

Tuesday 23 November 2021 – Morning

GCSE (9–1) Physics B (Twenty First Century Science)

J259/03 Breadth in physics (Higher Tier)

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Physics B (inside this document)

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clea	arly in	black	k ink.	Do no	ot writ	te in the barcodes.		
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answers should be supported with working. Marks might be given for using a correct method even if your answer is wrong.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- This document has 24 pages.

ADVICE

· Read each question carefully before you start your answer.

© OCR 2021 [601/8685/9] DC (ST/CT) 300867/6

OCR is an exempt Charity

Turn over

Answer all the questions.

1 Sundip wants to measure Alex's reaction time.

Their teacher gives them a 30 cm ruler, and the table shown.

Reading on ruler (cm)	Reaction time (s)
12	0.15
15	0.17
18	0.19
21	0.20
24	0.22
27	0.23
30	0.24

(a)	Explain how to	use the rule	r and the	table to	measure	Alex's	reaction	time.
-----	----------------	--------------	-----------	----------	---------	--------	----------	-------

You can draw a diagram to support your answer.

		[3]
(b)	Suggest why the table does not include values below 12 cm.	
		[1]

(c) Sundip wants to use the 30 cm ruler to measure the reaction times of her class.

Sundip	
The 30 cm ruler will not be suitable to measure some students' reaction time in my class.	

	. [2]
Explain why Sundip is correct and suggest one solution to this problem.	

2 A large percentage of electricity in the UK is generated using wind turbines and gas-fired power stations.

The graph compares the percentage of UK energy generated by wind and gas from January to March 2017.

Each plot point shows the energy generated in one day.

Percentage of UK energy generated by wind (%)

10

5

25

30

20

15

10

5

30

40

45

50

55

60

Percentage of UK energy generated by gas (%)

(a)	Describe and explain the relationship shown in the graph.

(b) Mia and James discuss the data.

Gas power stations are bad for the environment.

(i)	Give one reason why Mia is correct.	
		[1]
Ir s	n the future there will be more wind turbines, so we won't need gas power stations anymore.	
(ii)	Discuss James' comment.	

An	atomic clock is a very accurate way of measuring time.	
Mar	ny atomic clocks use electromagnetic radiation emitted from caesium atoms.	
(a)	Explain how an atom can emit electromagnetic radiation.	
		[2]
(b)	The frequency of electromagnetic radiation emitted from caesium atoms is $9.19 \times 10^9 \text{Hz}$.	
	Calculate the wavelength of this radiation.	
	Speed of light = $3.0 \times 10^8 \text{ m/s}$.	
	Wavelength = m	[3]
(c)	Satellite navigation systems rely on atomic clocks for their accuracy.	
	Suggest one way that society has benefited from the invention of accurate satellite navigation systems.	

......[1]

3

4

The	e Voy	rager 1 spacecraft was launched into space in 1977 to study the outer Solar System.	
(a)	Rad	dio waves transfer information from Voyager 1 back to the Earth.	
	Wh	at else is transferred by the radio waves?	
			[1]
(b)	(i)	The radio waves emitted by Voyager 1 have a wavelength of approximately 14 cm. The distance between the Earth and Voyager 1 is approximately 2×10^{10} km.	
		Estimate the total number of complete wavelengths in the space between the Earth a Voyager 1.	nd
		Number of wavelengths =	[3]
	(ii)	Define the wavelength of a radio wave.	
		You can draw a diagram to support your answer.	
			[2]
(c)	-	rager 1 is moving away from the Earth at a high speed. This causes the wavelength of radio waves to change as they travel towards the Earth.	
	Exp Ear	plain how the wavelength of the radio waves has changed when they are received on the the the contract of the radio waves has changed when they are received on the contract of the contract o	те
			[2]

5 Hydroelectric power is a renewable source of energy. Hydroelectric power stations work by storing water in a reservoir behind a dam.

Fig. 5.1 shows an example of a hydroelectric power station.

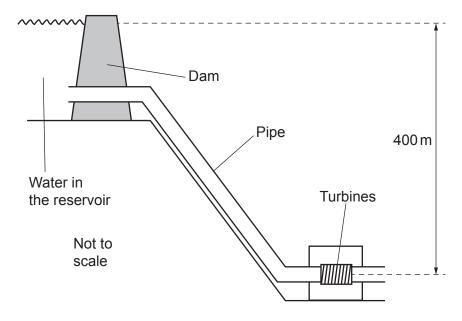


Fig. 5.1

(a) Fig. 5.2 shows a representation of the reservoir in the hydroelectric power station.

