

Please write clearly	y in block capitals.	
Centre number	Candidate number	
Surname		_
Forename(s)		_
Candidate signatur	Te I declare this is my own work.	_ /

A-level PHYSICS

Paper 3 Section A

Friday 5 June 2020

Afternoon

Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- · a Data and Formulae Booklet.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

Instructions

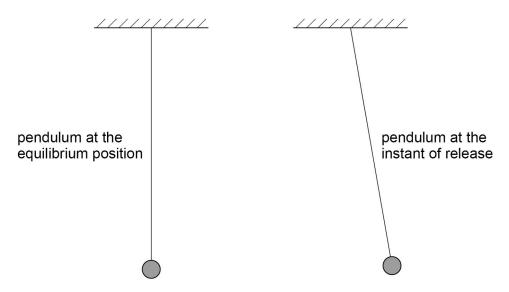
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- · Show all your working.

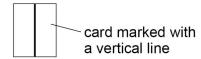
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

For Exam	iner's Use
Question	Mark
1	
2	
3	
TOTAL	

Do not write


Section A


Answer all questions in this section.

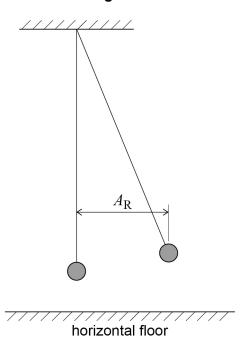
 $oldsymbol{0}$ **1** A simple pendulum performs oscillations of period T in a vertical plane.

Figure 1 shows views of the pendulum at the equilibrium position and at the instant of release. **Figure 1** also shows a rectangular card marked with a vertical line.

Figure 1

0 1. 1 The card can be used as a fiducial mark to reduce uncertainty in the measurement of *T*.

Annotate **Figure 1** to show a suitable position for the fiducial mark. Explain why you chose this position.


[2 marks]

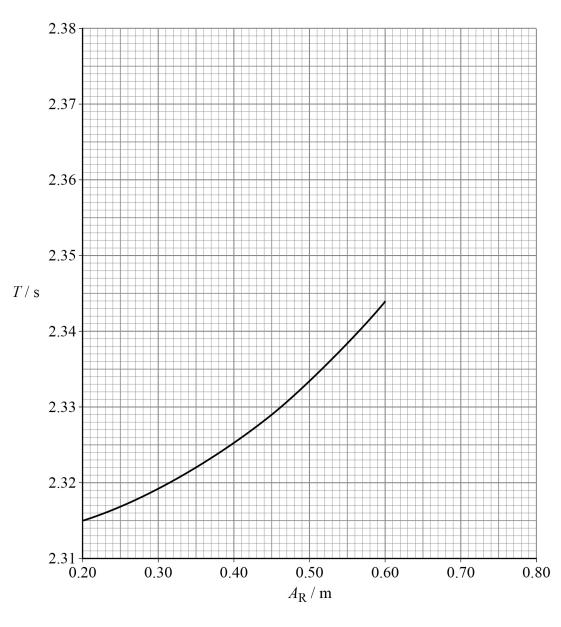
0 1.2

The period of the pendulum is constant for small-amplitude oscillations. **Figure 2** shows an arrangement used to determine the maximum amplitude that can be considered to be small, by investigating how T varies with amplitude.

Figure 2

Describe a suitable procedure to determine $A_{\rm R}$, the amplitude of the pendulum as it is released.

You may add detail to **Figure 2** to illustrate your answer.


[2	marks]	

Question 1 continues on the next page

0 1. 3 Figure 3 shows some of the results of the experiment.

Figure 3

Estimate, using Figure 3 , the expected percentage increase in T when $A_{\rm R}$ in from $0.35~{\rm m}$ to $0.70~{\rm m}$. Show your working.	creases [3 marks]
percentage increase =	<u></u> %
Question 1 continues on the next page	
Question i continues on the next page	

In another experiment the pendulum is released from a fixed amplitude. The amplitudes A_n of successive oscillations are recorded, where n = 1, 2, 3, 4, 5...

Table 1 shows six sets of readings for the amplitude A_5 .

Table 1

 $oxed{0\ 1}$. $oxed{4}$ Determine the result that should be recorded for A_5 . Go on to calculate the percentage uncertainty in this result.

