer should include:	
	the meaning of the term heterogeneous catalyst	
	 how iron acts as a heterogeneous catalyst the factors that affect the efficiency and lifetime of the catalyst. 	
	• the factors that affect the emiciency and metime of the catalyst.	[6 marks]

Do not write outside the box

_	
•	
•	
•	
=	
•	
•	
•	
•	
-	
-	
-	
-	
•	
÷	

0 4 . 2	aqueous solution.	ions in
	$S_2O_8{}^{2-}(aq)+2I^-(aq)\ \to 2SO_4{}^{2-}(aq)+I_2(aq)$ Explain why this reaction is slow before the catalyst is added.	
	Give two equations to show how Fe ²⁺ ions catalyse this reaction.	
		[4 marks]
	Why reaction is slow before catalyst added	
	Equation 4	
	Equation 1	
	Equation 2	
0 4 . 3	Give a reason why Zn ²⁺ ions do not catalyse the reaction in Question 04.2 .	[1 mark]

0 4 . 4

Iron reacts with dilute hydrochloric acid to form iron(II) chloride and hydrogen.

$$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

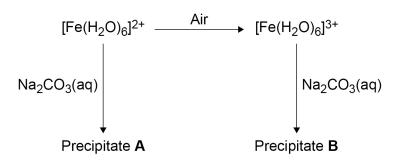
Calculate the maximum volume, in m^3 , of hydrogen gas produced at 30 °C and 100 kPa.

Give your answer to 3 significant figures.

In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]


Volume of hydrogen	m

Turn over ▶

Figure 2 shows some reactions of iron ions in aqueous solution.

Figure 2

0 4. 5 Identify A and state its colour.

[2 marks]

Identity _____

Give the formula of **B** and state its colour.

Give an ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na_2CO_3 to form **B**.

Colour

[3 marks]

Formula _____

Colour

Ionic equation

Do not write outside the

Find Personal Tutor from www.wisesprout.co.uk

0 4 . 7	Explain why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH an aqueous solution containing $[Fe(H_2O)_6]^{2+}$ ions.	than 3 marks]

Turn over for the next question

	0	5
--	---	---

This question is about the equilibrium

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

0 5.

State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_3

[3 marks]

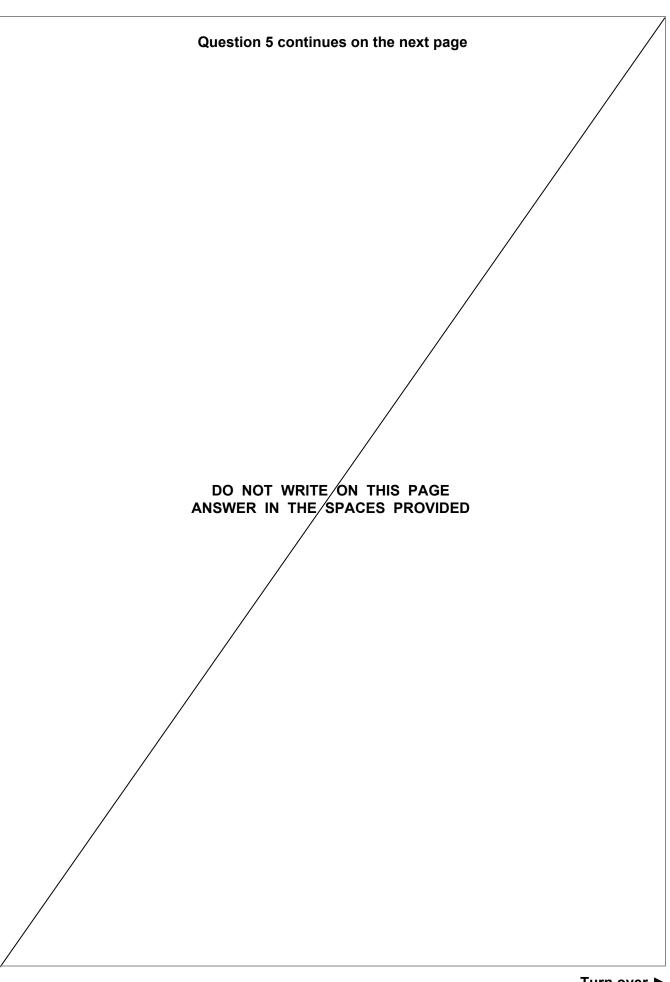
Effect _____

Explanation

0 5 . 2

A 0.460 mol sample of SO_2 is mixed with a 0.250 mol sample of O_2 in a sealed container at a constant temperature.

When equilibrium is reached at a pressure of 215 kPa, the mixture contains $0.180 \text{ mol of } SO_3$


Calculate the partial pressure, in kPa, of SO₂ in this equilibrium mixture.

