AQA

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

A-level **CHEMISTRY**

Paper 2 Organic and Physical Chemistry

Monday 19 June 2017

Morning

Time allowed: 2 hours

Question

1

2 3

4

5

6

7

8

9

10 11

TOTAL

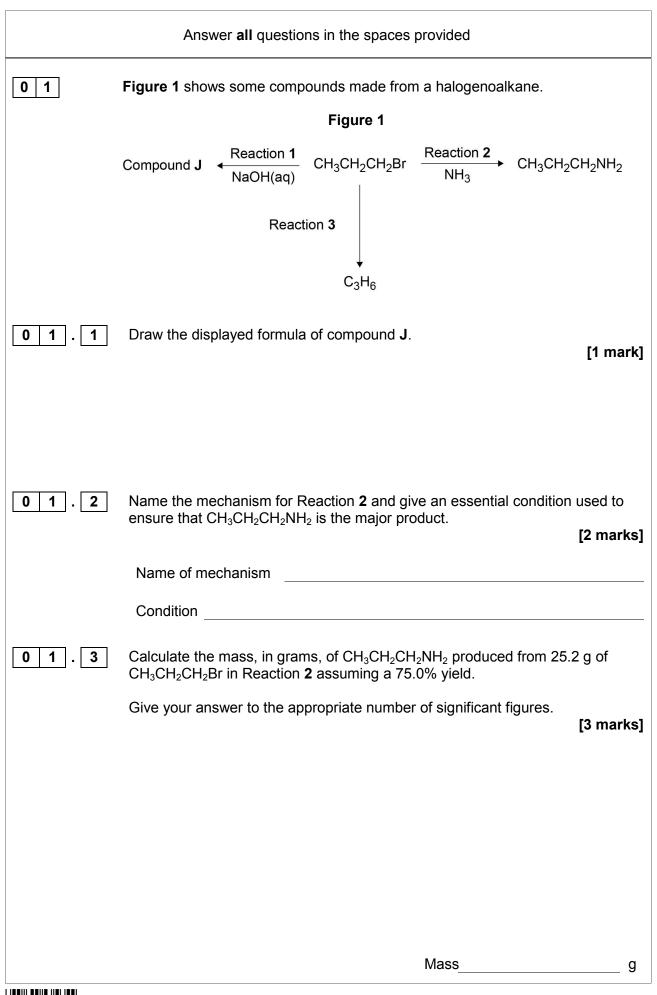
Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- · a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

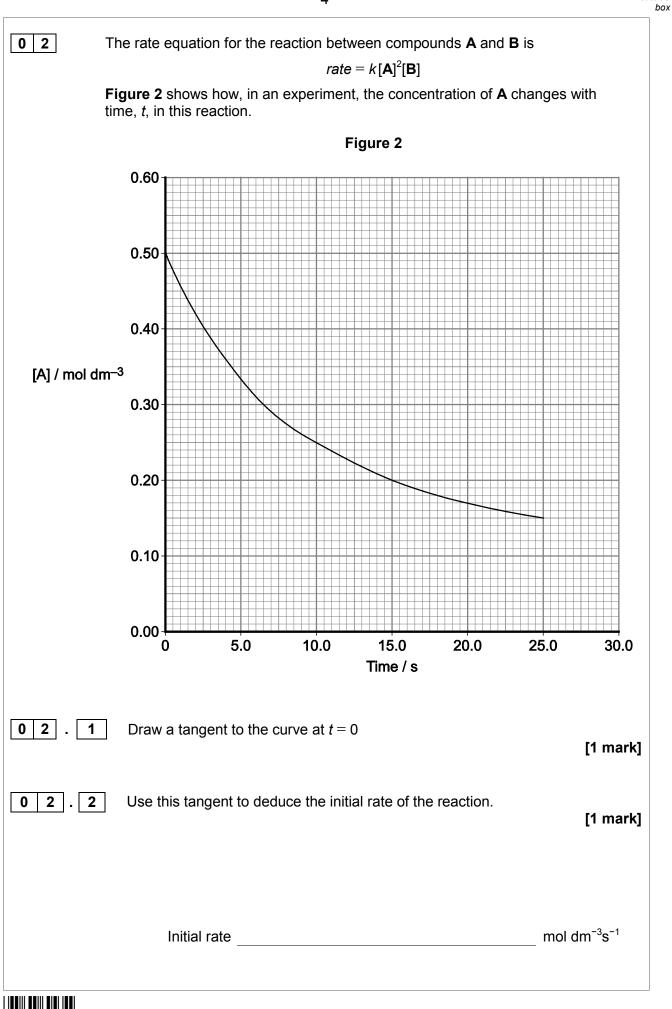
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- · Do all rough work in this booklet. Cross through any work you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