[3 marks]

$A_5 =$	m
percentage uncertainty =	9/0

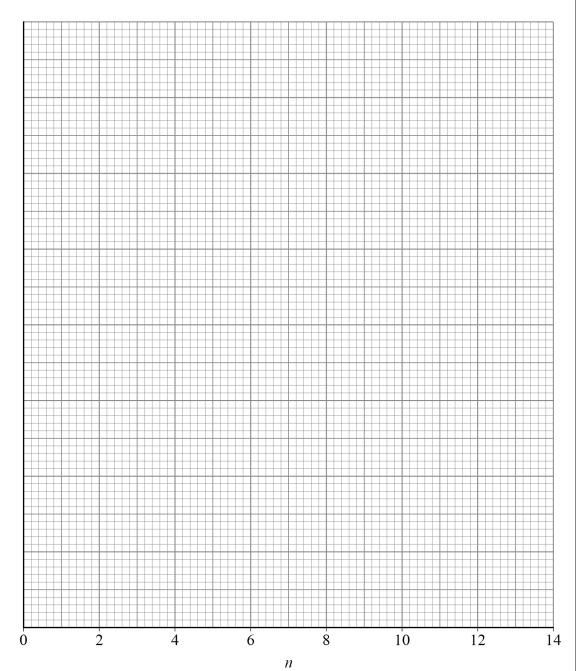
O 1.5 Table 2 shows results for A_n and the corresponding value of $\ln(A_n / m)$ for certain values of n.

Table 2

n	<i>A_n</i> / m	$\ln(A_n / \mathbf{m})$
2	0.238	-1.435
4	0.225	
7	0.212	-1.551
10	0.194	-1.640
13	0.183	-1.698

Complete Table 2.

[1 mark]


0 1 . 6

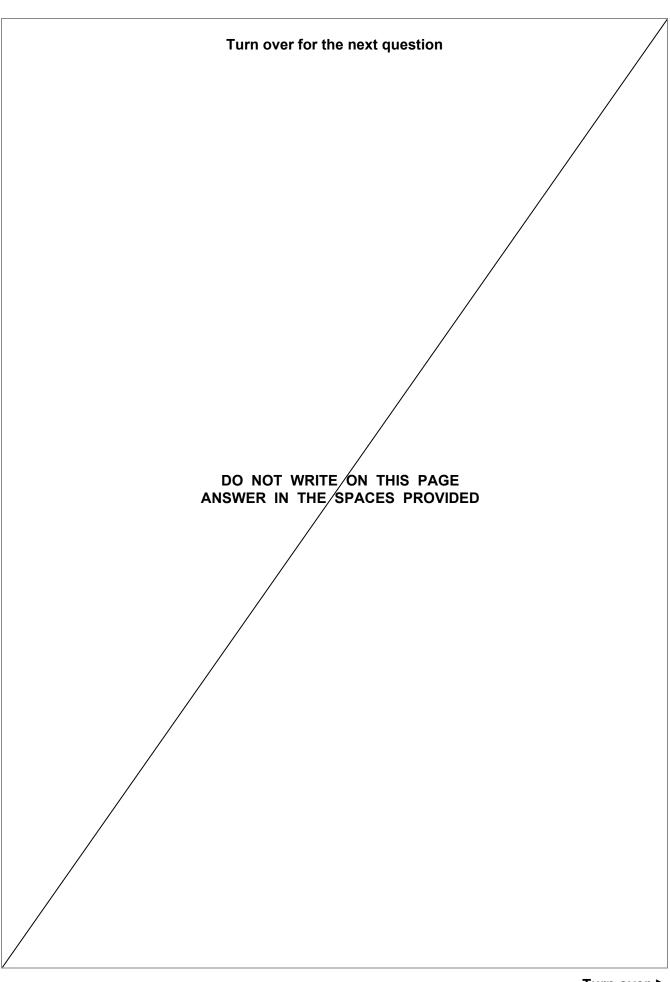
 $ln(A_n / m)$

Plot on **Figure 4** a graph of $ln(A_n / m)$ against n.