[4 marks]

Partial pressure of SO₂ kPa

Do not write outside the

找名校导师,用小草线上辅导(微信小程序同名)

0 5 . 3

A different mixture of SO₂ and O₂ reaches equilibrium at a different temperature.

Table 4 shows the partial pressures of the gases at equilibrium.

Table 4

Gas	Partial pressure / kPa
SO ₂	1.67 × 10 ²
O ₂	1.02 × 10 ²
SO ₃	1.85 × 10 ²

Give an expression for the equilibrium constant (K_p) for this reaction.

Calculate the value of the equilibrium constant for this reaction and give its units.

[3 marks]

 K_{p}

K_p _____

Units

11

0 5.4	What is the effect on the value of K_p if the pressure of this equilibrium mixture is increased at a constant temperature?		
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \label{eq:so2}$ [1 mark	.]	
	Tick (\checkmark) one box. The value of K_p		
	increases.		
	stays the same.		
	decreases.		

Turn over for the next question

Turn over ▶

This question is about pH.

Pure water dissociates slightly.

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

 $\Delta H = +57 \text{ kJ mol}^{-1}$

The equilibrium constant,
$$K_c = \frac{[H^+][OH^-]}{[H_2O]}$$

The ionic product of water, $K_w = [H^+][OH^-]$

0 6

Explain why $[H_2O]$ is not shown in the K_w expression.

[1 mark]

Table 5 shows how K_w varies with temperature.

Table 5

Temperature / °C	$K_{\rm w}$ / $ m mol^2~dm^{-6}$
10	2.93 × 10 ⁻¹⁵
20	6.81 × 10 ⁻¹⁵
25	1.00 × 10 ⁻¹⁴
30	1.47 × 10 ⁻¹⁴
50	5.48 × 10 ⁻¹⁴

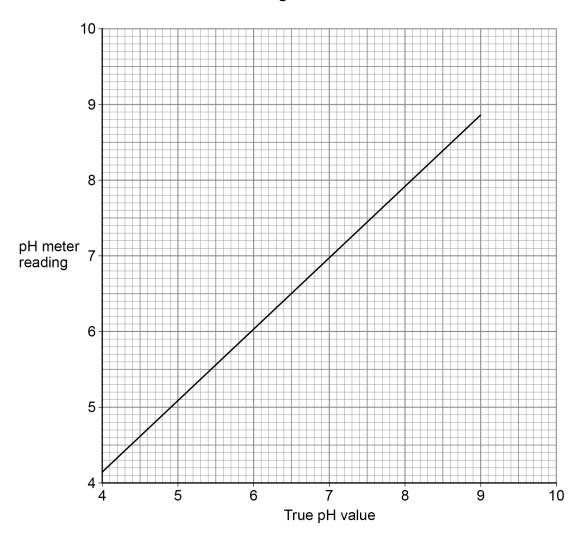
9

Explain why the value of K_w increases as the temperature increases.

[2 marks]

Do not write outside the box

Give the expression for pH.	
Calculate the pH of pure water at 50 °C Give your answer to 2 decimal places.	
Explain why water is neutral at 50 °C	[4 marks]
Expression	
Calculation	
Explanation	
Question 6 continues on the next nage	
Question o continues on the next page	
	Calculate the pH of pure water at 50 °C Give your answer to 2 decimal places. Explain why water is neutral at 50 °C Expression



A pH meter is calibrated using a calibration graph.

To create the calibration, the pH meter is used to measure the pH of separate solutions, each with a known, accurate pH.

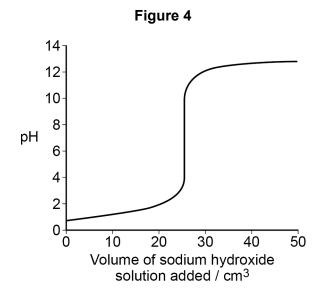
Figure 3 shows the calibration graph.

0 6. Use **Figure 3** to give the true pH value when the pH meter reading is 5.6

[1 mark]

0 6 . 5 Suggest why the pH probe is washed with distilled water between each of the calibration measurements.

[1 mark]


0 6 . 6

The calibrated pH meter is used to monitor the pH during a titration of hydrochloric acid with sodium hydroxide.

Explain why the volume of sodium hydroxide solution added between each pH measurement is smaller as the end point of the titration is approached.

[1 mark]

Figure 4 shows the pH curve for a titration of hydrochloric acid with sodium hydroxide solution.

Table 6 shows data about some indicators.

Table 6

Indicator	pH range	Colour at low pH	Colour at high pH
Bromocresol green	3.8 – 5.4	yellow	blue
Phenol red	6.8 – 8.4	yellow	red
Thymolphthalein	9.3 – 10.5	colourless	blue

The student plans to do the titration again using one of the indicators in **Table 6** to determine the end point.

0 6 . 7

State why all three of the indicators in **Table 6** are suitable for this titration.

