AQAHY

A-level
COMPUTER SCIENCE
7517/1

Paper 1

Mark scheme
June 2023

Version: 1.0 Final

2 36 A7517/ 1/ MS

N°09'1N0JdSaSIM MMM WOJ) JI0IN] [RUOSIS

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’'s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third
party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’'s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

A-level Computer Science
Paper 1 (7517/1) — applicable to all programming languages A, B, C, D and E

June 2023

The following annotation is used in the mark scheme:

; — means a single mark

1 — means an alternative response

/ — means an alternative word or sub-phrase
A. — means an acceptable creditworthy answer
R. — means reject answer as not creditworthy
NE. - means not enough

. — means ignore

DPT. - means ‘Don't penalise twice’. In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level, examiners should bear in mind the relative weightings of the assessment objectives

€g
In question 06.1, the marks available for the AO3 elements are as follows:

AQO3 (design) 4 marks
AQO3 (programming) 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

01

All marks AO1 (understanding)

1. Check the queue is not already full;

2. Compare the value of the (rear) pointer with the maximum size of the array;

3. If equal then (rear) pointer becomes zero; A. index of the first position in the
array instead of zero

4. Otherwise, add one to the (rear) pointer;

5. Insert new item in position indicated by (rear) pointer;

Alternative answer 1

1. Check the queue is not already full;

2. Compare the value of the (rear) pointer with the maximum size of the array minus
one;

3. If equal then (rear) pointer becomes one; A. index of the first position in the array
instead of one

4. Otherwise, add one to the (rear) pointer;

5. Insert new item in position indicated by (rear) pointer;

Alternative answer 2

1. Check the queue is not already full;

2. Add one to the (rear) pointer;

3. Compare the value of the (rear) pointer with the maximum size of the array;

4. If equal then (rear) pointer becomes zero; A. index of the first position in the
array instead of zero

5. Insert new item in position indicated by (rear) pointer;

Alternative answer 3

1. Check the queue is not already full;

2. Add one to the (rear) pointer;

3. Compare the value of the (rear) pointer with the maximum size of the array plus
one;

4. If equal then (rear) pointer becomes one; A. index of the first position in the array
instead of one

5. Insert new item in position indicated by (rear) pointer;

Alternative answer 4

1. Check the queue is not already full;

2. Add one to the (rear) pointer;

3. Use modulus/modulo operator/function with new value of (rear) pointer;
4. Use modulus/modulo operator/function with maximum size of array;

5. Insert new item in position indicated by (rear) pointer;

Max 4 if any errors

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

02

1

Mark is for AO2 (analyse)

The colour is not yellow //
the chosen shape was not the yellow circle //
the colour is blue or pink;

02

Mark is for AO2 (analyse)

The shape is not a square //
the chosen shape was not the blue square //
the shape is a triangle or circle;

02

Mark is for AO2 (analyse)

Pink triangle;

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
03 1 | All marks for AO1 (understanding) 2
A root (A. start) node; A. there is a parent-child relationship between nodes
Each node has no more than two child nodes; R. has two child nodes
03 2 | All marks are for AO2 (apply) 4
1 0
2 -1
3 True
4 | Current € Tree[Current].Right
5 Current € Tree[Current].Left
6 False
Note for examiners: answers are in pseudo-code so accept any reasonable
representation (including use of string or integer values for rows 3 and 6).
Mark as follows:
1 mark: row one correct
1 mark: row two correct
1 mark: rows three and six correct
1 mark: rows four and five correct
03 3 | Mark is for AO1 (knowledge) 1
O(logzn);
l. missing brackets
I. missing O
I. missing 2
03 | 4 | Mark is for AO1 (understanding) 1
Every comparison halves the size of the binary tree to look at; (A. every comparison
halves the size of the tree)

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

03

Mark is for AO1 (understanding)

It does not have exponential (or worse) time complexity;

It has a polynomial (or better) time complexity solution;

A. It can be solved in a reasonable amount of time regardless of the problem/input
size;

NE. can be solved in a reasonable amount of time

Max 1

03

All marks AO1 (understanding)
Rules/knowledge (about the problem domain);

Can be used to find a good/approximate but (probably) not optimal solution to a
problem;

Can reduce the size of the search/problem space // changing some constraints in
the problem;

Max 2

03

All marks AO1 (knowledge)

As the size of the input/problem increases; the amount of time taken remains the
same;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
04 1 | All marks AO2 (analyse) 3
Regular language
Language (YIN)?
Language A N
Language B Y
Language C Y
Language D Y
Language E Y
Language F Y
Mark as follows:
1 mark: any two rows correct
2 marks: any four rows correct
3 marks: all rows correct
A. any suitable alternative to N and Y
04 | 2 | All marks AO2 (apply) 2
alab|b+;;
If final answer incorrect award a maximum of 1 mark for any of:
® alab
* Db+
Alternative answer
ab?|b+;;
If final answer incorrect award a maximum of 1 mark for any of:
e 3b?
* Db+
04 | 3 | Markis for AO1 (knowledge) 1
The number of elements/items in a set; A. the size of a set

10

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
05 1 | All marks AO2 (apply) 5
Tape Current
State
0 0
w1] o] o# | L] s2 |
0 0 # S1
0 #* S2
0 *
0*
* 0
#* 0 #
* # 0 #
|| 1 | # 0 #
[10 # * 0 #
1 # 0* #
1 # * #
1 # #*
1 # * #
1 # * #
1 # * #
1 #* #
1* # #
* 1 # #
Mark as follows:
1 mark: tape and current state of first row correct.
1 mark: tape and current state of second and third rows correct.
1 mark: read/write head correct for first three rows.
1 mark: tape left of first hash symbol and current state for rows four to ten correct
(denoted by blue outline in table above).
1 mark: tape and current state for last row correct.
A. any unambiguous way of denoting a blank cell on the tape
l. position of read/write head when awarding mark points 1, 2, 4 and 5
Max 4 if any errors
05 | 2 | All marks AO2 (analyse) 2
When there are no zeros between the two hash symbols on the tape;
When there is a character other than zero (A. a one) between the two hash symbols
on the tape;
If the machine was not in the start state (S0);
Max 2

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

11

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

05

All marks AO1 (knowledge)

A Turing machine that can execute/simulate the behaviour of any other Turing
machine // can compute any computable sequence;

Faithfully executes every single operation on the data precisely as the simulated TM
would; (Note: must have idea of same process)

Description of/Instructions for TM (and the TM’s input) are stored on the (Universal
Turing machine’s) tape // The UTM acts as an interpreter; A. take any other TM and
data as input

Max 2 marks

Alternative definition:

A UTM, U, is an interpreter that reads the description of any arbitrary Turing
machine M;

and faithfully executes operations on data D precisely as M does.;
The description is written at the beginning of the tape, followed by D.;

Max 2 marks

05

Mark is for AO1 (understanding)

It has an infinite amount of memory; A. the tape is infinitely long

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

06 | 1

4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description

Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
string, has at least one iterative structure and at least one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to test for most of the criteria for a valid string,
although these may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7-9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

46

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. lItis
unlikely that any of the key design elements of the task
have been recognised.