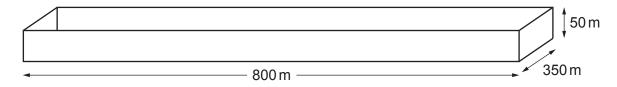


Fig. 5.2

Calculate the total mass of water that can be held in the reservoir.

Density of water = 1000 kg/m^3 .

Mass =	kα	131

(b)	The water in the reservoir is a store of gravitational energy. The water falls a vertical distance of 400 m from the reservoir to the turbines, as shown in Fig. 5.1 .
	Calculate the total available gravitational energy when the reservoir is holding $8.0 \times 10^9 \text{kg}$ or water.
	Gravitational field strength = 10 N/kg
	Gravitational energy =
(c)	The efficiency of the hydroelectric power station is 75%.
	On one occasion, the hydroelectric power station has an output power of 140 MW for a time of 1 hour.
	Calculate the total energy input required for this output power.
	Use the equation: energy transferred = power × time
	Give your answer in joules .
	Total anargy input =
	Total energy input =

s que	estion is about X-rays.
Giv	e two examples of practical uses of X-rays
1	
2	
	[2]
X-ra	ays are produced by firing electrons at a metal target in a high-voltage electrical circuit.
Wh	en the electrons hit the metal target, their kinetic energy is converted into X-rays.
(i)	Calculate the work done on an electron when it moves across a potential difference of 50 000 V.
	The charge on an electron is 1.6×10^{-19} C.
	Work done = J [3]
(ii)	Suggest how the energy of the X-rays could be increased.
	[1]
	Give 1

6

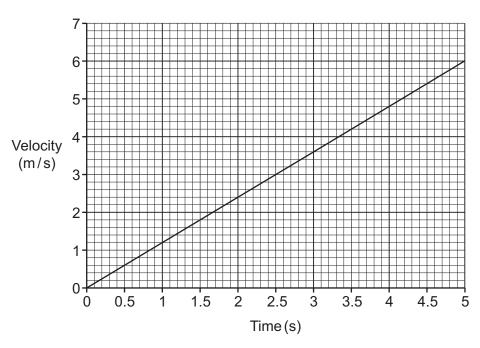
(c) An X-ray machine contains lead, beryllium, and copper, as shown in the diagram.

Lead	✓✓✓✓► Short wavelength X-ray
Beryllium	✓ Long wavelength X-ray
Copper	

Describe how X-rays of different wavelengths are affected by the three different materials.
Use the diagram to support your answer.
[3]

7 Layla uses a van to deliver parcels.

(a)


When the van is fully loaded, it has a smaller acceleration because it has a higher inertial mass.

Expl	lain w	∕hat i	s meant	by	inertial	mass	and	how	it	can	be c	alc	ula	atec	J.
------	--------	--------	---------	----	----------	------	-----	-----	----	-----	------	-----	-----	------	----

	•••
	•••
,	1

(b) This is a velocity-time graph for the first 5 seconds of the van's motion.

(i) Calculate the acceleration of the van during the first 5 seconds of its motion.

Acceleration =m/s² [3]

(11)	What does the velocity-time graph show about the resultant force acting on the van in the first 5 seconds of its motion?
	Use Newton's second law to explain your answer.
	ro:
	[2]
(iii)	After 4.0 seconds the kinetic energy of the van is 40000 J.
	Calculate the mass of the van.
	Use the equation: kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$
	Use the graph.

© OCR 2021 Turn over

Mass =kg [2]

8 Ali investigates different types of lenses.

Fig. 8.1 shows how rays of light are refracted by a concave lens.

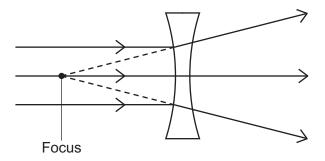


Fig. 8.1

Fig. 8.2 shows rays of light directed at a convex lens.

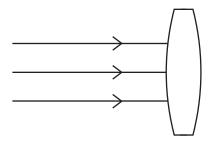


Fig. 8.2

(a) Complete Fig. 8.2 to show how rays of light are refracted by a **convex** lens.

Clearly label the **focus** of the lens.

[2]

(b) Ali looks at three more lenses, as shown in Fig. 8.3.

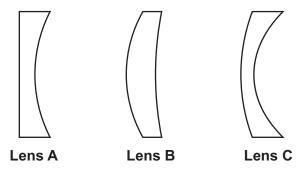
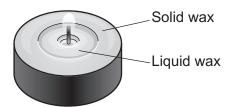



Fig. 8.3

Lenses **A**, **B** and **C** will make parallel rays of light spread out, because they are all concave.