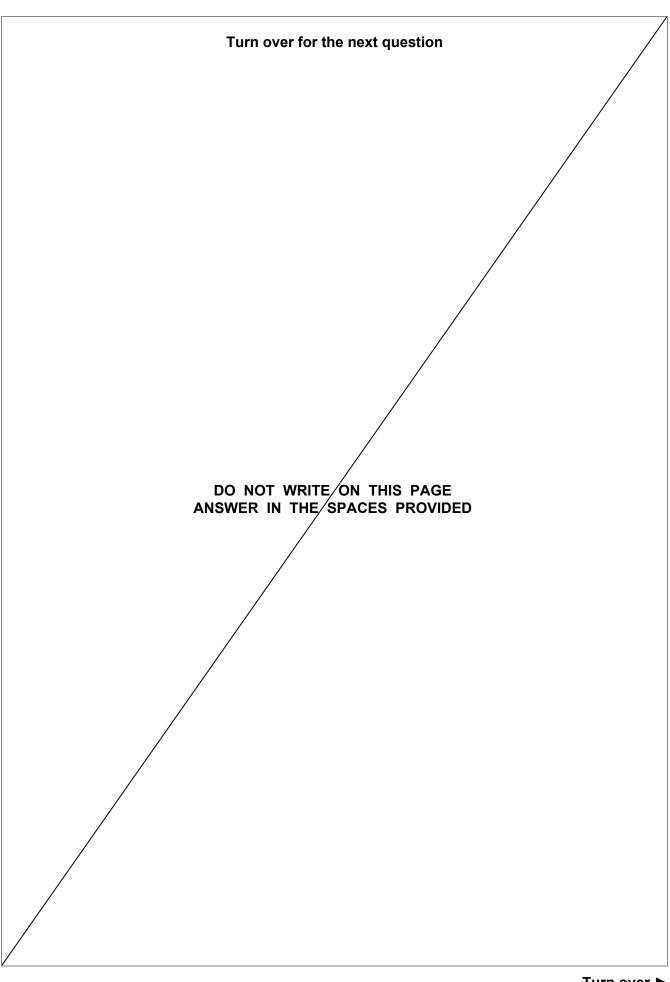
[1 mark]

[5 marks]

	Find Personal Tutor from www.wisesprout.co.uk	
1	找名校导师,用小草线上辅导(微信小程序同名)	

16

0 6 . 8 36.25 cm³ of 0.200 mol dm⁻³ sodium hydroxide solution are added to 25.00 cm³ of 0.150 mol dm⁻³ hydrochloric acid.


Calculate the pH of the final solution at 25 °C

$$K_w$$
 = 1.00 \times 10 $^{-14}$ mol 2 dm $^{-6}$ at 25 ^{o}C

10 - IIIOF uiii - at 25 C

рН

Do not write outside the

找名校导师,用小草线上辅导(微信小程序同名)

0 7

This question is about thermodynamics. Consider the reaction shown.

$$2\,\text{Al}_2\text{O}_3(s) + 3\,\text{C}(s) \rightarrow 4\,\text{Al}(s) + 3\,\text{CO}_2(g)$$

Table 7 shows some thermodynamic data.

Table 7

Substance	Al ₂ O ₃ (s)	Al(s)	C(s)	CO ₂ (g)
Δ _f H ^Θ / kJ mol ⁻¹	-1669	0	0	-394
S ^e / J K ⁻¹ mol ⁻¹	51	28	6	214

0 7	. 1	Explain why the standard entropy value for carbon dioxide is greater than that for
		carbon.
		[1 mark

0 7 . **2** State the temperature at which the standard entropy of aluminium is 0 J K⁻¹ mol⁻¹ **[1 mark]**

in K, at which this reaction becomes feasible.

Use the equation and the data in Table 7 to calculate the minimum temperature,

[7 marks]

Minimum temperature	K

Turn over ▶

9

0 7 .

3

This question is about electrode potentials and electrochemical cells.

0 8 . 1 State the meaning of the term electrochemical series.

[1 mark]

Table 8 shows some electrode potentials.

Table 8

	<i>E</i> ∘ / V
$[Fe(H_2O)_6]^{2+}(aq) + 2e^- \rightarrow Fe(s) + 6 H_2O(I)$	-0.44
$H^+(aq) + e^- \rightarrow \frac{1}{2} H_2(g)$	0.00
$[Co(NH_3)_6]^{3+}(aq) + e^- \rightarrow [Co(NH_3)_6]^{2+}(aq)$	+0.11
$[Fe(H_2O)_6]^{3+}(aq) + e^- \rightarrow [Fe(H_2O)_6]^{2+}(aq)$	+0.77
$VO_2^+(aq) + 2 H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(I)$	+1.00
$[Co(H_2O)_6]^{3+}(aq) + e^- \rightarrow [Co(H_2O)_6]^{2+}(aq)$	+1.81

0 8. 2 State **two** conditions needed for the following half-cell to have E° = 0.00 V

$$H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g)$$

[1 mark]

0 8. Identify the weakest reducing agent in **Table 8**.

