

GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
~	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore
BP	Blank page

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	AO element	Guidance
1	D	1	2.7	
2	В	1	1.2	
3	В	1	2.2	
4	C	1	2.2	
5	Α	1	1.1	
6	Α	1	2.2	
7	D	1	1.1	
8	D	1	2.6	
9	В	1	2.6	
10	C	1	1.2	ALLOW 2 in the answer box
11	D	1	2.2	
12	C	1	2.6	
13	В	1	1.1	
14	D	1	1.2	ALLOW 1 in the answer box
15	С	1	1.1	
	Total	15		

SECTION B

Q	Question		Answer		AO element	Guidance
16	(a)		(The mean/average mass) taking into account the relative abundancies of the isotopes ✓	1	1.1	ALLOW sum of (isotopic mass × %abundance) sum of (isotopic mass × abundance) / total abundance DO NOT ALLOW average mass of the isotopes
		(i)	$\begin{bmatrix} Mg \end{bmatrix}^{2^+} \begin{bmatrix} x & Br & 0 \end{bmatrix}^{-}$ $\begin{bmatrix} x & Br & 0 \end{bmatrix}^{-}$ Mg with no (or 8) outer electrons AND $2 \times Br \text{ with '} dot\text{-and-cross' outer octet } \checkmark$ Correct charges \checkmark	2	1.2 2.5	 ALLOW 8 electrons in Mg²⁺ BUT 'extra' electron in Br- must match symbol for electrons in Mg²⁺ IGNORE inner shells and circles ALLOW 1 mark if both electron arrangements and charges are correct but only one Br is drawn. ALLOW 2[Br-], 2[Br]- (brackets not required)
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.71×10^{22} award 3 marks $n(MgBr_2) = \frac{1.74}{184.1} = 0.00945 mol \checkmark$ Moles of ions = $0.00945 \times 3 = 0.0283 mol \checkmark$ Number of ions = $0.0283 \times 6.02 \times 10^{23} = 1.71 \times 10^{22} \checkmark$ 3SF required	3	2.2×3	ALLOW ECFCalculator answer = $9.451385117 \times 10^{-3}$ ALLOW ECF from incorrect moles of ions.e.g. 0.00945Common error 5.69×10^{21} no $\times 3$ 2 marks

Question	Answer	Marks	AO element	Guidance
(C)*	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) Explains all three melting point values and conductivities in terms of structure, bonding, particles and relative strengths of the forces. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Attempts to explain all three melting point values and conductivities in terms of the structure, bonding, particles of all three substances, but explanations may be incomplete or may contain only some correct statements or comparisons. OR Correctly explains two of the melting point values and conductivities in terms of the structure, bonding, particles. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Identifies only some of the structures, forces and particles AND Attempts to explain the melting point values OR conductivities in terms of the structure, bonding, particles There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	1.1×3 2.1×3	Indicative scientific points may include: Structure and bonding Magnesium Structure: giant lattice Metallic bonding Delocalised electrons Bromine Structure: simple molecular induced dipole dipole forces (London forces) (Between) molecules DO NOT ALLOW (between) atoms Magnesium bromide Structure: giant lattice Ionic bonding (Between) oppositely charged ions Comparison of bond strengths Metallic and ionic bonds are stronger than London forces OR Metallic and lonic bonds need more energy to break than London forces Conductivity Magnesium: conducts due to delocalised electrons can move/mobile. IGNORE 'Carry' charge for movement Magnesium bromide: In solid IONS cannot move; in solution IONS can move. DO NOT ALLOW electrons. Bromine: Does not conduct as no mobile charge carriers.