[2 marks]

Figure 4

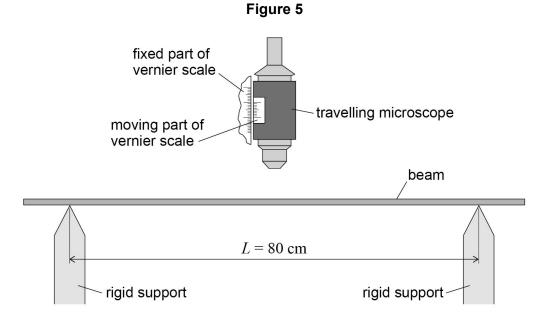
Question 1 continues on the next page



15

$A_n = A_0 \ \delta^{-n}$ where A_0 is the amplitude of release of the pendulum	
δ is a constant called the damping factor.	
Explain how to find δ from your graph. You are not required to determine δ .	
[2 n	narks]

Do not write outside the



0 2

Figure 5 shows apparatus used to investigate the bending of a beam.

The beam is placed horizontally on rigid supports.

The distance L between the supports is $80~\mathrm{cm}$.

A travelling microscope is positioned above the midpoint of the beam and focused on the upper surface.

Figure 6 shows an enlarged view of both parts of the vernier scale.

moving part of vernier scale 0 5 10 fixed part of vernier scale

The smallest division on the fixed part of the scale is 1 mm.

40

50

60

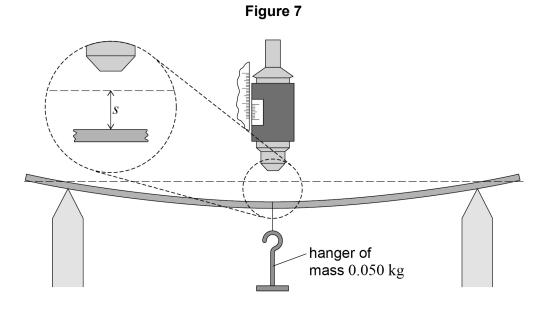
What is the value of the vernier reading R_0 in mm? Tick (\checkmark) **one** box.

[1 mark]

34.8 37.8 45.8

49.8

30


Question 2 continues on the next page

0 2 . 1

0 2 . 2

Figure 7 shows the beam bending when a hanger of mass $0.050 \ \mathrm{kg}$ is suspended from the midpoint.

The microscope is refocused on the upper surface and the new vernier reading R is recorded.

The vertical deflection s of the beam is equal to $(R - R_0)$.

The total mass m suspended from the beam is increased in steps of $0.050~\mathrm{kg}$. A value of s is recorded for each m up to a value of $m=0.450~\mathrm{kg}$. Further values of s are then recorded as m is decreased in $0.050~\mathrm{kg}$ steps until m is zero.

Student **A** performs the experiment and observes that values of s during unloading are **sometimes** different from the corresponding values for loading.

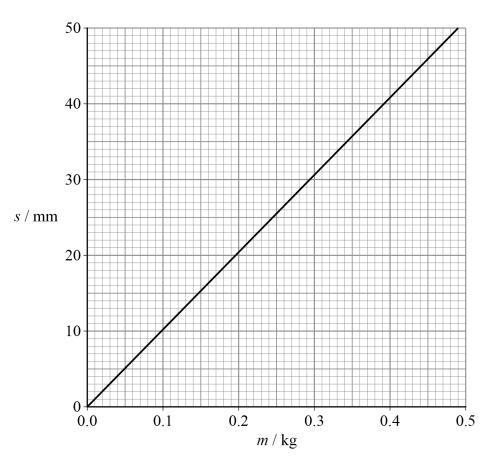
State the type of error that causes the differences student **A** observes.

[1 mark]

.co.uk
找名校导师,用小草线上辅导(微信小程序同名
$\overline{}$

0 2 . 3	Student B performs the experiment using a thinner beam but with the same width and made from the same material as before.
	Discuss one possible advantage and one possible disadvantage of using the thinner beam.
	[3 marks]
	Advantage
	Disadvantage

Question 2 continues on the next page



0 2 . 4

Figure 8 shows the best-fit line produced using the data collected by student A.

Figure 8

It can be shown that $s = \frac{\eta m}{E}$

where E is the Young modulus of the material of the beam and η is a constant.

Deduce in s^{-2} the order of magnitude of η .