1-3

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

13

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Guidance

Evidence of AO3 design — 4 points:
Evidence of design to look for in responses:

1. ldentifying that an iteration structure is needed that repeats a number of times
based on the length of the string entered by the user.

2. ldentifying that nested iteration is needed.

3. Identifying that an integer variable is needed to store the sum of the ASCII
codes and that Boolean variable(s) (A. any suitable equivalent) are needed to
track if there are duplicate characters and non-uppercase characters (R. if no
attempt to use the Boolean variable (or equivalent) to indicate the result of at
least one validation check).

4. Selection structure that checks if two characters in the string are the same R. if

not inside their iteration structure (or equivalent)

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming

language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming — 8 points:
Evidence of programming to look for in response:

User input being assigned to appropriate variable.

Correctly gets the ASCII code for a character.

Adds ASCII code for character to a total.

Correctly checks if every character is uppercase. A. checks every character is
not lowercase

PN O

©

duplicate for some of the other characters in the string R. if will always say a
character is a duplicate

10. lteration structure that repeats until string is valid. A. if some validation checks
are missing or incorrect R. if subsequent iterations would not work in same way
e.g. because Boolean variables not reset inside iteration structure

11. Program rejects all strings that are less than five characters or more than seven
characters in length.

12. Program works correctly under all circumstances.

Max 11 if any errors

Correctly checks if a character is duplicated. R. if only checks if a character is a

14

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

06 | 2

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 06.1, including prompts on screen capture(s) matching those

in code.

Code for 06.1 must be sensible.

Screen captures showing the string(s) entered and result(s) of each of the tests;

l. order of tests

A. tests done individually or done as one extended test

Enter a string:

not valid

Enter a string:

not valid

Enter a string:

not wvalid

Enter a string:

valid

Enter a string:

not wvalid

Enter a string:

Note for examiners:

BOIL
BRAisE
ROAST

BLANCH

PRESSURECOOK

example screen captures shown here match the order of the

test data given in the question but there is no requirement for the tests to be done in

any particular order.

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

15

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
07 1 | All marks for AO2 (analyse) 2
Statement True/False
Uses definite iteration False
Uses nested iteration True
Uses nested selection False
Uses one or more global variables False
Uses one or more local variables True
Uses one or more named constants False
A. any suitable alternative to True/False
Mark as follows:
1 mark: any four rows correct
2 marks: all rows correct
07 2 | Mark is for AO2 (analyse) 1
13; A.-13

16

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

08

Marks are for AO1 (understanding)

Virtual methods can be overridden by the derived class //
virtual methods do not have to be overridden //
abstract methods must be overridden by the derived class;

Virtual methods have an implementation/body //

virtual methods contain code (with functionality) (in the base class) //
abstract methods do not contain an implementation/body //

abstract methods contain no code (with functionality) (in the base class) //
abstract methods only contain a declaration (in the base class);

Abstract methods can only be declared in abstract classes //
virtual methods can be declared in abstract and non-abstract classes;

Max 2

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

17

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
09 1 | Mark is for AO2 (analyse) 1
The implementation of the Queue data structure is not visible’lknown outside the
class;
Other parts of the program do not know that there is a data structure called Queue;
Other parts of the program cannot access the data structure called Queue;
A. the queue is private R. the queue is protected
Other parts of the program do not know that a list data structure is used to store the
move options;
Other parts of the program do not know how the move options are stored;
If the method used to represent the list was changed, the rest of the program would
not need to be modified;
Max 1
09 | 2 | Mark is for AO2 (analyse) 1
Can remove an item not at the front of the queue;
Can use any of the (A. first three) items from the queue;
Max 1
09 3 | Mark is for AO2 (analyse) 1
Add;
R. if spelt incorrectly
R. if any additional code
l. case

18

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

10

1

Mark is for AO2 (analyse)

(runtime) error will occur if the following code is executed when square (being
checked) does not contain a piece // it is necessary to check there is a piece in the
square (before checking the type of the piece);

10

Mark is for AO2 (apply)

NOT PlayerlHasMirza OR NOT Player2HasMirza

R. PlayerlHasMirza = False OR Player2HasMirza = False

Question

Marks

11

1

Mark is for AO2 (analyse)

DisplayBoard,;
DisplayFinalResult
DisplayState;
GetPlayerStateAsString
GetQueueAsString
GetSquareReference
PlayGame;

Max 1
R. if spelt incorrectly

R. if any additional code
l. case

11

Mark is for AO2 (analyse)
Dastan;
R. if spelt incorrectly

R. if any additional code
l. case

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

19

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
12 Mark is for AO2 (analyse) 1
So that player two’s pieces move in the opposite direction to player one’s;
A. So that player two’s pieces move up the board
Question Marks
13 1 | All marks for AO3 (programming) 4
1. lterative structure contains code that gets the choice from the player;
2. 0ne correct condition;
3. Both correct conditions and correct logic;
4. Displays error message under all correct circumstances and only under correct
circumstances; R. message same as original prompt
Max 3 if code contains errors
13 2 | Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****
Must match code from 13.1.
Code for 13.1 must be sensible.

Screen capture showing message displayed when 6 is entered followed by 4 being
entered and accepted;

20

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

100
Move option queue: 1. ryott 2. chowkidar 3. cuirassier 4. faujdar 5. jazair

Turn: Player One
Choose move option to use from queue (1 to 3) or 9 to take the offer: 9
Choose the move option from your queue to replace (1 to 5): 6

Error - try again.
Choose the move option from your queue to replace (1 to 5): 4

Move option offer: jazair
Player One
Score: 98

Move option queue: 1. ryott 2. chowkidar 3. cuirassier 4. jazair 5. jazair

Turn: Player One

Choose move option to use from queue (1 to 3) or 9 to take the offer:

Note for examiners: Bhukampa might be shown in list of choices or might not be.

21

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks
14 1 | All marks for AO3 (programming) 9
Mark points 1 to 6 refer to the new method ProcessBhukampa; mark points 7 to
9 refer to PlayGame.
1. Create a new method called ProcessBhukampa; R. other names for
method; I. case and minor typos
2. Generates two random numbers;
3. Correct range for random numbers generated (0 to 35);
A. 1 to 6 if generating random row/column position instead of position in
Board if these are then used to create two valid square references and will
be able to generate the full range of valid square references
A. 1 to 6 if generating random row/column position instead of position in
Board if these are then used to create an index between 0 and 35
4. Repeats until the two random numbers are different;
5. Swaps positions of two squares in Board list/array;
R. only swapping the pieces that are in the two squares
6. Repeats attempt at (any of) their code for mark points 2 to 5 five times;
7. Call to new method from P1ayGame; R. if not in iterative structure that gets
move option from user
8. Selection structure in P1ayGame with correct condition (= 8, or equivalent)
9. When bhukampa is chosen, player’s score is decreased by 15 and call made
to DisplayState; R. if (sometimes) executes when bhukampa not chosen
Max 8 marks if code contains errors
14 | 2 | Mark is for AO3 (evaluate) 1
**** SCREEN CAPTURE ****
Must match code from 14.1.
Code for 14.1 must be sensible.
Screen capture(s) showing option 8 being selected, player one score of 85 and new
board state; A. score of 70 or 55
Notes for examiners: new board state is (partly) random so will not exactly match
the one shown in this mark scheme.