Question	Answer		AO element	Guidance
Question (d) (i) (ii)	Answer $Mg^{2+}(g) + 2Br(g) + 2e^{-\checkmark}$ $Mg(s) + Br_2(I) \checkmark$ FIRST CHECK THE ANSWER ON ANSWER LINEIf answer = -346.5 award 2 marks	Marks 2 2		State symbols required. CARE: Liquid state symbol for Br ₂ ALLOW -347 (kJ mol ⁻¹) for 2 marks. ALLOW for 1 mark ONE error with sign OR use of 2: -693 (not divided by 2 at the end) 346.5 (wrong sign on answer) Common errors for 1 mark -2272.5 (-1926 instead of 1926) -1386 (2 x -693 instead of -693) -996.5 (-650 instead of 650) -509 (2 × 325 not used) -290.5 (2 × 112 not used)
	∆ <i>H</i> hyd = –346.5 (kJ mol ⁻¹) ✓			 -290.5 (2 × 112 not used) -198.5 (148 instead of -148) -160.5 (186 instead of -186) -122.5 (224 instead of -224) 178.5 (525 instead of -525) 389.5 (736 instead of -736) 1103.5 (1450 instead of -1450) For other answers , check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors e.g453 (2 × 325 not used AND 2 x 112 not used)

Qı	lestion	Answer	Marks	AO element	Guidance
	(iii)	Equation: $Mg^{2+}(g) + 2Br^{-}(g) \rightarrow MgBr_2(s) \checkmark$	3	1.2	State symbols required
		CHECK THE ANSWER ON ANSWER LINE If answer = –2433 award 2 marks		2.2 x 2	For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors
		Lattice enthalpy = $\Delta_{hy}H(Mg^{2^+}) + 2 \times \Delta_{hy}H(Br^-) - \Delta_{sol}H(MgBr_2) OR$ -1926 + (2 x -346.5) - (-186) OR $\Delta_{f}H(MgBr_2) - 2\Delta_{at}H(Br) - \Delta_{at}H(Mg)$ $- 1st IE(Mg) - 2nd IE(Mg) - 2\Delta_{ea}H(Br) OR$ -525 - (2 x 112) - 148 - 736 - 1450 - (2 x -325) \checkmark Lattice enthalpy = -2433 kJ mol ⁻¹ \checkmark			ALLOW ECF from incorrect answer to d(ii)
		Total	18		

Question	Answer	Marks	AO element	Guidance	
17 (a)	 High pressure AND low temperature ✓ Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓ (Forward) reaction is exothermic/gives out heat OR reverse reaction is endothermic/takes in heat ✓ 	3	1.2×1 1.1×2	Marks are independent ORA throughout ALLOW RHS ALLOW suitable alternatives for RHS e.g. product side	
(b)	(Reaction can be carried out at) lower temperatures / lower energy demand ✓ Less (fossil) fuels burnt / less CO₂ emissions ✓	2	1.1×2	 ALLOW lower pressures as alternative to lower temperature ALLOW reduced carbon footprint as alternative to less fuels burnt ALLOW different reactions can be used with greater atom economy / less waste ALLOW can reduce use of toxic substances 	

Question	Answer	Marks	AO element	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 25.55 <u>kJ mol⁻¹</u> OR 25550 <u>J mol⁻¹</u> award first 4 marks	5	2.2×4	
	$\Delta S = 238 - (198 + 2 \times 131) \checkmark$ = -222 (J K ⁻¹ mol ⁻¹) OR -0.222 (kJ K ⁻¹ mol ⁻¹) \checkmark			ALLOW ECF IGNORE units at this stage
	$\Delta G = \Delta H - T \Delta S$ OR $\Delta G = -91 - (525 \times -0.222)$ OR		3.2×1	J
	$\Delta G = -91000 - (525 \times -222) \checkmark$ = 25.55 <u>kJ mol⁻¹</u> OR 25550 <u>J mol⁻¹</u> \checkmark			Units for ∆ <i>G</i> required ALLOW 26 kJ mol ^{_1} OR 26000 J mol ^{_1} up to
	(Reaction is) not feasible AND $\Delta G > 0 \checkmark$			calculator value.