[1 mark]

找名校导师,用小草线上辅导(微信小程序同名)

0 8 . 4	Use half-equations from Table 8 to deduce an equation for the reduction of \ form VO ²⁺ in aqueous solution by iron.	√O₂⁺ to
	· · · · · · · · · · · · · · · · · · ·	[2 marks]
0 8 . 5	Use data from Table 8 to explain why $[Co(H_2O)_6]^{3+}(aq)$ will undergo a redox with $[Fe(H_2O)_6]^{2+}(aq)$	reaction
	Give an equation for this reaction.	
		[2 marks]
	Explanation	
	Equation	
		 ,
0 8 . 6	Suggest why the two cobalt(III) complex ions in Table 8 have different electr	rode
	potentials.	[1 mark]
		[iiiaik]

Turn over for the next question

0 9

This question is about the development of lithium cells. The value of E° for lithium suggests that a lithium cell could have a large EMF.

Table 9 shows some electrode potential data.

Table 9

	<i>E</i> ° / V
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04
$2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$	-0.83
$\frac{1}{2} I_2(s) + e^- \rightarrow I^-(aq)$	+0.54

0 9 . 1	Use data in Table 9 to explain why an aqueous electrolyte is not used for a lithium
	cell.

[2 marks]

	In the 1070s lithium inding calls become a common newer course for
0 9 2	In the 1970s lithium-iodine cells became a common power source for
	heart pacemakers. Lithium iodide is the final product of the cell reaction

Use the data in **Table 9** to calculate the cell EMF of a standard lithium-iodine cell.

[1 mark]

Suggest why this value is different from the value calculated in Question 09.2.

[1 mark]

Do not write

7

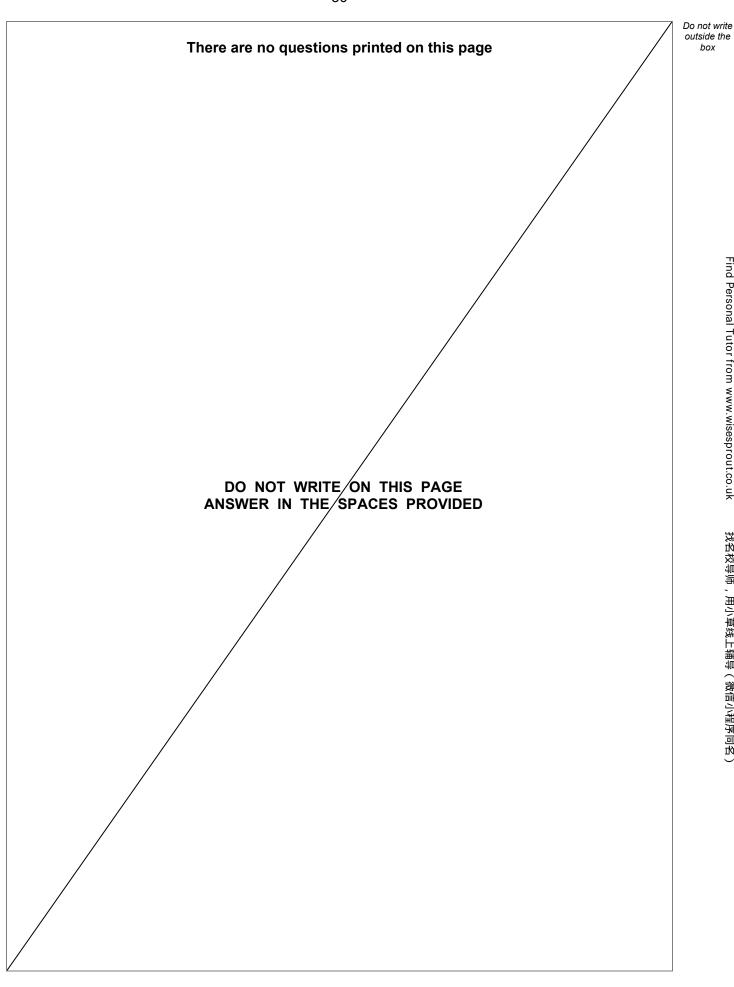
In some lithium cells, lithium perchlorate (LiClO₄) is used as the electrolyte.

Deduce the oxidation state of chlorine in LiClO₄

[1 mark]

In other lithium cells, lithium cobalt oxide electrodes and lithium electrodes are used.

Give an equation for the reaction that occurs at the positive lithium cobalt oxide electrode.


[1 mark]

Give an equation for the reaction that occurs at the negative lithium electrode.

[1 mark]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