Find Personal Tutor from www.wisesprout.co.uk


2

IB/M/Jun17/7405/2

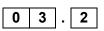
找名校导师,用小草线上辅导(微信小程序同名)

0 1 . 4	When Reaction 2 is carried out under different conditions, a compound with molecular formula C ₉ H ₂₁ N is produced. Draw the skeletal formula of the compound. Identify the functional group in the compound including its classification. [2 marks] Skeletal formula	
	Functional group including classification	
0 1 . 5	Identify the reagent and conditions used in Reaction 3 . [1 mark]	
0 1 . 6	Name and outline a mechanism for Reaction 3 . [4 marks]	
	Name of mechanism	
	Mechanism	
	-	_ L

Do not write

outside the

IB/M/Jun17/7405/2


找名校导师,用小草线上辅导(微信小程序同名)

02.3	The experiment was repeated at the same temperature and with the initial concentration of B but with a different initial concentration of A . The new initial rate was 1.7 times greater than in the original experim Calculate the new initial concentration of A .	
	Initial concentration of A	mol dm ⁻³
	Turn over for the next question	

0 3	A series of experiments is carried out with compounds C and D . Using the data obtained, the rate equation for the reaction between the two compounds is deduced to be $rate = k[C][D]$
	In one experiment at 25 °C, the initial rate of reaction is 3.1×10^{-3} mol dm ⁻³ s ⁻¹ when the initial concentration of C is 0.48 mol dm ⁻³ and the initial concentration of D is 0.23 mol dm ⁻³
03.1	Calculate a value for the rate constant at this temperature and give its units. [3 marks]
	Rate constant Units

找名校导师,用小草线上辅导(微信小程序同名)

An equation that relates the rate constant, k, to the activation energy, E_a , and the temperature, T, is

$$\ln k = \frac{-E_a}{RT} + \ln A$$

7

Use this equation and your answer from Question **3.1** to calculate a value, in $kJ \text{ mol}^{-1}$, for the activation energy of this reaction at 25 °C.

For this reaction $\ln A = 16.9$

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

(If you were unable to complete Question **3.1** you should use the value of 3.2×10^{-3} for the rate constant. This is not the correct value.)

[4 marks]

Activation energy	kJ mol⁻¹

0 4	The aldehyde $CH_3CH_2CH_2CH_2CHO$ reacts with KCN followed by dilute acid to form a racemic mixture of the two stereoisomers of $CH_3CH_2CH_2CH_2CH(OH)CN$
04.1	Give the IUPAC name of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [1 mark]
04.2	Describe how you would distinguish between separate samples of the two stereoisomers of CH ₃ CH ₂ CH ₂ CH ₂ CH(OH)CN [2 marks]
04.3	Explain why the reaction produces a racemic mixture. [3 marks]

04.4	An isomer of $CH_3CH_2CH_2CH_2CHO$ reacts with KCN followed by dilute acid to form a compound that does not show stereoisomerism.
	Draw the structure of the compound formed and justify why it does not show stereoisomerism. [2 marks]
	Structure
	Justification
	Turn over for the next question