Question	Answer	Marks	AO element	Guidance
(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.22×10^4 award first 2 marks 	3	3.1×2 1.2×1	ALLOW ECF for transcription errors in first sum ALLOW 10 up to calculator value of 10.00979992 ALLOW 22200 ALLOW 22200 ALLOW 2.20 \times 10 ⁴ OR 22000 (use of 10) ALLOW alternatives (k)Pa ⁻² OR N ⁻² m ⁴ OR mmHg ⁻² OR PSI ⁻² OR bar -2 Common errors for 1 mark: 22400 (use of 8.31) 4.50 x 10 ⁻⁵ (use of -10.01)
	Total	14		

Q	uesti	on	Answer	Marks	AO element	Guidance
18	(a)		Equation : Mg + 2CH ₃ COOH \rightarrow (CH ₃ COO) ₂ Mg + H ₂ \checkmark	3	2.6	ALLOW Mg(CH ₃ COO) ₂ ALLOW multiples IGNORE Oxidation numbers in formulae IGNORE state symbols
			Oxidation : Mg from 0 to $+2 \checkmark$		1.2	Mark independently from equation
			Reduction : H from +1 to 0 ✓		1.2	ALLOW 1 mark for correct oxidation numbers but incorrectly linked to redox.
	(b)		HCOOH + CH ₃ COOH \rightleftharpoons HCOO ⁻ + CH ₃ COOH ₂ ⁺ ✓	2	1.2×2	IGNORE state symbols (even if wrong)
			A1 OR A2B2B1A2A2B1B2A1 ✓CARE: Both + and – charges required for products in equilibriumDO NOT AWARD the 2nd mark from an equilibriumDO NOT AWARD the 2nd mark from an equilibrium			IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HCOOH + CH ₃ COOH \rightleftharpoons HCOOH ₂ ⁺ + CH ₃ COO ⁻ B2 A1 A2 B1 NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF <i>i.e.</i> NO ECF from impossible chemistry
	(c)	(i)	$[H^+] = 10^{-2.72} \text{ OR } 1.905 \times 10^{-3} \pmod{\text{dm}^{-3}} \checkmark$ $[CH_3COOH] = \frac{(1.905 \times 10^{-3})^2}{1.78 \times 10^{-5}} \checkmark$ $(= 0.204 \text{ mol dm}^{-3})$	2	2.4×2	ALLOW 2SF up to calculator value of 1.905460718 x 10 ⁻³ ALLOW use of [HA] Mark is for working.

Question	Answer	Marks	AO element	Guidance
(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.4×10^{-2} (mol dm ⁻³) award 4 marks Calculation of H ⁺ in buffer [H ⁺] buffer = $10^{-4.00}$ OR 1×10^{-4} (mol dm ⁻³) \checkmark Calculation of CH ₃ COOH in buffer n(CH ₃ COOH) OR [CH ₃ COOH]buffer	4	3.3×3	ALLOW ECF ALLOW [HA] and [A ⁻] in working
	$= \frac{0.204}{1000} \times 400 \text{ OR } 8.16 \times 10^{-2} \checkmark$ Calculation of [CH ₃ COO ⁻] in buffer (in 1 dm ³) [CH ₃ COO ⁻] _{buffer} = 1.78 × 10 ⁻⁵ × $\frac{8.16 \times 10^{-2}}{1 \times 10^{-4}}$ OR 1.5 × 10 ⁻² (mol dm ⁻³) \checkmark Calculation of original [CH ₃ COO ⁻] (in 600 cm ³)			ALLOW 1.5×10^{-2} up to calculator value 1.45248 $\times 10^{-2}$ (mol dm ⁻³)
	$[CH_{3}COO^{-}]_{initial} = \left(\frac{1.45248 \times 10^{-2} \times 1000}{600}\right)$ $= 2.4 \times 10^{-2} \text{ (mol dm}^{-3}) \checkmark$		3.4×1	ALLOW 2.4×10^{-2} up to calculator value 2.4208×10^{-2} (mol dm ⁻³)COMMON ERRORS BUT CHECK WORKING $[CH_3COO^-]_{initial} = 8.7 \times 10^{-3}$ 3 marks 600 and 1000 inverted $[CH_3COO^-]_{initial} = 3.6 \times 10^{-6}$ 3 marks $[CH_3COO^-]_{initial} = 1.3 \times 10^{-6}$ 2 marks $[CH_3COO^-]_{initial} = 1.3 \times 10^{-6}$ 2 marks $[CH_3COO^-]_{initial} = 1.3 \times 10^{-6}$ 2 marks $[CH_3COOH] : [H^+]$ inverted AND 600 and 1000 invertedNo volumes used = 3.6×10^{-2} 2 marks

