

Please write clearly in	ı block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		-
Candidate signature	I declare this is my own work.	- /

A-level **MATHEMATICS**

Paper 3

Friday 12 June 2020

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet
- You do not necessarily need to use all the space provided.

For Examiner's Use	
Question	Mark
1	
2	
2 3 4	
4	
5	
6 7	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
TOTAL	

Section A

Answer all questions in the spaces provided.

1 Given that

$$\int_0^{10} \mathbf{f}(x) \, \mathrm{d}x = 7$$

deduce the value of

$$\int_0^{10} \left(f(x) + 1 \right) dx$$

Circle your answer.

[1 mark]

-3

7

8

17

2 Given that

$$6\cos\theta + 8\sin\theta \equiv R\cos(\theta + \alpha)$$

find the value of R.

Circle your answer.

[1 mark]

6

8

10

14

t.co.uk
找名校导师
弱师,用小
小草线上辅导
甫导(微信/
盲小程序同名
回化)

4	$p(x) = 4x^3 - 15x^2 - 48x - 36$	
4 (a)	Use the factor theorem to prove that $x - 6$ is a factor of $p(x)$.	[2 marks]
4 (b) (i)	Prove that the graph of $y = p(x)$ intersects the x -axis at exactly one point.	[4 marks]

4 (h) (ii)	State the coordinates of this point of intersection.
+ (b) (ii)	[1 mark
	•
	Turn over for the next question

5	The number of radioactive atoms, N , in a sample of a sodium isotope after time t hours can be modelled by
	$N = N_0 e^{-kt}$
	where N_{0} is the initial number of radioactive atoms in the sample and k is a positive constant.
	The model remains valid for large numbers of atoms.
5 (a)	It takes 15.9 hours for half of the sodium atoms to decay.
	Determine the number of days required for at least 90% of the number of atoms in the original sample to decay.
	[5 marks]

5 (b)	Find the percentage of the atoms remaining after the first week.
	Give your answer to two significant figures. [2 marks]
5 (c)	Explain why the model can only provide an estimate for the number of remaining
	atoms. [1 mark]
5 (d)	Explain why the model is invalid in the long run. [1 mark]
	Turn over for the next question

6 (c) Sketch the graph of y = f'(x)

7 (a)	Using ${}^nC_r = \frac{n!}{r!(n-r)!}$ show that ${}^nC_2 = \frac{n(n-1)}{2}$	[2 marks]
7 (b) (i)	Show that the equation	
	$2 \times {}^{n}C_{4} = 51 \times {}^{n}C_{2}$	
	simplifies to	
	$n^2 - 5n - 300 = 0$	[3 marks]

	,
7 (b) (ii)	Hence, solve the equation
	$2 \times {}^{n}C_{4} = 51 \times {}^{n}C_{2}$
	[2 marks]
	·
	Turn over for the next question

w.wisesprout.co.uk
找名校导师
,用小草线上辅导
(微信小程序同名)

8	The sum to infinity of a geometric series is 96	
	The first term of the series is less than 30	
	The second term of the series is 18	
8 (a)	Find the first term and common ratio of the series.	[5 marks]
0 (1) (2)		
8 (b) (i)	Show that the n th term of the series, u_n , can be written as	
	$u_n = \frac{3^n}{2^{2n-5}}$	[4 marks]
		[4 marks]

8 (b) (ii)	Hence show that		
() ()			
		log(1 2log 2) Elog 2	
		$\log_3 u_n = n(1 - 2\log_3 2) + 5\log_3 2$	[2 c-l-c-1
		$\log_3 u_n = n(1 - 2\log_3 2) + 5\log_3 2$	[3 marks]
		$\log_3 u_n = n(1 - 2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1 - 2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1 - 2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1 - 2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1 - 2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]
		$\log_3 u_n = n(1-2\log_3 2) + 3\log_3 2$	[3 marks]

9 (a)	For $\cos \theta \neq 0$, prove that		
		$\csc 2\theta + \cot 2\theta = \cot \theta$	
		$\cos 2\theta + \cot 2\theta = \cot \theta$	[4 marks]
0 (b)	Evalaia why		
9 (b)	Explain why		
		$\cot\theta\neq\csc2\theta+\cot2\theta$	
	when $\cos \theta = 0$		
			[1 mark]

Section B

Answer all questions in the spaces provided.

The probabilities of events *A*, *B* and *C* are related, as shown in the Venn diagram below.

Find the value of x.

Circle your answer.

[1 mark]

0.11

0.46

0.54

0.89

The table below shows the temperature on Mount Everest on the first day of each month.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	-17	-16	-14	-9	-2	2	6	5	-3	-4	-11	-18

Calculate the standard deviation of these temperatures.

