

GCE

Chemistry A

Unit H432A/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for June 2017

H432A/02 Mark Scheme

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
√	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

		wark concine
Key	Marks	Guidance
В	1	
D	1	
С	1	
В	1	
D	1	
С	1	ALLOW 3 (This is the trigonal planar atom)
Α	1	
С	1	ALLOW 4 (This is the number of chiral centres)
С	1	
D	1	
С	1	ALLOW 3 (This is the number of peaks in the NMR spectrum)
Α	1	
Α	1	
С	1	
Α	1	
	D C B D C A C C A C A C C	B 1 D 1 C 1 B 1 D 1 C 1 A 1 C 1 C 1 A 1 C 1 A 1 C 1 C 1 C 1

Q	uesti	on	Answer	Marks	Guidance
16	(a)		Compound A (is branched so) has less points of contact / less surface interaction between molecules ✓	2	Both answers need to be comparisons ALLOW ORA throughout DO NOT ALLOW 'more contact between atoms' IGNORE van der Waals' forces/VDW for induced dipole–dipole interactions (ambiguous as this term refers to both permanent dipole – dipole and induced dipole–dipole forces)
			Induced dipole–dipole interactions / London (dispersion) forces are weaker. AND Require less energy to break (these interactions / forces) ✓		ALLOW fewer induced dipole-dipole interactions. IGNORE it is easier to break the induced dipole-dipole / London forces. (reference to energy required) IGNORE less energy required to separate molecules IGNORE less energy is needed to break the bonds.
	(b)	(i)	Hex-3-en-1-ol ✓	1	ALLOW Hex-3-ene-1-ol ALLOW 1-hydroxyhex-3-ene as this is unambiguous Hex-3-enol is not sufficient IGNORE lack of hyphens, or addition of commas

Question	Answer	Marks	Guidance
Question (ii)	Answer Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓ CH ₃ CH ₂ CH ₂ CH ₂ OH H CH ₃ CH ₂ CH ₂ CH ₂ OH CH ₃ CH ₂ H ✓	Marks 1	ALLOW have the same structure/displayed formula/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to E/Z isomerism or optical isomerism is not sufficient ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW one mark if both stereoisomers of compound C are shown but in the incorrect
	cis trans		ALLOW one mark for correct stereoisomers of compound C in correct columns where – CH ₂ CH ₂ OH is represented as -C ₂ H ₅ O or – C ₂ H ₄ OH DO NOT ALLOW incorrect connectivity e.g. – CH ₃ CH ₂ on first occasion but allow ECF in second structure.

Question	Answer	Marks	Guidance
(c)	Two p-orbitals shown as a "dumb-bell" added to structure on left. AND π-bond on structure on right ✓	1	DO NOT ALLOW overlapping p orbitals on left hand side in the diagram. DO NOT ALLOW a diagram that contains four lobes on the right hand side. e.g. IGNORE any atoms joined to the bonds Note: labels are not required ALLOW the following diagram to show the π-bond
(d) (i)	(The H atom of HBr) accepts a pair of electrons ✓	1	
(ii)	CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW in either order

Question	Answer	Marks	Guidance
(iii)	Curly arrow from C=C bond to H of H–Br ✓ Correct dipole shown on H–Br AND curly arrow showing the breaking of H–Br bond ✓ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ Correct carbocation AND curly arrow from Br ⁻ to C ⁺ of carbocation ✓	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW partial charges shown on C=C double bond (the second marking point)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DO NOT ALLOW δ + on C of carbocation Curly arrow must come from a lone pair on Br OR from the negative sign of Br ion (then lone pair on Br ion does not need to be shown)

Q	uesti	on	Answer	Marks	Guidance
		(iv)	CH ₃ CH ₂ CH ₃	1	Note: the correct product and explanation are both required for the mark
			H ₃ C ── C ── H 		The major product may be identified by its corresponding letter (E or F) from the table in (d)(ii)
			2-bromo-2-methylpentane		correct structurecorrect name
			AND		
			(the) carbocation intermediate (in the formation of 2-bromo-2-methylpentane) is more stable (than the carbocation in the formation of the other product) ✓		DO NOT ALLOW product comes from the more stable secondary or primary carbocation IGNORE explanations based on Markownikoff's rule.
	(e)	(i)	$n(\text{myrcene}) = \frac{204 \times 10^{-3}}{136.0} = 1.5(0) \times 10^{-3} \text{ (mol) } \checkmark$	2	Correct working required for the first marking point.
			Volume of H ₂ = $3 \times 1.5(0) \times 10^{-3} \times 24000$ = $108 \text{ (cm}^3) \checkmark$		ALLOW ECF from incorrect moles of myrcene i.e. $n(\text{myrcene}) \times 3 \times 24000$
					Common incorrect answers
					108000 cm ³ = 1 mark (not converted to g) 12cm ³ = 1 mark (divided by 3) 36 cm ³ = 1 mark (not multiplied by 3)
					IGNORE Calculations based on $pV = nRT$