Question	Answer	Marks	AO element	Guidance
	ALLOW alternative approach based on Henderson– Hasselbalch equation (ALLOW $-\log K_a$ for $p K_a$) e.g.			ALLOW –log <i>K</i> ₄ for p <i>K</i> ₄
	$pH = pK_a + \log \frac{[CH_3COOH]}{[CH_3COO^-]} \mathbf{OR} pK_a - \log \frac{[CH_3COO^-]}{[CH_3COOH]} \mathbf{OR}$			
	$4 = 4.75 + \log \frac{8.16 \times 10^{-2}}{[CH_3COO^-]} \mathbf{OR} \ 4.75 - \log \frac{[CH_3COO^-]}{8.16 \times 10^{-2}} \checkmark$			
	$\log[CH_3COO^-] = 4 - 4.75 - 1.09 = -1.84 \checkmark$			
	$[CH_3COO^-]_{buffer} = 1.5 \times 10^{-2} \checkmark$			
	$[CH_3COO^-]_{initial} = 2.4 \times 10^{-2} \checkmark$			
	Total	12		

Q	uestion	Answer	Marks	AO element	Guidance
19	(a)	Circuit Complete circuit AND voltmeter AND salt bridge linking two half-cells ✓ Half cells	3	3.4× 1	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit
		Ag AND Ag ⁺ AND 1 mol dm ⁻³ solution \checkmark Pt AND H ⁺ AND MnO ₄ - AND Mn ²⁺ AND 1 mol dm ⁻³ /equimolar solution \checkmark		1.2× 1 1.2×1	If species in BOTH half cells are correct but concentration of 1 mol dm ⁻³ omitted, ALLOW 1 mark for BOTH half cells.
					ALLOW acidified as an alternative for H ⁺ IGNORE stated pressure Not relevant here as no gas
	(b)	Comparison of E values <i>E</i> of redox system 4 (MnO₄ ⁻ /Mn ²⁺)is more positive/less negative than <i>E</i> of redox systems 2 (HCOOH/HCHO) OR 1 (CO ₂ /HCOOH)√	4	3.1×2	IGNORE higher/lower ALLOW Overall E _{reaction} = (+)1.54V OR (+)1.62V
		Equilibrium shift related to <i>E</i> values More negative/less positive/system 2 (HCOOH/HCHO) OR system 1 (CO ₂ /HCOOH) shifts left OR Less negative/more positive/system 4 (MnO _{4⁻} /Mn ²⁺) shifts right ✓			For 'shifts left', ALLOW 'is oxidised' OR 'electrons are lost ' OR 'reducing agent' For 'shifts right', ALLOW 'is reduced' OR 'electrons are gained' OR 'oxidising agent'
		• 2 and 4 $2MnO_{4^-} + 5HCHO + 6H^+ \rightarrow 2Mn^{2+} + 5HCOOH + 3H_2O \checkmark$ • 1 and 4 $2MnO_{4^-} + 5HCOOH + 6H^+ \rightarrow 2Mn^{2+} + 5CO_2 + 8H_2O \checkmark$		3.2× 2	IGNORE state symbols ALLOW multiples DO NOT ALLOW un-cancelled species, e.g. H ⁺ , on both sides ALLOW for 1 mark two balanced equations with uncancelled species. ALLOW combined equation for 2 marks: $4MnO4^{-} + 5HCHO + 12H^{+} \rightarrow 4Mn^{2^{+}} + 5CO_{2} + 11H_{2}O$