22

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

ove option offer: jazair

Player One

Score: 100

ove option queue: 1. ryott 2. chowkidar 3. cuirassier 4. faujdar 5. jazair

urn: Player One

hoose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa: 8

ove option queue: 1. ryott 2. chowkidar 3. cuirassier 4. faujdar 5. jazair

urn: Player One

hoose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:

Question

Marks

15 | 1

All marks for AO3 (programming)
Mark points 1 to 6 relate to the Gacaka class.

1. Creating a new class called Gacaka that inherits from Square; R. other
names for class; |l. case and minor typos

2. Method called SetPiece/GetPointsForOccupancy created that
overrides parent class method;

3. Message “Trap!” displayed in SetPiece method and piece is added to
Gacaka; R. other messages I. case and minor typos A. added in appropriate
place in PlayGame

4. Value of PointsIfCaptured for piece in Gacaka is increased by 2; A.
making PointsIfCaptured public // new piece added to Gacaka which is
same as original piece except PointsIfCaptured is two higher

5. Value of 0 returned by GetPointsForOccupancy if there is no piece in the
gacaka; R. if always returns a value of 0

6. Value of -3 returned by GetPointsForOccupancy if there is a piece in the
gacaka; A. if only returned for that player’s turn or on both player’'s turn R. if
always returns a value of -3

Mark points 7 to 8 relate to the CreateBoard method.

7. An object of type Gacaka is created;
8. The Gacaka object is added to the correct position in the Board list; R. if there
are not exactly 36 objects in the Board list;

Max 7 if code contains errors (including not checking who the piece belongs to)

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

23

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question Marks

15 | 2 | Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****
Must match code from 15.1.
Code for 15.1 must be sensible.

Screen capture(s) showing the correct final board state, the two player’s scores and
the message Trap! being displayed after the 2" player's move; A. alternative

messages if they match 15.1

ove option queue: 1. ryott 2. chowkidar 3. cuirassier 4. faujdar 5. jazair

urn: Player One

hoose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:
Enter the square containing the piece to move (row number followed by column number): 24
Enter the square to move to (row number followed by column number): 44

rap!
New score: 95

ove option offer: jazair

Player Two
Score: 100
ove option queue: 1. ryott 2. chowkidar 3. jazair 4. faujdar 5. cuirassier

urn: Player Two

hoose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:
Enter the square containing the piece to move (row number followed by column number): 54
Enter the square to move to (row number followed by column number): 44

rap!
New score:

ove option queue: 1. ryott 2. chowkidar 3. faujdar 4. jazair 5. cuirassier

urn: Player One

hoose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:

Note for examiners: Bhukampa might be shown in list of choices or might not be.

24

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Question

Marks

16

1

All marks for AO3 (programming)

Mark points 1 to 11 relate to the GetNoOfPossibleMoves method.

1. Creating a new method called GetNoOfPossibleMoves that takes Board/
a list of squares as a parameter R. other method identifiers I. case and minor
typos;

2. lteration structure that repeats number of times based on size of board list;

3. Nested iteration structures that repeat correct number of times to check every
combination of start and finish squares // nested iteration structures that repeat
correct number of times to look at every combination of start square and legal
move option.

4. lteration structures that when combined will repeat enough times to check every

combination of move option with the squares from their code for mark points 2

and 3;

Calculate the square reference for the start square;

Calculate the square reference for the finish square;

Calls the CheckPlayerMove / CheckIfThereIsAMoveToSquare

method; A. suitable alternatives to calling method e.g. rewriting code from

method

8. Checks if there is one of the player’s pieces in the start square;

9. Checks if there is one of the opponent’s pieces in the finish square and checks if
the finish square does not contain a piece;

10. Adds one to the count of possible moves when (some) legal moves are found;

No o

Note for examiners: maximum of 1 mark for mark points 8 and 9 if the program
would attempt to use a method/property for a piece in an empty square.
CheckSquareIsValid completes all checks needed for mark points 8 and 9 (if
called twice) but is not easily accessible from the P1ayer class.

Note for examiners: mark points 7 to 9 do not have to be inside iterative structures
to be awarded

11.Call to GetNoOfPossibleMoves in appropriate place in DisplayState
method; A. addedto DisplayBoardinstead of DisplayState
12.Value returned by GetNoOfPossibleMoves is displayed

Max 11 if code contains any errors

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

25

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

16

Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****

Must match code from 16.1, including prompts on screen capture matching those in
code.

Code for 16.1 must be sensible.

Screen capture(s) showing that there are 52 legal moves for player two;

Move option offer: jazair

Player One
Score:
Move option queue: 1. ryott 2. chowkidar 3. cuirassier 4. faujdar 5. jazair

Number of possible moves: 45
Turn: Player One

Choose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:
Enter the square containing the piece to move (row number followed by column number): 22
Enter the square to move to (row number followed by column number): 12

New score: 164

Move option offer: jazair

Player Two
Score: 100
Move option queue: 1. ryott 2. chowkidar 3. jazair 4. faujdar 5. cuirassier

Number of possible moves: 52
Turn: Player Two

Choose move option to use from queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:

Note for examiners: Bhukampa might be shown in list of choices or might not be.

26

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

VB.Net
Question Marks
06 1 | unique = False 12
s = "agqggaqqq"
valid = False
total = 0
While s.Length >= 8 or s.Length <= 4 Or Not unique Or Not valid Or
total < 420 Or total > 600
total = 0
unique = True
valid = True
Console.Write ("Enter a string: ")
s = Console.ReadLine ()
For 1 = 0 To s.Length - 1
total += Asc(s(i))
If "ABCDEFGHIJKLMNOPQRSTUVWXYZ".Contains(s(i)) = False Then
valid = False
End If
For 3 = 0 To s.Length - 1
If i <> j And s (i) = s(j) Then
unique = False
End If
Next
Next
If s.Length >= 8 Or s.Length <= 4 Or Not unique Or Not valid Or
total < 420 Or total > 600 Then
Console.WritelLine ("not valid")
End If
End While
Console.WritelLine ("valid")
13 1 Private Sub UseMoveOptionOffer () 4
Dim ReplaceChoice As Integer = 0
While ReplaceChoice < 1 Or ReplaceChoice > 5
Console.Write ("Choose the move option from your queue to replace
(1 to 5): ™)
ReplaceChoice = Console.ReadLine ()
If ReplaceChoice < 1 Or ReplaceChoice > 5 Then
Console.Writeline ("Error - try again.")
End If
End While
CurrentPlayer.UpdateMoveOptionQueueWithOffer (ReplaceChoice - 1,
CreateMoveOption (MoveOptionOffer (MoveOptionOfferPosition),
CurrentPlayer.GetDirection()))
14 1 Public Sub PlayGame () 9
Dim GameOver As Boolean = False
While Not GameOver
DisplayState ()
Dim SquarelIsValid As Boolean = False