Typesetter code

找名校导师,用小草线上辅导(微信小程序同名)

Do not write outside the box

0 5	Ethanoic acid and as shown.	d ethane-1,2-c	liol react together to	o form the dies	ter (C ₆ H ₁₀ O ₄)
	2CH₃COOH	(I) + HOCH	₂CH₂OH(I) ⇔ C	₅ H ₁₀ O ₄ (I) + 2	H ₂ O(I)
0 5 . 1	Draw a structural	formula for th	e diester C ₆ H ₁₀ O ₄		[1 mark]
0 5.2	A small amount of ethanoic acid and		added to a mixture ethane-1,2-diol.	e of 0.470 mol o	of
	The mixture was	left to reach e	quilibrium at a cons	stant temperatu	ıre.
	Complete Table	1.	Table 1		
		Amour	nt in the mixture /	mol	
		СН₃СООН	HOCH ₂ CH ₂ OH	$C_6H_{10}O_4$	H ₂ O
	At the start	0.470	0.205	0	0
	At equilibrium	0.180			
					[3 marks]
	Space for working	g			
					IB/M/Jun17/7405/2

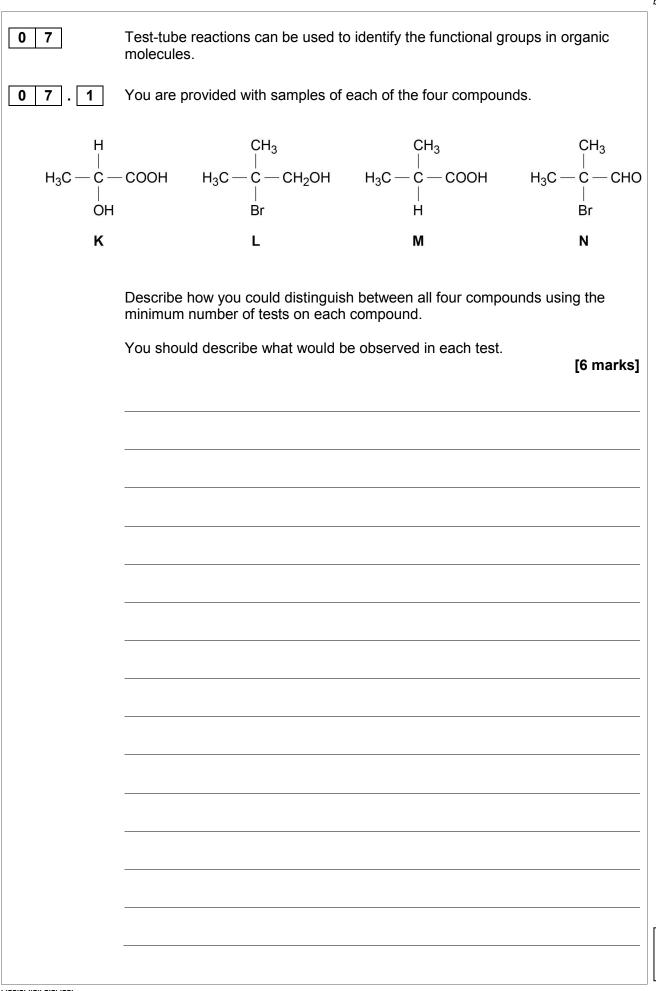
0 5.3	Write an expression	on for the equili	brium constant, <i>K</i>	, for the read	xtion.
	The total volume of correct value for <i>h</i>			e measured t	o allow a
	Justify this statem	ent.			
	Expression				[2 marks]
	Justification				
0 5.4	A different mixture and left to reach e Question 5.2 The amounts pres	equilibrium at a o	different temperati	ure from the	experiment in
			Table 2		
		Amount i	n the mixture / m	ol	
		CH₃COOH	HOCH ₂ CH ₂ OH	$C_6H_{10}O_4$	H₂O
	At new equilibrium	To be calculated	0.264	0.802	1.15
	The value of <i>K</i> _c wa Use this value and ethanoic acid pres Give your answer	d the data in Ta sent in the new	ble 2 to calculate equilibrium mixture	the amount, e.	
	Amount of etha	noic acid			Turn over ►
1 1					IB/M/Jun17/7405/2