Question	Answer		Guidance	
(ii)	Amount of hydrogen	4		
	$n(H_2) = \frac{5.28}{24.0} = 0.22(0) \text{ (mol)} \checkmark$ Number of double bonds		ALLOW Evidence of $n(H_2) = \frac{5.28}{24.0}$ if 0.22 is not seen	
	$=\frac{0.220}{0.0200}=11 \checkmark$		Evidence for 11 double bonds could come from 11H ₂ in equation	
	Formula of saturated product			
	C ₄₀ H ₇₈ ✓		Formula could be about as the product of an	
	Equation		Formula could be shown as the product of an equation	
	$C_{40}H_{56} + 11H_2 \longrightarrow C_{40}H_{78} \checkmark$			
			ALLOW ECF from $C_{40}H_{82}$ and $C_{40}H_{80}$ only i.e. $C_{40}H_{60}$ + 11 H_2 \longrightarrow $C_{40}H_{82}$ $C_{40}H_{58}$ + 11 H_2 \longrightarrow $C_{40}H_{80}$	
	Total	20		

Q	uesti	on	Answer	Marks	Guidance
17	(a)	(i)	Generation of electrophile	5	ANNOTATE ANSWER WITH TICKS AND CROSSES
			$HNO_3 + H_2SO_4 \longrightarrow H_2O + HSO_4^- + NO_2^+ \checkmark$		ALLOW HNO ₃ + $2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- +$
			Electrophilic substitution		NO ₂ ⁺
			Curly arrow from π -bond to $NO_2^+ \checkmark$		ALLOW $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$ then
			соон		$H_2NO_3^+ \rightarrow H_2O + NO_2^+$
					ALLOW *NO ₂ OR NO ₂ *
			NO ₂ ⁺		First curly arrow must come from the ring to NO ₂ ⁺
			Correct intermediate ✓		DO NOT ALLOW the following intermediate:
			Curly arrow back from C-H bond to reform π-ring AND H ⁺ as product ✓ COOH COOH + H ⁺		π -ring should cover approximately 4 of the 6 sides of
			H NO ₂		the benzene ring structure AND
			Regeneration of catalyst		the correct orientation, <i>i.e.</i> gap towards C with NO ₂
			$H^+ + HSO_4^- \longrightarrow H_2SO_4 \checkmark$		ALLOW + sign anywhere inside the 'hexagon' of intermediate

Question	Answer	Marks	Guidance
(ii)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Outlines the main steps of recrystallisation to produce a pure sample of 3-nitrobenzoic acid from the impure solid. AND Calculates correct percentage yield of 3-nitrobenzoic acid. AND Method of checking purity to include comparison to relevant data. A well-structured response with the steps for recrystallisation and the determination of purity being given in the correct order. Correct use of terminology throughout. Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with very few omissions. The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately. Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points. OR	6	Indicative scientific points, with bulleted elements, may include: 1. Purification Recrystallisation Dissolve impure solid in minimum volume of hot water/solvent Cool solution and filter solid Wash with cold water/solvent and dry Percentage yield n(benzoic acid) used = \frac{4.97}{122} = 0.0407 (mol) n(3-nitrobenzoic acid) made = \frac{4.85}{167} = 0.0290 (mol) percentage yield = \frac{0.0290}{0.0407} \times 100 = 71.3 (%) ALLOW 71 to calculator value of 71.29001554 correctly rounded. CHECK for extent of errors by ECF Alternative correct calculation may calculate theoretical mass of 3-nitrobenzoic acid that can be produced as 0.0407 \times 167 = 6.80 (g) followed by: percentage yield = \frac{4.85}{6.80} \times 100 = 71.3 (%) Calculation must attempt to calculate n(benzoic acid) in mol. 3. Checking purity