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

27

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Dim StartSquareReference, FinishSquareReference, Choice As
Integer
Do
Console.Write ("Enter value between 1 and 3 to select move
option to use from queue or 9 to take the offer or 8 for a bhukampa:
")
Choice = Console.ReadLine ()
If Choice = 9 Then
UseMoveOptionOffer ()
End If
If Choice = 8 Then
ProcessBhukampa ()
CurrentPlayer.ChangeScore (-15)
DisplayState()
End If
Loop Until Choice >= 1 And Choice <= 3
While Not SquarelIsValid

Private Sub ProcessBhukampa ()
Dim R As New Random
Dim RNol, RNo2 As Integer
For Count = 1 To 5
Do
RNol R.Next (0, 36)
RNo2 R.Next (0, 36)
Loop Until RNol <> RNo2
Dim Temp As Square = Board(RNol)

Board (RNol) = Board (RNo2)
Board (RNo2) = Temp
Next
End Sub

15

Class Gacaka
Inherits Square

Public Overrides Sub SetPiece (ByVal P As Piece)
MyBase.SetPiece (P)
Console.WriteLine ("Trap!")
PieceInSquare = New Piece (P.GetTypeOfPiece(), P.GetBelongsTo(),
P.GetPointsIfCaptured() + 2, P.GetSymbol())
End Sub

Public Overrides Function GetPointsForOccupancy (ByVal
CurrentPlayer As Player) As Integer
If PieceInSquare Is Nothing Then
Return O
ElseIf CurrentPlayer.SameAs (PieceInSquare.BelongsTo()) Then
Return -3
Else
Return 0O
End If
End Function
End Class

Private Sub CreateBoard()
Dim S As Square
Board = New List (Of Square)
For Row = 1 To NoOfRows
For Column = 1 To NoOfColumns

28

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

If Row = 1 And Column = NoOfColumns \ 2 Then

S = New Kotla(Players(0), "K")
ElseIf Row = NoOfRows And Column = NoOfColumns \ 2 + 1 Then
S = New Kotla(Players(l), "k")

ElseIf Row = 4 And Column = 4 Then
S = New Gacaka()
Else
S = New Square ()
End If
Board.Add (S)
Next
Next
End Sub

Alternative answer
Class Gacaka
Inherits Square

Public Overrides Sub SetPiece (P As Piece)
PieceInSquare = P
P.ChangePointsIfCaptured (2)
Console.WriteLine ("Trap!")

End Sub

Public Overrides Function GetPointsForOccupancy (CurrentPlayer As
Player) As Integer
If PieceInSquare Is Nothing Then
Return O
ElseIf CurrentPlayer.SamelAs (PieceInSquare.BelongsTo()) Then
Return -3
Else
Return 0O
End If
End Function
End Class

Private Sub CreateBoard()
Dim S As Square
Board = New List (Of Square)
For Row = 1 To NoOfRows

For Column = 1 To NoOfColumns
If Row = 1 And Column = NoOfColumns \ 2 Then
S = New Kotla(Players(0), "K")
ElseIf Row = NoOfRows And Column = NoOfColumns \ 2 + 1 Then
S = New Kotla(Players(l), "k")

ElseIf Row = 4 And Column = 4 Then
S = New Gacaka ()
Else
S = New Square ()
End If
Board.Add (S)
Next
Next
End Sub

Class Piece

Public Sub ChangePointsIfCaptured(ByVal Change As Integer)
PointsIfCaptured += Change

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

29

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

End Sub

16

Public Function GetNoOfPossibleMoves (ByVal Board As List(Of Square))
As Integer
Dim NoOfPossibleMoves As Integer = 0
For Countl = 0 To 35
If Board(Countl) .GetPieceInSquare() IsNot Nothing Then
If Board(Countl) .GetPieceInSquare () .GetBelongsTo () .GetName () =
Name Then
For Count2 = 0 To 35
Dim SSgRef As Integer

(Countl \ 6 + 1) * 10 + Countl Mod

(Count2 \ 6 + 1) * 10 + Count2 Mod

Dim FSqRef As Integer

For Count3 = 0 To 2
If
Queue.GetMoveOptionInPosition (Count3) .CheckIfThereIsAMoveToSquare (SS
gRef, FSqRef) Then
If Board(Count2) .GetPieceInSquare() Is Nothing Then
NoOfPossibleMoves += 1
ElseIf
Board (Count2) .GetPieceInSquare () .GetBelongsTo () .GetName () <> Name
Then
NoOfPossibleMoves += 1
End If
End If
Next
Next
End If
End If
Next
Return NoOfPossibleMoves
End Function

Private Sub DisplayState()
DisplayBoard()
Console.WriteLine ("Move option offer: " &
MoveOptionOffer (MoveOptionOfferPosition))
Console.WriteLine ()
Console.WritelLine (CurrentPlayer.GetPlayerStateAsString())

Console.WriteLine ("Number of possible moves: " &
CurrentPlayer.GetNoOfPossibleMoves (Board))
Console.WriteLine ("Turn: " & CurrentPlayer.GetName ())
Console.WriteLine ()
End Sub

12

30

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Python 3
Question Marks
06 1 | unique = False 12
s = "agqggaqqq"
valid = False
total = 0
while len(s) >= 8 or len(s) <= 4 or not unique or not valid or total
< 420 or total > 600:
total = 0
unique = True
valid = True
s = input ("Enter a string: ")
for i in range (len(s)):
total += ord(s[i])
if s[i] not in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
valid = False
for j in range (len(s)):
if i '= j and s[i] == s[j]:
unique = False
if len(s) >= 8 or len(s) <= 4 or not unique or not valid or
total < 420 or total > 600:
print ("not wvalid")
print ("valid")
13 1 | def UseMoveOptionOffer (self): 4
ReplaceChoice = 0
while ReplaceChoice < 1 or ReplaceChoice > 5:
ReplaceChoice = int (input ("Choose the move option from your
queue to replace (1 to 5): ™))
if ReplaceChoice < 1 or ReplaceChoice > 5:
print ("Error - try again.")
self. CurrentPlayer.UpdateMoveOptionQueueWithOffer (ReplaceChoice
-1,
self. CreateMoveOption(self. MoveOptionOffer[self. MoveOptionOfferP
osition], self. CurrentPlayer.GetDirection()))
14 1 | def PlayGame (self): 9
GameOver = False
while not GameOver:
self. DisplayState()
SquarelIsValid = False
Choice = 0
while Choice < 1 or Choice > 3:
Choice = int (input ("Choose move option to use from queue
(1 to 3) or 9 to take the offer or 8 for a bhukampa: "))
if Choice ==
self. UseMoveOptionOffer ()
self. DisplayState()
if Choice ==