0 6	Use the Data Booklet to help you answer this question. This question is about amino acids and peptide (amide) links. Draw the structure of the zwitterion formed by phenylalanine.	[1 mark]
06.2	Draw the structure of serine at high pH.	[1 mark]
06.3	Draw the structures of both dipeptides formed when phenylalanine r serine. In each structure show all the atoms and bonds in the amide link.	eacts with [2 marks]

0	6] . [4	
		J L		

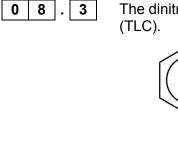
An amide link is also formed when an acyl chloride reacts with a primary amine.

Name and outline a mechanism for the reaction between CH_3CH_2COCl and $CH_3CH_2NH_2$

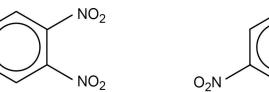

Give the IUPAC name of the organic product.

[6 marks]

Name of mechanism


Mechanism

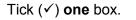
IUPAC name of organic product



0 8	This question is about nitrobenzenes.
0 8 . 1	Nitrobenzene reacts when heated with a mixture of concentrated nitric acid and concentrated sulfuric acid to form a mixture of three isomeric dinitrobenzenes.
	Write an equation for the reaction of concentrated nitric acid with concentrated sulfuric acid to form the species that reacts with nitrobenzene. [1 mark]
0 8 . 2	Name and outline a mechanism for the reaction of this species with nitrobenzene to form 1,3-dinitrobenzene.
	[4 marks]
	Name of mechanism
	Mechanism
	Turn over for the next question
	Turn over >

 NO_2

The dinitrobenzenes shown were investigated by thin layer chromatography (TLC).


In an experiment, carried out in a fume cupboard, a concentrated solution of pure 1,4-dinitrobenzene was spotted on a TLC plate coated with a solid that contains polar bonds. Hexane was used as the solvent in a beaker with a lid.

The start line, drawn in pencil, the final position of the spot and the final solvent front are shown on the chromatogram in **Figure 3**

Figure 3

Use the chromatogram in **Figure 3** to deduce the R_f value of 1,4-dinitrobenzene in this experiment.

[1 mark]

08.4	State in general terms what determines the distance travelled by a spot in TLC. [1 mark]
0 8 . 5	To obtain the chromatogram, the TLC plate was held by the edges and placed in the solvent in the beaker in the fume cupboard. The lid was then replaced on the beaker.
	Give one other practical requirement when placing the plate in the beaker. [1 mark]
0 8 . 6	A second TLC experiment was carried out using 1,2-dinitrobenzene and
	1,4-dinitrobenzene. An identical plate to that in Question 8.3 was used under the same conditions with the same solvent. In this experiment, the R_f value of 1,4-dinitrobenzene was found to be greater than that of 1,2-dinitrobenzene.
	Deduce the relative polarities of the 1,2-dinitrobenzene and 1,4-dinitrobenzene and explain why 1,4-dinitrobenzene has the greater R_f value. [2 marks]
	Relative polarities
	Explanation