Questi	on	Answer	Marks	Guidance
		 Explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order. Purification step is unclear with few scientific terms and little detail, e.g. just 'recrystallise'. Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products. Purity check specifies a method but this is unclear with little detail, e.g. take melting point. O marks No response or no response worthy of credit. 		 Obtain melting point Compare to known values Pure sample will have a (sharp) melting point very close to data book value ALLOW alternative approach based on spectroscopy or TLC Spectroscopy Run an NMR/IR spectrum Compare to (spectral) database Spectrum of pure sample will contain same peaks and not others TLC Run a TLC Compare (R_f value) to known data Pure sample will have a very similar R_f
(b)	(i)	Phenol is the most easily nitrated/ most reactive AND Benzoic acid is the least easily nitrated /least reactive ✓	1	Response must give rank order of reactivity e.g. nitration becomes more difficult from phenol (to benzene) to benzoic acid OR nitration becomes easier from right to left in the table
	(ii)	Reactivity of phenol a (lone) pair of electrons on O is (partially) delocalised/donated into the π-system / ring ✓	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW the electron pair in the p orbitals of the O atom becomes part of the π -system / ring ALLOW diagram to show movement of lone pair into ring

Question	Answer	Marks	Guidance
	Reactivity of benzoic acid The –COOH group on benzoic acid is an electron withdrawing group ✓		ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into π-system / ring IGNORE activating and deactivating.
	Links electron density in π-bond to reactivity In phenol electron density is higher AND The ring is more susceptible to attack OR In benzoic acid electron density is lower AND The ring is less susceptible to attack ✓		 ALLOW the following alternatives for susceptibility to attack: phenol attracts electrophiles / NO₂⁺ more phenol polarises electrophiles / NO₂⁺ more benzoic acid attracts electrophiles / NO₂⁺ less benzoic acid polarises electrophiles / NO₂⁺ less
(c) (i)	Bromination: Br₂ AND A/Br₃/FeBr₃/Fe ✓ Intermediate	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst

Q	uestion	Answer	Marks	Guidance
		NO ₂		ALLOW Kekulé structure
				IGNORE names (question asks for formulae)
		Br√		IGNORE reaction conditions even if incorrect
		Reduction : Sn AND (concentrated) HC <i>l</i> ✓		IGNORE 'dilute' for HCl IGNORE H ₂ IGNORE NaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HCl then NaOH' scores the
	(ii)		3	mark
		NH₂ is 2,4 directing ✓		IGNORE references to electron donating/withdrawing groups
		Products (1 mark for each): NH ₂ NH ₂ NH ₂		ALLOW –NH ₂ activates the ring causing the new group to join at positions 2 and 4.
		Br		ALLOW ortho and para directing for 2,4 directing
				IGNORE 6-directing
				ALLOW Kekulé structure
		→ Br →		IGNORE names
		Total	21	

Question	Answer		Guidance
18 (a) (i)	Curly arrow from ${}^-$ CN to carbon atom of C-C l bond \checkmark Dipole shown on C-C l bond, C $^{\delta+}$ and C $l^{\delta-}$, AND curly arrow from C-C l bond to C l atom \checkmark $C_2H_5 \longrightarrow C_l \xrightarrow{\delta-} C_l \xrightarrow{\delta-}$	Marks 3	Guidance ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of ¯CN OR CN¯ OR from minus sign on C of ¯CN ion (then lone pair on CN¯ does not need to be shown) IGNORE NaCl ALLOW S _N 1 mechanism: Dipole shown on C−Cl bond, C ^{δ+} and Cl ^{δ−} , AND curly arrow from C−Cl bond to Cl atom ✓ Correct carbocation AND curly arrow from ¯CN to carbocation. Curly arrow must come from lone pair on C of ¯CN OR CN¯ OR from minus sign on C of ¯CN ion (then lone pair on CN¯ does not need to be shown) ✓ correct organic product AND Cl¯ ✓ H C ₂ H ₅ C + + Cl¯ C ₂ H ₅ C + + Cl¯ C ₂ H ₅ C - CN → CN ← Cl¯ C ₁ C - CN ← Cl¯ C ₂ C - CN ← Cl¯ C ₃ C - CN ← Cl¯ C ₄ C -