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

31

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

self.ProcessBhukampa ()
self. CurrentPlayer.ChangeScore (-15)
self. DisplayState()
while not SquarelIsValid:
StartSquareReference =
self. GetSquareReference ("containing the piece to move")
SquarelIsValid =

self. CheckSquarelIsValid(StartSquareReference, True)
SquarelsValid = False

def ProcessBhukampa (self):
for count in range (5):
RNol = random.randint (0, 35)
RNo2 = random.randint (0, 35)
while RNol == RNo2:
RNol = random.randint (0, 35)
RNo2 = random.randint (0, 35)
Temp = self. Board[RNol]

self. Board[RNol] = self. Board[RNo2]
self. Board[RNo2] = Temp

15

class Gacaka (Square) :
def SetPiece(self, P):
super (Gacaka, self) .SetPiece (P)
print ("Trap!")
self. PieceInSquare = Piece (P.GetTypeOfPiece(),
P.GetBelongsTo (), P.GetPointsIfCaptured() + 2, P.GetSymbol())

def GetPointsForOccupancy (self,CurrentPlayer) :
if self. PieceInSquare is None:

return 0

elif CurrentPlayer.SameAs (self. PieceInSquare.BelongsTo()) :
return -3

else:
return 0

def CreateBoard(self):
for Row in range(l, self. NoOfRows + 1):
for Column in range(l, self. NoOfColumns + 1):

if Row == 1 and Column == self. NoOfColumns // 2:
S = Kotla(self. Players[0], "K")

elif Row == self. NoOfRows and Column ==

self. NoOfColumns // 2 + 1:

S = Kotla(self. Players([1l], "k")

elif Row == 4 and Column ==
S = Gacaka()

else:
S = Square ()

self. Board.append(S)

Alternative answer

32

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

class Gacaka (Square) :
def SetPiece(self, P):
self. PieceInSquare = P
P.ChangePointsIfCaptured(2)
print ("Trap!")

def GetPointsForOccupancy (self,CurrentPlayer) :
if self. PieceInSquare is None:

return 0

elif CurrentPlayer.SameAs(self. PieceInSquare.BelongsTo()):
return -3

else:
return 0

class Piece:

def ChangePointsIfCaptured(self,Change) :
self. PointsIfCaptured += Change

16

def GetNoOfPossibleMoves (self, Board):
NoOfPossibleMoves = 0
for Countl in range(36):
if Board[Countl] .GetPieceInSquare() is not None:
if Board[Countl] .GetPieceInSquare () .GetBelongsTo () .GetName ()
== self. Name:
for Count2 in range(36):
SSqRef = (Countl // 6 + 1) * 10 + Countl % 6
FSgRef = (Count2 // 6 + 1) * 10 + Count2 % 6
for Count3 in range(3):
if
self. Queue.GetMoveOptionInPosition (Count3) .CheckIfThereIsAMoveToSq
uare (SSqRef, FSqgRef):
if Board[Count2] .GetPieceInSquare() is None:
NoOfPossibleMoves += 1
elif
Board[Count2] .GetPieceInSquare () .GetBelongsTo () .GetName () !=
self. Name:

NoOfPossibleMoves += 1
return NoOfPossibleMoves

def DisplayState(self):
self. DisplayBoard()
print ("Move option offer: " +
self. MoveOptionOffer[self. MoveOptionOfferPosition])

print ()
print (self. CurrentPlayer.GetPlayerStateAsString())
print ("Number of possible moves: " +
str(self. CurrentPlayer.GetNoOfPossibleMoves (self. Board)))
print ("Turn: " + self. CurrentPlayer.GetName ())
print ()

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

33

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Python 2
Question Marks
06 1 | unique = False 12
s = "agqggaqqq"
valid = False
total = 0
while len(s) >= 8 or len(s) <= 4 or not unique or not valid or total
< 420 or total > 600:
total = 0
unique = True
valid = True
s = raw_input ("Enter a string: ")
for i in range (len(s)):
total += ord(s[i])
if s[i] not in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
valid = False
for j in range (len(s)):
if i '= j and s[i] == s[j]:
unique = False
if len(s) >= 8 or len(s) <= 4 or not unique or not valid or
total < 420 or total > 600:
print "not wvalid"
print "valid"
13 1 | def UseMoveOptionOffer (self): 4
ReplaceChoice = 0
while ReplaceChoice < 1 or ReplaceChoice > 5:
ReplaceChoice = int(raw_input ("Choose the move option from
your queue to replace (1 to 5): "))
if ReplaceChoice < 1 or ReplaceChoice > 5:
print "Error - try again."
self. CurrentPlayer.UpdateMoveOptionQueueWithOffer (ReplaceChoice
-1,
self. CreateMoveOption(self. MoveOptionOffer[self. MoveOptionOfferP
osition], self. CurrentPlayer.GetDirection()))
14 1 | def PlayGame (self): 9
GameOver = False
while not GameOver:
self. DisplayState()
SquarelIsValid = False
Choice = 0
while Choice < 1 or Choice > 3:
Choice = int(raw_input ("Choose move option to use from
queue (1 to 3) or 9 to take the offer or 8 for a bhukampa: "))
if Choice ==
self. UseMoveOptionOffer ()
self. DisplayState()
if Choice ==

34

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

self.ProcessBhukampa ()
self. CurrentPlayer.ChangeScore (-15)
self. DisplayState()
while not SquarelIsValid:
StartSquareReference =
self. GetSquareReference ("containing the piece to move")
SquarelIsValid =

self. CheckSquarelIsValid(StartSquareReference, True)
SquarelsValid = False

def ProcessBhukampa (self):
for count in range (5):
RNol = random.randint (0, 35)
RNo2 = random.randint (0, 35)
while RNol == RNo2:
RNol = random.randint (0, 35)
RNo2 = random.randint (0, 35)
Temp = self. Board[RNol]

self. Board[RNol] = self. Board[RNo2]
self. Board[RNo2] = Temp

15

class Gacaka (Square) :
def SetPiece(self, P):
super (Gacaka, self) .SetPiece (P)
print "Trap!"
self. PieceInSquare = Piece (P.GetTypeOfPiece(),
P.GetBelongsTo (), P.GetPointsIfCaptured() + 2, P.GetSymbol())

def GetPointsForOccupancy (self, CurrentPlayer):
if self. PieceInSquare is None:

return 0

elif CurrentPlayer.SameAs (self. PieceInSquare.BelongsTo()) :
return -3

else:
return 0

def CreateBoard(self):
for Row in range(l, self. NoOfRows + 1):
for Column in range(l, self. NoOfColumns + 1):

if Row == 1 and Column == self. NoOfColumns // 2:
S = Kotla(self. Players[0], "K")

elif Row == self. NoOfRows and Column ==

self. NoOfColumns // 2 + 1:

S = Kotla(self. Players[1l], "k")

elif Row == 4 and Column ==
S = Gacaka()

else:
S = Square ()

self. Board.append(S)

Alternative answer

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

35

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

class Gacaka (Square) :
def SetPiece(self, P):
self. PieceInSquare = P
P.ChangePointsIfCaptured(2)
print "Trap!"

def GetPointsForOccupancy (self, CurrentPlayer):
if self. PieceInSquare is None:

return 0

elif CurrentPlayer.SameAs(self. PieceInSquare.BelongsTo()):
return -3

else:
return 0

class Piece (object):

def ChangePointsIfCaptured(self, Change):
self. PointsIfCaptured += Change

16

def GetNoOfPossibleMoves (self, Board):
NoOfPossibleMoves = 0
for Countl in range(36):
if Board[Countl] .GetPieceInSquare() is not None:
if Board[Countl] .GetPieceInSquare () .GetBelongsTo () .GetName ()
== self. Name:
for Count2 in range(36):
SSqRef = (Countl // 6 + 1) * 10 + Countl % 6
FSgRef = (Count2 // 6 + 1) * 10 + Count2 % 6
for Count3 in range(3):
if
self. Queue.GetMoveOptionInPosition (Count3) .CheckIfThereIsAMoveToSq
uare (SSqRef, FSqgRef):
if Board[Count2] .GetPieceInSquare() is None:
NoOfPossibleMoves += 1
elif
Board[Count2] .GetPieceInSquare () .GetBelongsTo () .GetName () !'=
self. Name:

NoOfPossibleMoves += 1
return NoOfPossibleMoves

def DisplayState(self):
self. DisplayBoard()
print "Move option offer: " +
self. MoveOptionOffer[self. MoveOptionOfferPosition]

print
print self. CurrentPlayer.GetPlayerStateAsString/()
print "Number of possible moves: " +
str(self. CurrentPlayer.GetNoOfPossibleMoves (self. Board))
print "Turn: " + self. CurrentPlayer.GetName ()
print

12

36

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

C#
Question Marks
06 1 | bool unique = false; 12
string s = "ggqgqqqq";
int total = 0;
bool valid = true;
while (s.Length >=8 || s.Length <=4 || 'unique || !'valid ||
total < 420 || total > 600)
{

total = 0;

unique = true;

valid = true;

Console.Write ("Enter a string: ");

s = Console.ReadLine();

for (int i = 0; i < s.Length; i++)

{

total += s[i];
if
(!'"ABCDEFGHIJKLMNOPQRSTUVWXYZ" .Contains (s[i] .ToString()))
valid = false;
for (int j = 0; Jj < s.Length; j++)
if (1 !'= 9 && s[i] == s[j])
unique = false;

}

if (s.Length >= 8 || s.Length <= 4 || !'unique || ! wvalid
|l total < 420 || total > 600)

Console.WritelLine ("not valid");
}
Console.WriteLine ("valid");
Console.ReadLine () ;
}
13 1 | private void UseMoveOptionOffer () 4
{

int ReplaceChoice = 0;

while (ReplaceChoice < 1 || ReplaceChoice > 5)

{

Console.Write ("Choose the move option from your queue
to replace (1 to 5): "),
ReplaceChoice = Convert.ToInt32 (Console.ReadLine());
if (ReplaceChoice < 1 || ReplaceChoice > 5)
{
Console.Writeline ("Error - try again.");
}

}
CurrentPlayer.UpdateMoveOptionQueueWithOffer (ReplaceChoice -
1, CreateMoveOption (MoveOptionOffer [MoveOptionOfferPosition],
CurrentPlayer.GetDirection()));

CurrentPlayer.ChangeScore (- (10 - (ReplaceChoice * 2)));

MoveOptionOfferPosition = RGen.Next (0, 5);

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

37

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

14

public void PlayGame ()
{
bool GameOver = false;
while (!GameOver)
{
DisplayState() ;
bool SquarelsValid = false;
int Choice;
do
{

Console.Write ("Choose move option to use from

queue (1 to 3) or 9 to take the offer or 8 for a bhukampa:

")
Choice = Convert.ToInt32 (Console.ReadLine()):;
if (Choice == 9)
{
UseMoveOptionOffer () ;
DisplayState() ;
}
if (Choice == 8)
{
ProcessBhukampa () ;
CurrentPlayer.ChangeScore (-15) ;
DisplayState() ;
}
}
while (! (Choice >= 1 & Choice <= 3));
int StartSquareReference = 0;
while (!SquarelIsValid)

private void ProcessBhukampa ()
{
Random R = new Random() ;
int RNol, RNo2;
for (var Count = 1; Count <= 5; Count++)

{
do

{

RNol
RNo2

R.Next (0, 36);
R.Next (0, 36);

}

while (RNol == RNo2);
Square Temp = Board[RNol];
Board[RNol] Board[RNo2] ;
Board[RNo2] Temp;

15

class Gacaka : Square

{

38

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

public override void SetPiece (Piece P)
{

base.SetPiece (P) ;

Console.WriteLine ("Trap!") ;

PieceInSquare = new Piece (P.GetTypeOfPiece (),
P.GetBelongsTo() , P.GetPointsIfCaptured() + 2,
P.GetSymbol()) ;

}

public override int GetPointsForOccupancy (Player
CurrentPlayer)
{
if (PieceInSquare == null)
{

return O;

}

else if
(CurrentPlayer.SameAs (PieceInSquare.BelongsTo())
{
return -3;
}

else

{

return O;

}

private void CreateBoard()
{
Square S;
Board = new List<Square>();
for (var Row = 1; Row <= NoOfRows; Row++)
{

for (var Column = 1; Column <= NoOfColumns; Column-++)
{
if (Row == 1 & Column == NoOfColumns / 2)
{
S = new Kotla(Players[0], "K");
}
else 1if (Row == NoOfRows & Column == NoOfColumns
/ 2 + 1)
{
S = new Kotla(Players[1l], "k");
}
else if (Row == 4 && Column == 4)

S = new Gacaka() ;

S = new Square();

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

39

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Board.Add (S) ;

Alternative answer

class Gacaka : Square
{
public override void SetPiece (Piece P)
{
P.ChangePointsIfCaptured(2) ;
Console.WriteLine ("Trap!") ;
PieceInSquare = P;

}

public override int GetPointsForOccupancy (Player
CurrentPlayer)
{
if (PieceInSquare == null)
{

return O;

}

else if
(CurrentPlayer.SameAs (PieceInSquare.BelongsTo())

{

return -3;

}

else

{

return O;

}

Class Piece

public void ChangePointsIfCaptured(int Change)

{
PointsIfCaptured += Change;