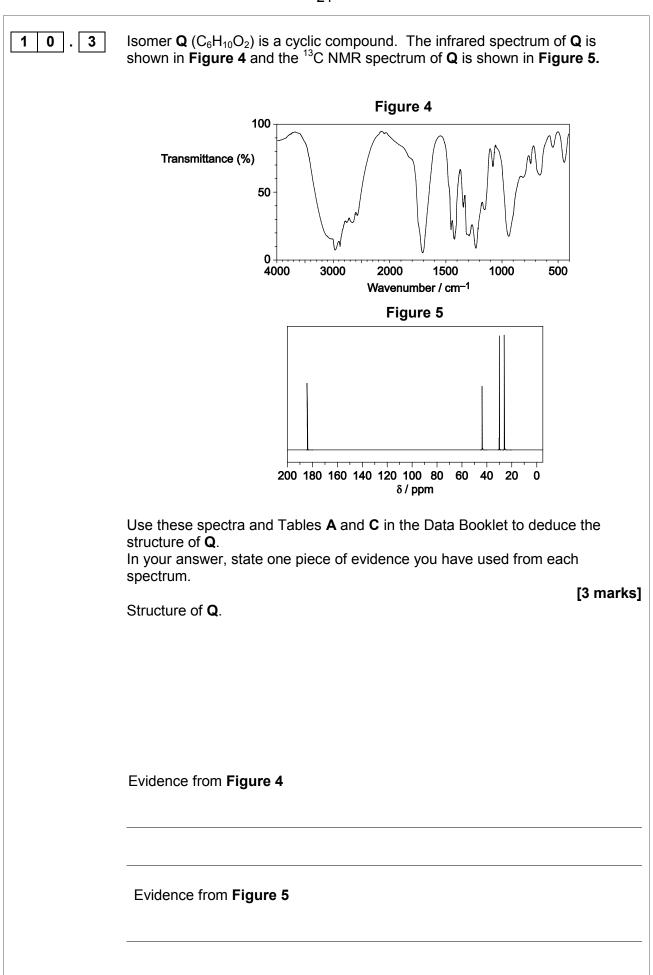
08.7A pl

A third TLC experiment was carried out using 1,2-dinitrobenzene. An identical plate to that in Question **8.3** was used under the same conditions, but the solvent used contained a mixture of hexane and ethyl ethanoate.

A student stated that the R_f value of 1,2-dinitrobenzene in this third experiment would be greater than that of 1,2-dinitrobenzene in the experiment in Question **8.6**

Is the student correct? Justify your answer.

[2 marks]


09	Use the Data Booklet to help you answer these questions.		
	DNA exists as two strands of nucleotides in the form of a double helix with hydrogen bonding between the two strands.		
09.1	A deoxyribose molecule in a strand of DNA is shown.		
	[DNA strand] CH ₂ V V		
	Name the types of group attached to 2-deoxyribose at positions X and Y. [2 marks]		
	X		
	Υ		
09.2	In the DNA double helix, adenine is linked by hydrogen bonds to a molecule in the other strand of DNA.		
Complete the diagram below to show the other molecule and the hydrogen bonds between it and adenine.			
[DNA strand	[2 marks]		