C	Questi	on	Answer	Marks	AO element	Guidance
	(c)		$2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \rightarrow H_{2}O \checkmark$ 1.34 + (-0.11) = (+) <u>1.23</u> (V) \checkmark	2	2.6 2.2×1	IGNORE state symbols ALLOW multiples
			Total	9		

Q	uesti	on	Answer	Marks	AO element	Guidance
20	(a)	(i)	To keep [CH₃OH] (effectively) constant OR Zero order with respect to CH₃OH OR To ensure equilibrium is far to the right ✓	1	3.3	ALLOW Change in [CH ₃ OH] is negligible ALLOW rate is independent of [CH ₃ OH] IGNORE Methanol doesn't run out/is not limiting reagent.
		(ii)	One half-life $t_{\frac{1}{2}}$ between 102 and 110 (mins) Two half-lives calculated OR evidence on the graph of two half-lives AND constant half-life/values (means first order) \checkmark	2	3.1 3.2	ALLOW any two combinations of positions, e.g. 5 and 2.5 AND 4 and 2 AND 3 and 1.5
		(iii)	Using gradients Evidence of tangent at $t = 0$ and intercept between $100 - 140 \text{ (min)} \checkmark$ Correctly calculated gradient in the range of 2.9×10^{-5} to $4.0 \times 10^{-5} \text{ (mol dm}^{-3} \text{ min}^{-1}) \checkmark$ OR Using half-life For $t_{1/2} = 106 \text{ min}, k = \frac{\ln 2}{t_{1/2}} = 0.00654 \text{ (min}^{-1}) \checkmark$ rate $= 0.00654 \times 5 \times 10^{-3}$ $= 3.27 \times 10^{-5} \text{ (mol dm}^{-3} \text{ min}^{-1}) \checkmark$	2	3.1×1 3.2×1	ALLOW ECF from value of t½ in (a)(ii)

Question	Answer		Marks	AO element	Guidance
(b)	FIRST CHECK THE ANSWER ON AN If answer = 7.4 award 4 marks	SWER LINE	4		ALLOW minimum of 2SF throughout
	Initial moles of reactants $n(CH_3OH)$ initial $=\frac{9.6}{32} = 0.3$ -(mol) AND $n(CH_3COOH)$ initial $=\frac{12}{60} = 0.2$ (mol)	1 mark		1.2×1	
	Equilibrium moles $n(CH_3COOH)$ reacted = 0.2 – 0. AND $n(CH_3OH)_{equil} = 0.3 - 0.17$ $n(CH_3COOCH_3)_{equil}$ AND $n(H_2O)_{equil}$			2.8×3	ALLOW ECF from initial moles ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct
	K_c calculation $K_c = \frac{0.17/V \times 0.17/V}{0.13/V \times 0.03/V} = 7.4 \checkmark$	1 mark			ALLOW up to calculator answer of 7.41025641
		Total	9		

Question	Answer	Marks	AO element	Guidance
21 (a)	Interpretation of Results Orange contains bromine AND no reaction AND violet contains iodine ✓	5	2.3× 1	Results can be interpreted anywhere in answer.
	Ionic equation Br₂ + 2I⁻ → 2Br⁻ + I₂ ✓		2.6×1	ALLOW multiples, e.g. $\frac{1}{2}Br_2 + I^- \rightarrow Br^- + \frac{1}{2}I_2$ IGNORE other halogen/halide equations IGNORE state symbols
	Reactivity (down the group) Reactivity decreases AND oxidising power decreases OR gains electrons less easily OR forms negative ion/1– ion less easily OR less energy released when electron gained ✓ OR more negative electron affinity Size/shells/shielding (down the group) Greater atomic radius OR more shells OR more shielding ✓ Attraction (down the group) Less nuclear attraction down the group ✓		1.1×3	ALLOW ORA DO NOT ALLOW idea of losing electrons/ionisation energy IGNORE chlorine is the most electronegative IGNORE explanations in terms of displacement