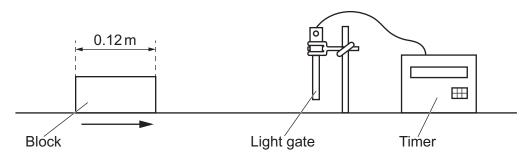


	Explain why All is wrong.
	[2]
(c)	Ali wants to make a lens to focus sound waves. He uses a large convex glass lens that is designed to focus light.
	Sound travels faster in glass than in air.
	Suggest what will happen to sound waves when they arrive at the lens.
	[2]

The	ey consider using wood pellets	or heating oil as an e	nergy source for the	ir new boiler.
(a)	Wood pellets are a type of bid	fossil fuel.		
	Give the similarities and diffe	rences between biofu	els and fossil fuels a	as energy sources.
(b)	They find the information sho	wn in the table.		
		Wood pellets	Heating oil	
	Energy density (MJ/kg)	20	40	
	Density (kg/m ³)	760	950	
	Cost (p/kg)	25	55	
		25	55	
	Cost (p/kg) Which energy source should	25	55	
	Cost (p/kg) Which energy source should Wood pellets	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	
	Cost (p/kg) Which energy source should Wood pellets Heating oil	25 they use for their new	55	

10 Ling lights a candle	10	Lina	liahts	а	candle
-------------------------	----	------	--------	---	--------

After a few minutes, some of the wax close to the flame has melted.



(a)	(1)	what is the difference between specific heat capacity and specific faterit heat?
		[2]
	(ii)	The temperature of the room is 20 °C. The melting point of the wax is 52 °C. For the wax to melt, it must first increase in temperature to its melting point.
		Calculate the value of the ratio:
		energy to melt 1 kg of wax at 52 °C
		energy to increase temperature of 1 kg of wax from 20 °C to 52 °C
		Use the Data Sheet.
		Specific heat capacity of wax = 2300 J/kg °C
		Specific latent heat of melting of wax = 210 000 J/kg
		Ratio =[3]
(b)	Des	cribe what happens, in terms of energy, when Ling blows out the candle.
		[2]
© OCR 202	1	Turn over

11 Nina investigates the effect of frictional forces on a sliding object. She uses a block of wood which is on a table, as shown in the diagram.

She pushes the block with her hand to start it moving. She then releases it and waits for it to come to rest.

To measure the speed of the block, she uses a light gate, as shown in the diagram.

(a) The light gate measures the time that the block takes to pass through it. In one test, the block takes 0.64 seconds to pass through the light gate.

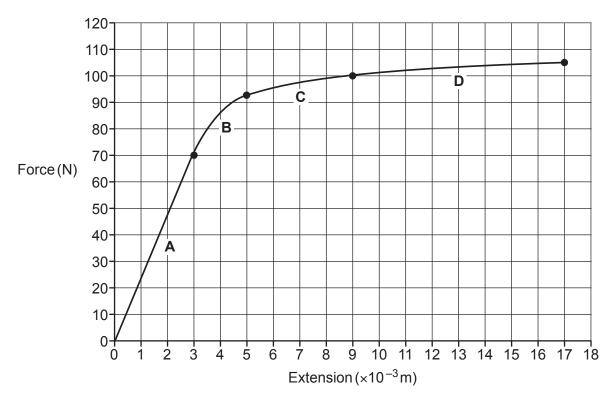
The length of the block is 0.12 m.

(i) Calculate the average speed of the block as it passes through the light gate.

Average speed =	m	/ ~	ГO	ā
Average Speed -	 111/	5	ıэ	,

(ii)	Nina d	comments	on the	average	speed	calculated	in	(a)(i)	١.
------	--------	----------	--------	---------	-------	------------	----	--------	----

The calculated speed is the average speed because the speed of the block is changing as it passes through the light gate.


Explain why the speed of the block changes, as it passes through the light gate.
[2]
 Nina wants to do an experiment to investigate how the mass of the block affects the distance travelled by the block before it stops.
Suggest how Nina could do this experiment.
[3]

12 Amir investigates the properties of a metal wire.

He measures how the extension of the wire depends on the force applied to the wire.

The graph shows his results.

Four sections on the graph have been labelled A, B, C and D.

(a) Explain	which	section	on the	graph	shows	linear	behaviour.
-------------	-------	---------	--------	-------	-------	--------	------------

[2]

(b) Estimate the work done in stretching the wire, in section **D**.

The area under the graph represents the work done in stretching the wire.

Work done = J [3]

(c) Amir draws a particle model of the metal.

Key	y:	
	Particles Model Bonds Particles Particles Model Bonds Particles Pa	
(i)	Explain the type of deformation in Section A of the graph.	
	Use ideas from the particle model in your answer.	
	[2
(ii)	Explain the type of deformation in Section C of the graph.	
	Use ideas from the particle model in your answer.	
	[2

END OF QUESTION PAPER

22

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).					

,		 	
	,	 	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.