Q	uestic	n	Answer	Marks	Guidance
		(ii)	Compound G	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE name(s) ALLOW OH OH OH H C Br H H H H H H
			Reagents Reaction 2: H₂ AND Ni ✓		ALLOW any suitable metal catalyst e.g. Pt ALLOW LiAlH ₄ for reagent in reaction 2 DO NOT ALLOW NaBH ₄ for reagent in reaction 2 IGNORE names (question asks for formulae)
			Reaction 3: Correct formula of an aqueous acid e.g. HC ℓ(aq)/H₂SO₄(aq) ✓		ALLOW H ⁺ (aq) IGNORE dilute ALLOW formula of an acid AND water e.g. HCl AND H ₂ O H ₂ SO ₄ AND H ₂ O

Ciii) Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton/H⁺ ✓ ALLOW nitrogen donates an electron pair to H⁺ DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the −OH group Compound H is a base is not sufficient (role of lone pair required)
IF charges are shown both need to be present ALLOW charge either on N atom or NH ₃ ⁺ IF displayed then + charge must be on the nitrogen

Question	Answer	Marks	Guidance
Question (iv)	Answer H O H O H O H Ester link \checkmark Rest of structure \checkmark (polymer J is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed \checkmark H N H O H $(n = \frac{21500}{226} =)$ 95 (repeat units)	2 2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n Broken down by water is not sufficient IGNORE references to photodegradable ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW O O O MUST be a whole number.
			DO NOT ALLOW an answer that uses an incorrect molar mass in the working.
			·
	Total	14	ALLOW 96
	iotai		

Question		on	Answer		Guidance
19	(a)		$C_5H_{10}O + 7O_2 \longrightarrow 5CO_2 + 5H_2O \checkmark$	1	e.g. $2C_5H_{10}O + 14O_2 \longrightarrow 10CO_2 + 10H_2O$ ALLOW any equation involving an unsaturated alcohol with correct balancing e.g. $C_5H_8O + 6.5O_2 \longrightarrow 5CO_2 + 4H_2O$ $C_5H_6O + 6O_2 \longrightarrow 5CO_2 + 3H_2O$ $C_5H_4O + 5.5O_2 \longrightarrow 5CO_2 + 2H_2O$ $C_5H_2O + 5O_2 \longrightarrow 5CO_2 + H_2O$ IGNORE state symbols
	(b)	(i)	Diagram showing a water molecule and an ethanol molecule with at least one H ^{δ+} and one O ^{δ−} on BOTH molecules ✓ Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another. AND Hydrogen bonding stated or labelled on diagram ✓ e.g. Hydrogen bond	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ+ on H atoms of alkyl group DO NOT ALLOW any marks for a diagram containing O ₂ H If more than one hydrogen bond is shown they must all be correct to award the mark.
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Question	Answer	Marks	Guidance
(ii)	Hexane-1,6-diol has more OH groups (than hexan-1-ol) AND (hexane-1,6-diol) forms more hydrogen bonds with water	1	Statements MUST be comparative e.g. hexane-1,6-diol has two –OH groups and hexan-1-ol has one -OH group ALLOW hydroxyl or hydroxy DO NOT ALLOW hydroxide/OH ⁻ ALLOW ORA
(c) (i)	Starting material from reduction reaction Reagent for reduction NaBH ₄ ✓ Product from reaction with NaBr/H ₂ SO ₄ Structural isomers	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Watch for missing methyl groups IGNORE H ⁺ / acid or H ₂ O or ethanol ALLOW sodium borohydride OR sodium tetrahydridoborate ALLOW LiAlH ₄

Q	uesti	on	Answer	Marks	Guidance
					ALLOW in either order
		(ii)	3-methylcyclohexanol ✓	1	ALLOW 3-methylcyclohexan-1-ol ALLOW 1-methylcyclohexan-3-ol IGNORE lack of hyphens, or addition of commas
	(d)		Structures of organic products	5	ANNOTATE WITH TICKS AND CROSSES
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Use of any primary alcohol containing 3, 5 or more carbons can be awarded up to 4 marks. ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names DO NOT ALLOW CH ₃ CH ₂ CH ₂ COH for the structure of the aldehyde. ALLOW CH ₃ CH ₂ CH ₂ CO ₂ H for the structure of the carboxylic acid.
			Equations		ALLOW marks for structures from equations as
			$CH_3CH_2CH_2CH_2OH + [O] \longrightarrow CH_3CH_2CH_2CHO + H_2O$ \checkmark $CH_3CH_2CH_2CH_2OH + 2[O] \longrightarrow CH_3CH_2CH_2COOH + H_2O$		long as unambiguous. ALLOW molecular formulae in equations e.g. $C_4H_{10}O + [O] \longrightarrow C_4H_8O + H_2O$ $C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O$ $C_4H_9OH + [O] \longrightarrow C_3H_7CHO + H_2O$ $C_4H_9OH + 2[O] \longrightarrow C_3H_7CO_2H + H_2O$
			Reaction conditions		IGNORE incorrect structures in equations i.e. $C_4H_{10}O + [O] \longrightarrow C_3H_7COH + H_2O$