Question	Answer	Marks	AO element	Guidance
(b)	Benefit AND risk required for ONE mark Benefit: kills bacteria ✓ AND Kisk: toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogens/toxic compounds ✓	1	1.1	ALLOW kills micro-organisms OR kills pathogens OR kills viruses OR sterilises/disinfects water IGNORE antiseptic, reduces risk of disease, cleans water IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous for health/causes breathing problems
(c)	$n(\mathbf{A}) = \frac{0.209}{29} = 0.00721 \text{ (mol)} \checkmark$ $M_r = \frac{1.26}{0.00721} = 174.8 \checkmark$ Molecular formula = BrF ₅ ✓ Formula is dependent on M _r	3	2.2×2 3.2	ALLOW ECF ALLOW 2SF 0.0072 up to calculator value 0.0072068965517 ALLOW 175 up to calculator value 174.8325359 ALLOW F₅Br ALLOW ECF that matches calculated Mr
	Total	9		

Question	Answer	Marks	AO element	Guidance
				$\begin{split} & [Cr(H_2O)_6]^{3+} + 3NH_3 \rightarrow Cr(OH)_3 + 3H_2O + 3NH_4^+ \\ & \textbf{F}: [Cr(H_2O)_6]^{3+} + 6NH_3 \rightarrow [Cr(NH_3)_6]^{3+} + 6H_2O \\ & \textbf{OR} \\ & Cr(OH)_3 + 6NH_3 \rightarrow [Cr(NH_3)_6]^{3+} + 3OH^- \textbf{OR} \\ & [Cr(H_2O)_3(OH)_3] \\ & +6NH_3 \rightarrow [Cr(NH_3)_6]^{3+} + 3H_2O + 3OH^- \\ & \textbf{G}: Ba^{2+} + SO4^{2-} \rightarrow BaSO4 \\ & \textbf{H}: Ag^+ + Cl^- \rightarrow AgCl \end{split}$

Que	Question		Answer	Marks	AO element	Guidance
	(b)	(i)	Ni : S : N = $\frac{16.26}{58.7}$: $\frac{35.36}{32.1}$: $\frac{31.0}{14}$ OR 0.277 : 1.10 : 2.21 OR 1 : 4 : 8 \checkmark	3	3.1×1	ALLOW any correct method ALLOW NiS4N8 for ratio
			$x = 4 \checkmark$		3.2×2	
			$2 + x + y = 8$ $y = 2 \checkmark$			ALLOW ECF for y from incorrect x
		(ii)	+2 🗸	1	2.1	+ required
						ALLOW 2+
	(c)		$n(MnO_{4^{-}}) \text{ in titration} = 0.01 \times \frac{12.6}{1000} = 1.26 \times 10^{-4} \checkmark$ $n(SO_{3^{2^{-}}}) \text{ in } 25.0 \text{ cm}^{3} = 1.26 \times 10^{-4} \times 2.5 = 3.15 \times 10^{-4} \text{ (mol)} \checkmark$	5	1.2×1 2.8×3	ALLOW 3 SF or more throughout ALLOW ECF throughout
			$n(SO_{3}^{2-}) \text{ in } 250 \text{ cm}^{3}$ $= 10 \times 3.15 \times 10^{-3} = 3.15 \times 10^{-3} \text{ (mol)} \checkmark$ mass Na ₂ SO ₃ in 525 g meat $= 3.15 \times 10^{-3} \times 126.1 = 0.397 \text{ (g)} \checkmark$ mass Na ₂ SO ₃ in 1 kg of meat $= 0.397215 \times \frac{1000}{525} = 0.7566 \text{ g OR } 756.6 \text{ mg}$ AND less than the maximum permitted level OR AW \checkmark		3.2×1	Calculator = 0.397215 g ALLOW within range: 756 to 757 mg ALLOW 0.397 g<0.446 g per 525 g meat.
			Total	15		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