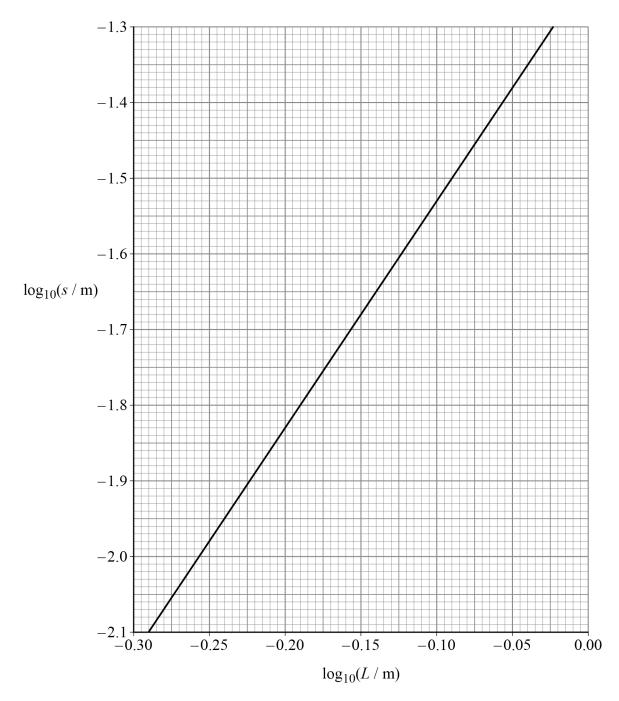
$$E = 1.14 \text{ GPa}$$

[4 marks]

order of magnitude of $\eta = s^{-2}$

Question 2 continues on the next page

0 2 . 5


Student **C** performs a different experiment using the same apparatus shown in **Figure 5** on page 10.

A mass M is suspended from the midpoint of the beam.

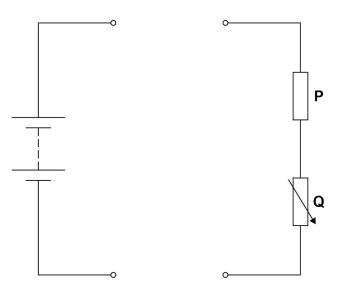
The vertical deflection s of the beam is measured for different values of L.

Figure 9 shows a graph of the results for this experiment.

n www.wisesprout.co.uk
找名校导师,用小
,用小草线上辅导(微
微信小程序同名)

	Figure 9 shows that log10(s / m) varie	es linearly with $\log_{10}(L \ / \ m)$.	
	State what this shows about the math	nematical relationship between s a	and L .
	You do not need to do a calculation.		[1 mark]
			Į i iliai k
0 2 . 6	Deduce, using Figure 9 , the value of	s when $L = 80$ cm.	[2 marks
			[Z marks
		<i>s</i> =	m
0 2 . 7	Determine <i>M</i> using Figure 8 .		
	Ş Ş		[1 mark]
		M =	kg