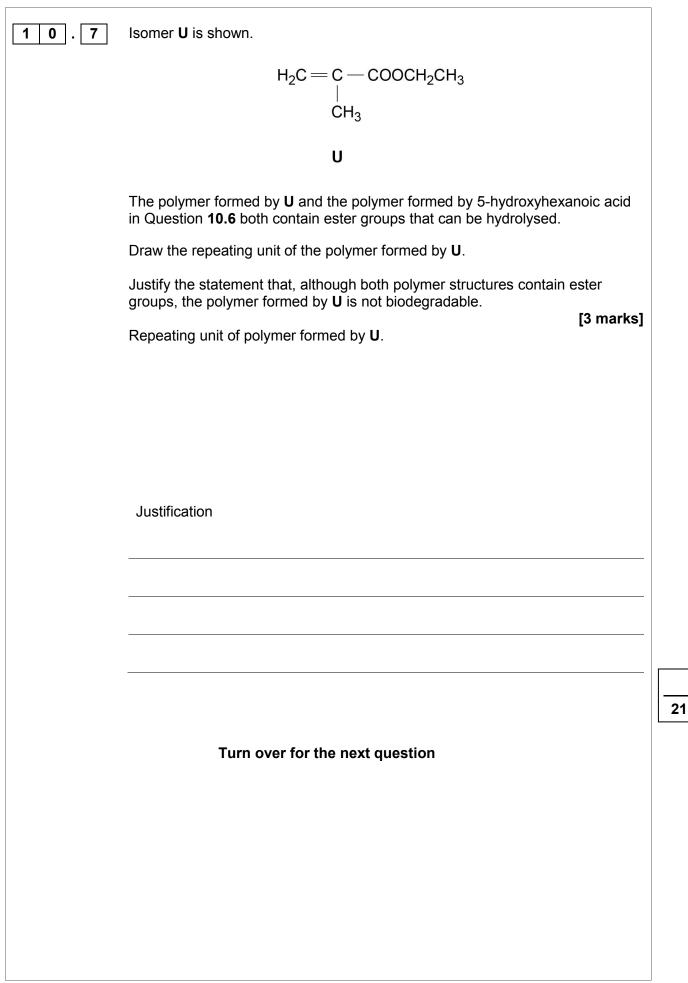
1 0 This question is about six isomers of C₆H₁₀O₂ Give the full IUPAC name of isomer P. 1 0 1 CH₃CH₂ COOH)c=c(CH_3 [1 mark] 1 0 2 A sample of **P** was mixed with an excess of oxygen and the mixture ignited. . After cooling to the original temperature, the total volume of gas remaining was 335 cm³ When this gas mixture was passed through aqueous sodium hydroxide, the carbon dioxide reacted and the volume of gas decreased to 155 cm³ Both gas volumes were measured at 25 °C and 105 kPa Write an equation for the combustion of P in an excess of oxygen and calculate the mass, in mg, of P used. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ [5 marks] Mass of **P** used mg

Do not write

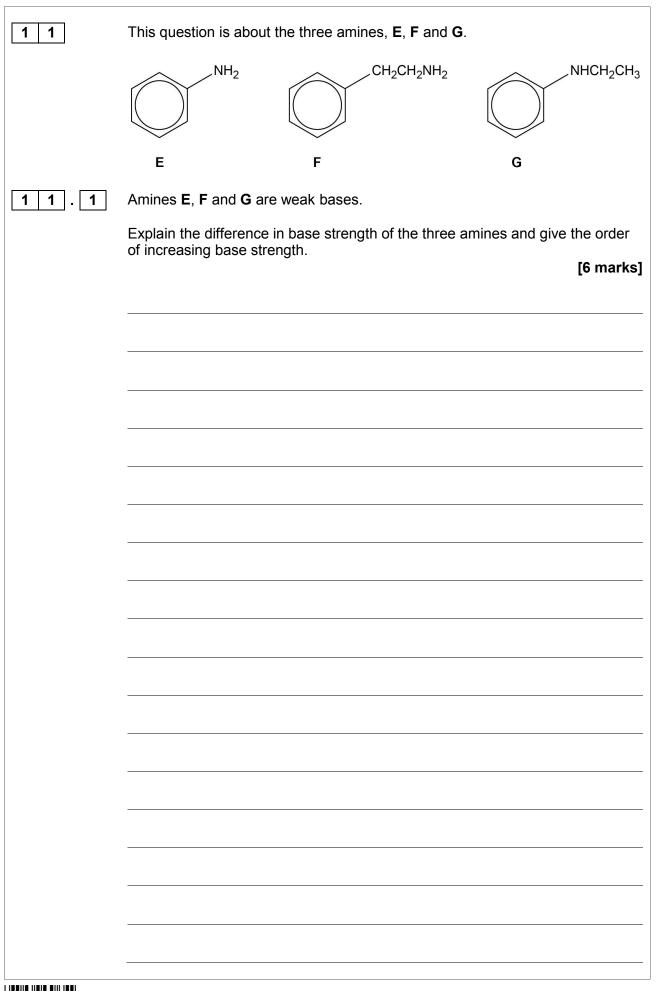
找名校导师,用小草线上辅导(微信小程序同名)

找名校导师,用小草线上辅导(微信小程序同名)