Ques	tion	Answer	Marks	Guidance
		Distillation to produce aldehyde/CH ₃ CH ₂ CH ₂ CHO AND		scores equation mark
		Reflux to produce carboxylic acid/CH₃CH₂CH₂COOH ✓		Conditions must be linked to aldehyde/carboxylic acid or correct products.
				Conditions may be written above arrow of equation.
		Total	15	

Q	uestion	Answer	Marks	Guidance
20	(a)	Empirical formula	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
		Mole Ratio C : H : O = 5.88 : 5.92 : 1.47 ✓		ALLOW $\frac{70.58}{12.0}$: $\frac{5.92}{1.0}$: $\frac{23.50}{16.0}$
		Empirical formula = C ₄ H ₄ O ✓		ALLOW 4:4:1 if linked to C:H:O
		Molecular formula $Molecular formula = C_8H_8O_2$		Alternative method for 3 marks: C: $\frac{136 \times 70.58/100}{43.0} = 8$
		AND Evidence of 136 in working or from labelled peak in spectrum ✓		H: $\frac{136 \times 5.92/100}{1.0} = 8$
				O: $\frac{136 \times 23.50/100}{16.0} = 2$
	(b)	Functional groups	3	
		Phenol AND ketone ✓		DO NOT ALLOW any other functional groups for first marking point.
		Explanation		

Question	Answer	Marks	Guidance
	Links phenol to (weak) acidity AND no reaction with Na₂CO₃ (so not carboxylic acid) ✓		ALLOW identity of functional groups in the explanation if not stated on functional group prompt line.
	Links 2,4-DNP(H) or Brady's reagent observation to carbonyl AND Tollens' reagent observation (so not an aldehyde) ✓		ALLOW "aldehyde or ketone" in place of carbonyl
(c)	Carbon NMR analysis	3	ALLOW peaks to be identified by:
	Peaks between 110–160 ppm are the (four) aromatic (carbon environments) ✓		Peaks labelled on spectrum
	Compound contains a C=O between 190 - 200 ppm		Peaks indicated on a chemical structure
	Compound contains a C-C at 20-30 ppm ✓		Peaks indicated from within text
	Structure OH V		Note: If identifying aromatic peaks from the spectrum all four peaks should be indicated.
			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	Total	9	

Question	Answer	Marks	Guidance
21*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure of L is CH ₃ CH ₂ COOCH ₂ C(CH ₃) ₃ OR (CH ₃) ₃ CCH ₂ COOCH ₂ CH ₃ AND A comprehensive explanation with most of the spectral data analysed and few omissions. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Splitting patterns used to deduce the correct structure of L.	6 6	Indicative scientific points may include: 1. 1 H NMR spectrum • δ = 1.1 ppm, triplet, 3H
	Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete and/or structure of L incorrect. OR Explains two scientific points thoroughly with few omissions. There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence. The analysis is clear and includes some interpretation of NMR/IR peaks.		 2. Infrared spectra IR spectrum of M peak at 2300–3700 (cm⁻¹) is O–H peak at ~1720 (cm⁻¹) is C=O M is a carboxylic acid IR spectrum of N peak at 3100-3700 (cm⁻¹) is O–H N is an alcohol
	Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points. OR Explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		ALLOW ranges from Data Sheet IGNORE references to C–O peaks 3. Structure of L • L is an ester (as it reacts with HC l(aq) to form carboxylic acid and alcohol)

Question	Answer	Marks	Guidance
	The analysis is communicated in an unstructured way and includes interpretation of a few peaks from the NMR/IR spectra. O marks No response or no response worthy of credit.		Correct structure H H O H CH ₃ H CH ₃ H CH ₃ H CH ₃ ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	Total	6	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552

Facsimile: 01223 552553

PART OF THE CAMBRIDGE ASSESSMENT GROUP