Turn over ▶


13

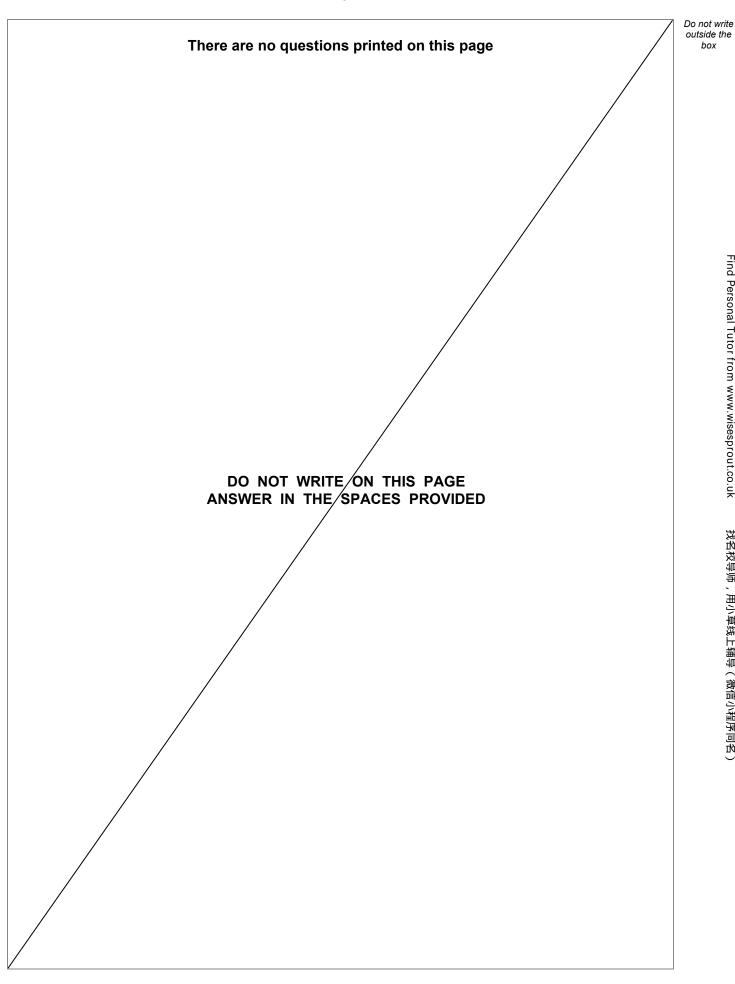
0 3

Figure 10 shows a partly-completed circuit used to investigate the emf ε and the internal resistance r of a power supply.

The resistance of **P** and the maximum resistance of **Q** are unknown.

Figure 10

O 3. 1 Complete **Figure 10** to show a circuit including a voltmeter and an ammeter that is suitable for the investigation.


[1 mark]

0 3 . 2	Describe	
	• a procedure to obtain valid experimental data using your circuit • how these data are processed to obtain ε and r by a graphical method.	[4 marks]
	Question 3 continues on the next page	

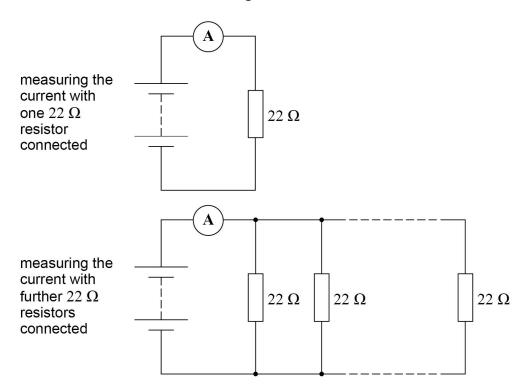


Figure 11 shows a different experiment carried out to confirm the results for ε and r.

Figure 11

Initially the power supply is connected in series with an ammeter and a $22~\Omega$ resistor. The current I in the circuit is measured.

The number n of $22~\Omega$ resistors in the circuit is increased as shown in **Figure 11**. The current I is measured after each resistor is added.

It can be shown that

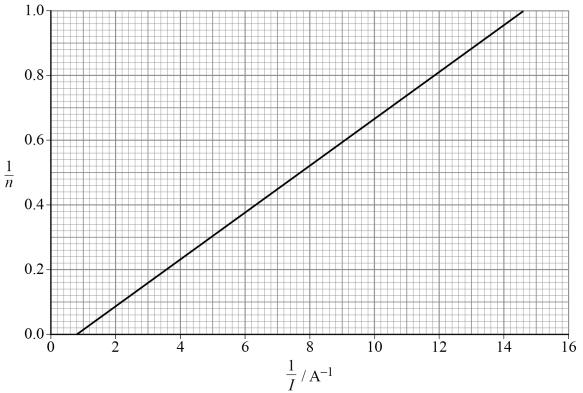
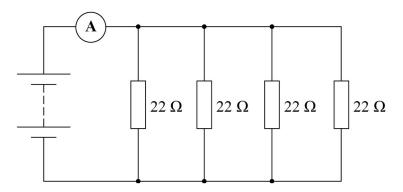

$$\frac{22}{n} = \frac{\varepsilon}{I} - r$$

Figure 12 on page 22 shows a graph of the experimental data.

Question 3 continues on the next page


0 3 . **3** Show that ε is about 1.6 V.

[2 marks]

Figure 13 shows the circuit when four resistors are connected.

Figure 13

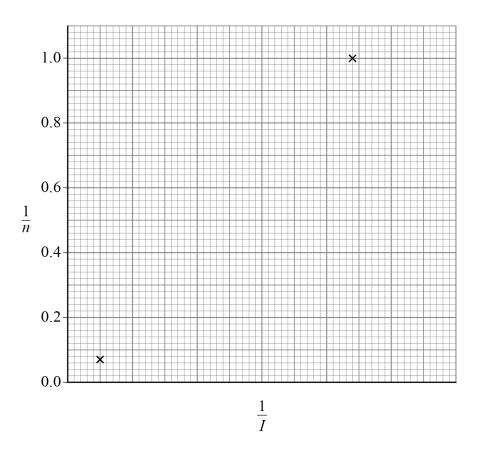
Show, using **Figure 12**, that the current in the power supply is about $0.25~\mathrm{A}$.