Circle your answer.

[1 mark]

-6.75

5.82

8.24

67.85

12位文45	
-	
Ě	
舌つ・叶松一 笛中	
7	
<u> </u>	
返言と往才回位	
٥	
Ц	
_	

12 (b)	Jaspal, an environmental researcher, used all of the data in the Large Data Set to produce a statistical comparison of the ${\rm CO_2}$ and ${\rm CO}$ emissions in regions of England.						
	Using your knowledge of the Large Data Set, give two reasons why his conclusions may be invalid.						
	[2 marks]						

13	Diedre is a head teacher in a school which provides primary, secondary and
	sixth-form education.

There are 200 teachers in her school.

The number of teachers in each level of education along with their gender is shown in the table below.

	Primary	Secondary	Sixth-form
Male	9	24	23
Female	35	85	24

13 (a)	A teacher is selected at random. Find the probability that:	
13 (a) (i)	the teacher is female [1 ma	rk]
13 (a) (ii)	the teacher is not a sixth-form teacher. [1 ma	rk]
13 (b)	Given that a randomly chosen teacher is male, find the probability that this teacher not a primary teacher. [2 mar	
		_

找名校导师	
用小草线上辅导	
(微信小程序同名)	

13 (c)	project.						
	Calculate the probability that all three chosen are secondary teachers.	[2 marks]					

14	It is known that a Emergency (A&E)		ıs a me	an waiti	ng time	of 4 ho	ours for its A	ccident and
	After some new in hospital's A&E De							ients from the
		4.25	3.90	4.15	3.95	4.20	4.15	
		5.00	3.85	4.25	4.05	3.80	3.95	
	Carry out a hypot mean waiting time							whether the
	You may assume deviation 0.8 hour		aiting tir	mes are	norma	lly distri	buted with st	andard
								[7 marks]

15	A political party is holding an election to choose a new leader.
	A statistician within the party decides to sample 70 party members to find their opinions of the leadership candidates.
	There are 4735 members under 30 years old and 8565 members 30 years old and over.
	The statistician wants to use a sample of 70 party members in the survey.
	He decides to use a random stratified sample.
15 (a)	Calculate how many of each age group should be included in his sample. [2 marks]
15 (b)	Explain how he could collect the random sample of members under 30 years old. [3 marks]

16	An educational expert found that the correlation coefficient between the hours of revision and the scores achieved by 25 students in their A-level exams was 0.379
	Her data came from a bivariate normal distribution.
	Carry out a hypothesis test at the 1% significance level to determine if there is a positive correlation between the hours of revision and the scores achieved by students in their A-level exams.
	The critical value of the correlation coefficient is 0.4622 [4 marks

17	The lifetime of Zaple smartphone batteries, X hours, is normally distributed with measure 8 hours and standard deviation 1.5 hours.	an
17 (a) (i)	Find $P(X \neq 8)$ [1 ma	rk]
17 (a) (ii)	Find $P(6 < X < 10)$ [1 ma	rk]
17 (b)	Determine the lifetime exceeded by 90% of Zaple smartphone batteries. [2 marterial content of the content of t	ks]

17 (c)	A different smartphone, Kaphone, has its battery's lifetime, Y hours, more normal distribution with mean 7 hours and standard deviation σ .	delled by a
	25% of randomly selected Kaphone batteries last less than 5 hours.	
	Find the value of σ , correct to three significant figures.	[4 marks

18	Tiana is a quality controller in a clothes factory.	She checks for four possible types of
	defects in shirts.	

Of the shirts with defects, the proportion of each type of defect is as shown in the table below.

Type of defect	Colour	Fabric	Sewing	Sizing
Probability	0.25	0.30	0.40	0.05

	Shirts with defects are packed in boxes of 30 at random.	
18 (a)	Find the probability that:	
18 (a) (i)	a box contains exactly 5 shirts with a colour defect	[2 marks]
18 (a) (ii)	a box contains fewer than 15 shirts with a sewing defect	[2 marks]

	27	
18 (a) (iii)	a box contains at least 20 shirts which do not have a fabric defect.	[3 marks]
	Question 18 continues on the next page	

18 (b)	Tiana wants to investigate the proportion, p , of defective shirts with a fabric defect.
	She wishes to test the hypotheses
	$H_0: p = 0.3$
	$H_1: p < 0.3$
	She takes a random sample of 60 shirts with a defect and finds that \boldsymbol{x} of them have a fabric defect.
18 (b) (i)	Using a 5% level of significance, find the critical region for x .
	[5 marks]

	29	
18 (b) (ii)	In her sample she finds 13 shirts with a fabric defect.	
	Complete the test stating her conclusion in context.	[2] was what
		[2 marks]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	·

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.