}

16

public int GetNoOfPossibleMoves (List<Square> Board)
{
int NoOfPossibleMoves = 0;
for (int Countl = 0; Countl <= 35; Countl++)
{
if (Board[Countl].GetPieceInSquare() != null)
{

12

40

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

if
(Board[Countl] .GetPieceInSquare () .GetBelongsTo () .GetName () ==
Name)
{
for (int Count2 = 0; Count2 <= 35; Count2++)
{
int SSqRef = (Countl / 6 + 1) * 10 +
Countl % 6;

int FSqRef (Count2 / 6 + 1) * 10 +
Count2 % 6;

for (int Count3 = 0; Count3 <= 2;
Count3++)

{

if

(Queue.GetMoveOptionInPosition (Count3) .CheckIfThereIsAMoveToS
quare (SSqRef, FSqRef))

{

if
(Board[Count2] .GetPieceInSquare () == null)
{
NoOfPossibleMoves += 1;
}
else if

(Board[Count2] .GetPieceInSquare () .GetBelongsTo () .GetName () !=
Name)

{
NoOfPossibleMoves += 1;

}

}

return NoOfPossibleMoves;

private void DisplayState()
{
DisplayBoard() ;
Console.WriteLine ("Move option offer: " +
MoveOptionOffer [MoveOptionOfferPosition]);
Console.WriteLine () ;

Console.WritelLine (CurrentPlayer.GetPlayerStateAsString());

Console.WriteLine ("Number of possible moves: " +
CurrentPlayer.GetNoOfPossibleMoves (Board)) ;
Console.WriteLine ("Turn: " + CurrentPlayer.GetName())

Console.WriteLine () ;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

41

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Pascal/Delphi

Question

Marks

06 1 | program Q06;

{SAPPTYPE CONSOLE}

uses
System.SysUtils;

var
s: string;
isValid: boolean;

ch: char;
sum: integer;

begin
repeat
for ch := 'A' to 'Z' do
counts|[ch] := 0;

readln (s);
isValid := (s.length >= 5)
if isValid then
begin
for ch in s do
if not (ch in ['A'
isValid := false;
if isValid then
begin
for ch in s do
begin

if counts|[ch]
isvalid
end;
if isValid then
begin
sum := 0;

end
end
end;
if isValid then
writeln('Valid')
else
writeln('Invalid')
until isValid;
readln

write ('Enter a string: ');

inc (counts[ch],
> 1 then
:= false

for ch in s do
inc (sum, ord(ch));
isvValid := (sum >= 420) and (sum <= 600)

counts: array['A' .. 'Z'] of integer;

and (s.Length <= 7);

'Z']) then

1)

12

42

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

end.

13 procedure Dastan.UseMoveOptionOffer () ; 4
var
ReplaceChoice: integer;
begin
ReplaceChoice := 0;
repeat
write ('Choose the move option from your queue to replace
(1 to 5): ");
readln (ReplaceChoice) ;
if (ReplaceChoice < 1) or (ReplaceChoice > 5) then
writeln('Error - try again.')
until (ReplaceChoice >= 1) and (ReplaceChoice <= 5);
CurrentPlayer.UpdateMoveOptionQueueWithOffer (ReplaceChoice
-1,
CreateMoveOption (MoveOptionOffer [MoveOptionOfferPosition],
CurrentPlayer.GetDirection()));
CurrentPlayer.ChangeScore (- (10 - (ReplaceChoice * 2)));
MoveOptionOfferPosition := random(5);
end;
14 procedure Dastan.ProcessBhukampa () ; 9

var
count, squarel, square2: integer;
tempSquare: Square;

begin
for count := 1 to 5 do
begin
repeat
squarel random (36) ;
square2 := random(36)
until squarel <> square2;

tempSquare := Board[squarel];
Board[squarel] := Board[square2];
Board[square2] := tempSquare
end
end;

procedure Dastan.PlayGame();
var
GameOver: boolean;
SquarelIsValid: boolean;
StartSquareReference, FinishSquareReference, Choice:
integer;
MoveLegal: boolean;
PointsForPieceCapture: integer;
begin
GameOver := false;
while not GameOver do

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

43

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

begin
DisplayState () ;
repeat
write ('Choose move option to use from queue (1 to 3) or
9 to take the offer or 8 for a bhukampa: ');
readln (Choice) ;
if Choice = 9 then
begin
UseMoveOptionOffer () ;
DisplayState () ;
end;
if Choice = 8 then
begin
ProcessBhukampa () ;
CurrentPlayer.ChangeScore (-15) ;

DisplayState ()
end;
until (Choice >= 1) and (Choice <= 3);
SquarelIsValid := false;

while not SquarelsValid do

15

Gacaka = class (Square)
public
procedure SetPiece (P: Piece); override;
function GetPointsForOccupancy (CurrentPlayer: Player):
integer; override;
end;

procedure Gacaka.SetPiece(P: Piece);

begin
inherited SetPiece (P);
inc (P.PointsIfCaptured, 2);
writeln('Trap!')

end;

function Gacaka.GetPointsForOccupancy (CurrentPlayer: Player):
integer;

begin
if PieceInSquare = nil then
result := 0
else if CurrentPlayer.SameAs (PieceInSquare.GetBelongsTo())
then
result := -3
else
result := 0
end;

procedure Dastan.CreateBoard();
var

44

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

S: Square;
Row, Column: integer;

begin
Board := TList<Square>.Create();
for Row := 1 to NoOfRows do
begin
for Column := 1 to NoOfColumns do
begin
if (Row = 1) and (Column = NoOfColumns div 2) then
begin
S := Kotla.Create(Players[0], 'K');
end

else 1if (Row = NoOfRows) and (Column = NoOfColumns div
2 + 1) then

begin
S := Kotla.Create(Players[1l], 'k');

end

else if (Row = 4) and (Column = 4) then
S := Gacaka.Create()

else

begin
S := Square.Create();

end;

Board.Add (S) ;

end;
end;
end;

I. Constructor duplicating Square.Create

16

function Player.GetNoOfPossibleMoves (Board: TList<Square>):
integer;

var
startIndex, endIndex: integer;
startReference, endReference: integer;
M: MoveOption;
option: integer;

begin
Result := 0;
for startIndex := 0 to Board.Count - 1 do
begin
if Board[startIndex] .GetPieceInSquare() <> nil then

if
Board[startIndex] .GetPieceInSquare () .GetBelongsTo () . SameAs (Se
1f) then

for option := 0 to 2 do

begin
M := Queue.GetMoveOptionInPosition (option) ;
for endIndex := 0 to Board.Count - 1 do
begin

12

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

45

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

startReference := (startIndex div 6 + 1) * 10 +
(startIndex mod 6 + 1) ;
endReference := (endIndex div 6 + 1) * 10 +

(endIndex mod 6 + 1);
if M.CheckIfTherelIsAMoveToSquare (startReference,
endReference) then
begin
if Board[endIndex] .GetPieceInSquare() = nil
then
inc (Result, 1)
else if not
Board[endIndex] .GetPieceInSquare () .GetBelongsTo () . SameAs (Self
) then
inc(Result, 1)
end;
end;
end;
end;
end;