[1 mark]

- 0 3.5 Deduce, for the circuit shown in Figure 13,
 - the potential difference (pd) across the power supply
 - r.

[4 marks]

$$pd = V$$


$$r =$$

Question 3 continues on the next page

 $\boxed{\mathbf{0} \ \mathbf{3}}$. $\boxed{\mathbf{6}}$ Figure 14 shows the plots for n=1 and n=14

Figure 14

Three additional data sets for values of n between n = 1 and n = 14 are needed to complete the graph in **Figure 14**.

Suggest which additional values of n should be used. Justify your answer.

Justily your allswel.		[3 marks]

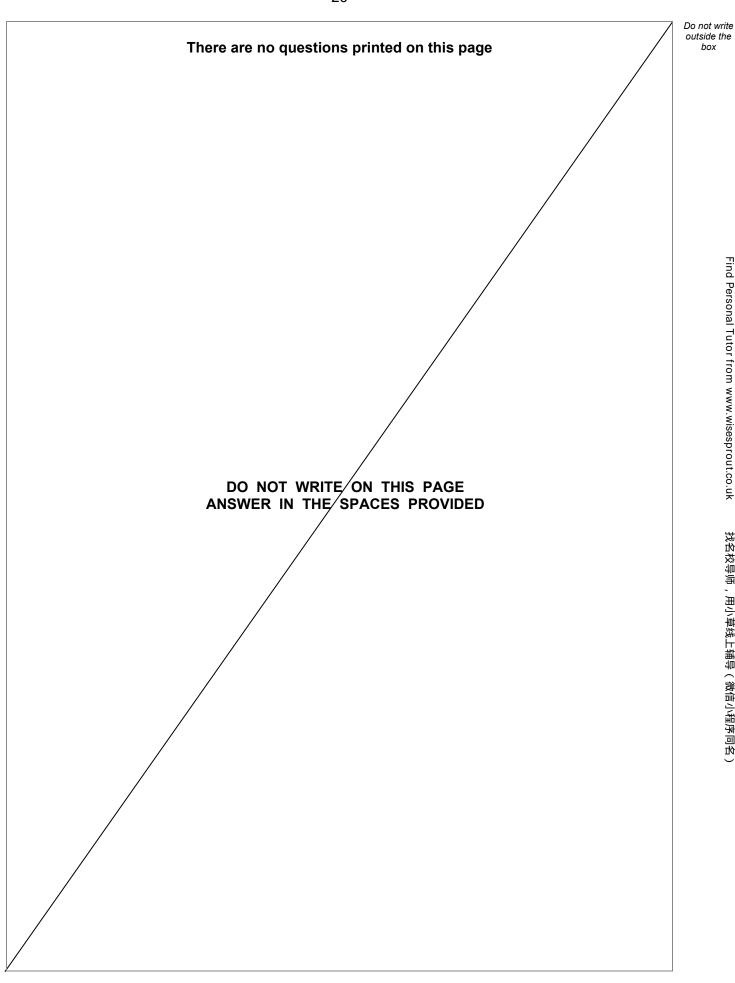
找名校导师,用小草线上辅导(微信小程序同名)

0 3 . 7

The experiment is repeated using a set of resistors of resistance 27 Ω .

The relationship between n and I is now

$$\frac{27}{n} = \frac{\varepsilon}{I} - r$$


Show on **Figure 14** the effect on the plots for n = 1 and n = 14 You do **not** need to do a calculation.

[2 marks]

rks] | 17

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Copyright information	
For confidentiality purposes, is published after each live ex	all acknowledgements of third-party copyright material are published in a separate booklet. This booklet xamination series and is available for free download from www.aqa.org.uk.
Permission to reproduce all c been unsuccessful and AQA Copyright Team.	copyright material has been applied for. In some cases, efforts to contact copyright-holders may have will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
Copyright © 2020 AQA and if	ts licensors. All rights reserved.