Alternative answer

function Player.GetNoOfPossibleMoves (Board: TList<Square>):
integer;

var
startIndex, endIndex: integer;
M: MoveOption;
option: integer;

function indexToReference (index: integer): integer;

begin
Result := (index div 6 + 1) * 10 + (index mod 6 + 1)
end;

begin
Result := 0;

for startIndex := 0 to Board.Count - 1 do
begin
if Board[startIndex] .GetPieceInSquare() <> nil then
if
Board[startIndex] .GetPieceInSquare () .GetBelongsTo () . SameAs (Se
1f) then
for option := 0 to 2 do
begin
M := Queue.GetMoveOptionInPosition (option) ;
for endIndex := 0 to Board.Count - 1 do

46

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

if
M.CheckIfThereIsAMoveToSquare (indexToReference (startIndex),
indexToReference (endIndex)) then
begin
if Board[endIndex] .GetPieceInSquare() = nil
then
inc(Result, 1)
else if not
Board[endIndex] .GetPieceInSquare () .GetBelongsTo () . SameAs (Self
) then
inc (Result, 1)
end;
end;
end;
end;

procedure Dastan.DisplayState();

begin
DisplayBoard;
writeln ('Move option offer: ' +

MoveOptionOffer [MoveOptionOfferPosition]);
writeln;
writeln (CurrentPlayer.GetPlayerStateAsString());
writeln ('Number of possible moves: ' +

CurrentPlayer.GetNoOfPossibleMoves (Board) .ToString()) ;
writeln ('Turn: ', CurrentPlayer.GetName ())
writeln;

end;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

47

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

Java
Question Marks
06 1 String input; 12
boolean valid ;
int codeTotal;
do {
codeTotal = 0;
valid = true;
Console.writelLine ("Enter string:");
input = Console.readLine();
if (input.length() < 5 || input.length() > 7) {
valid = false;
} else {
for (int 1 = 0; 1 < input.length(); i++) {
if (input.charAt(i) < 'A' || input.charAt (i) > 'Z2'") {
valid = false;
} else {
for (int j = 0; j < input.length(); j++) {
if (1 !'= j && input.charAt (i) ==
input.charAt(j)) {
valid = false;
}
}
}
codeTotal += input.charAt(i);
}
if (codeTotal < 420 || codeTotal > 600) {
valid = false;
}
}
if (!valid) {
Console.writeLine ("Not Valid"):;
}
} while (!valid);
Console.writeLine ("Valid");
13 1 | private void useMoveOptionOffer () { 4
int replaceChoice;
do {
Console.write ("Choose the move option from your queue to
replace (1 to 5): ");
replaceChoice = Integer.parselnt (Console.readLine());
if (replaceChoice < 1 || replaceChoice > 5) {
Console.writeline ("Error - try again.");
}
} while (replaceChoice < 1 || replaceChoice > 5);
currentPlayer.updateMoveOptionQueueWithOffer (replaceChoice - 1,
createMoveOption (moveOptionOffer.get (moveOptionOfferPosition),
currentPlayer.getdirection()));
currentPlayer.changeScore (- (10 - (replaceChoice * 2)));

48

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

moveOptionOfferPosition = rGen.nextInt (5);

14

public void processBhukampa() {
int squarePosl, squarePos2;
for (int count = 0; count < 5; count++) {
do {
squarePosl = rGen.nextInt (board.size())
squarePos2 = rGen.nextInt (board.size())
} while (squarePosl == squarePos2);
Square tempSquare = board.get (squarePosl) ;
board.set (squarePosl, board.get (squarePos2?)) ;
board.set (squarePos2, tempSquare) ;

public void playGame () {
boolean gameOver = false;
while (!gameOver) {
displayState () ;
boolean squarelIsValid = false;
int choice;
do {
Console.write ("Choose move option to use from queue (1
to 3) or 9 to take the offer or 8 to use the Bhukampa: ");
choice = Integer.parselnt (Console.readLine());
if (choice == 9) {
useMoveOptionOffer () ;
displayState();
}
if (choice == 8) {
processBhukampa () ;
currentPlayer.changeScore (-15) ;
displayState();
}

} while (choice < 1 || choice > 3);

15

class Gacaka extends Square {
@Override
public void setPiece (Piece p) {
super.setPiece (p) ;
Console.writeLine ("Trap!") ;
p-pointsIfCaptured += 2;

}
@Override
public int getPointsForOccupancy (Player currentPlayer) {
if (pieceInSquare == null) ({
return O;

}

if (currentPlayer.sameAs (pieceInSquare.belongsTo())

{

return -3;

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

49

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

}

return O;

}

I. missing override annotation

private void createBoard() {
Square s;
board = new ArrayList<>();
for (int row = 1; row <= noOfRows; row++) {
for (int column = 1; column <= noOfColumns; column++) {
if (row == 1 && column == noOfColumns / 2) {
s = new Kotla(players.get(0), "K");
} else if (row == noOfRows && column == noOfColumns / 2
+ 1) |
s = new Kotla(players.get(l), "k");
} else if (row == 4 && column == 4) {
s = new Gacaka();
} else {
s = new Square();

}
board.add(s) ;

16

public int getNoOfPossibleMoves (List<Square> board) {
int noOfMoves = 0;
for (int startNo = 0; startNo < 36; startNo++) {
if (board.get(startNo) .getPieceInSquare() '= null) {
if (board.get(startNo) .getPieceInSquare () .getBelongsTo() ==
this) {
for (int finishNo = 0; finishNo < 36; finishNo++) {
for (int moveNo = 0; moveNo < 3; moveNo++) ({
int startRef = (startNo / 6 + 1) * 10 + startNo % 6;
int finishRef = (finishNo / 6 + 1) * 10 + finishNo % 6;
if
(queue.getMoveOptionInPosition (moveNo) .checkIfTherelIsAMoveToSquare (s
tartRef, finishRef)) ({

if (board.get(finishNo) .getPieceInSquare() == null) {
noOfMoves++;
} else if
(board.get (finishNo) .getPieceInSquare () .getBelongsTo() != this) ({
noOfMoves++;

return noOfMoves;

12

50

3N'09IN0JdSaSIM MMM LIOJJ J01N] [RUOSIad puld

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 — JUNE 2023

private void displayState () {
displayboard() ;
Console.writeLine ("Move option offer: " +
moveOptionOffer.get (moveOptionOfferPosition)) ;
Console.writeLine () ;
Console.writelLine (currentPlayer.getPlayerStateAsString())

Console.writeLine ("Number of possible moves: " +
currentPlayer.getNoOfPossibleMoves (board)) ;
Console.writelLine ("Turn: " + currentPlayer.getName());

Console.writeLine () ;

¥N°'00°IN0JASISIM MMM WO 10IN] [eUOSIad PuUld

51