10.4	Isomers R and S are shown.		
	$\begin{array}{c} O \\ \parallel \\ C \\ H_{3}C \\ \end{array} \begin{array}{c} CH_{2} \\ CH_{2} \\ \end{array} \begin{array}{c} CH_{2} \\ H_{3}C \\ \end{array} \begin{array}{c} CH_{2} \\ H_{3}C \\ \end{array} \begin{array}{c} CH_{2} \\ CH_{2} \\ CH_{2} \\ H_{3}C \\ \end{array} \end{array}$		
	Although the ¹³ C spectra of R and S both show the same number of peaks, the spectra can be used to distinguish between the isomers.		
	Justify this statement using Table ${f C}$ from the Data Booklet.		
	Give the number of peaks for each isomer. [3 marks]		
	Justification		
	Number of peaks		

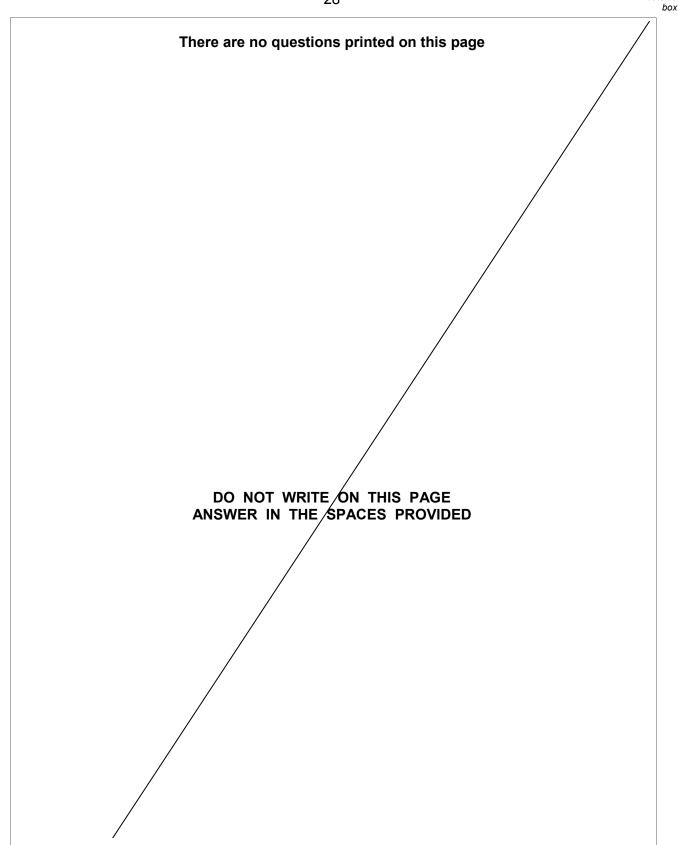

Although the ¹ H spectra of R and S both show the same number of peaks, the spectra can be used to distinguish between the isomers. Justify this statement using the splitting patterns of the peaks.
Give the number of peaks for each isomer. [3 marks]
Justification
Number of peaks
Question 10 continues on the next page

[3 marks]


24		
10.6	The action of heat on 5-hydroxyhexanoic acid can lead to two different products.	
	On gentle heating, 5-hydroxyhexanoic acid loses water to form a cyclic compound, T ($C_6H_{10}O_2$).	
	Under different conditions, 5-hydroxyhexanoic acid forms a polyester.	
	Draw the structure of T .	
	Draw the repeating unit of the polyester and name the type of polymerisation. [3 mark	
	Structure of T	
	Repeating unit of polyester	
	Type of polymerisation	

找名校导师,用小草线上辅导(微<u>信小程序</u>同名)

找名校导师,用小草线上辅导(微信小程序同名)



1 1 . 2	Amine F can be prepared in a three-step synthesis starting from methylbenzene.		
	Suggest the structures of the two intermediate compounds.		
	For each step, give reagents and conditions only. are not required.		
		[5 marks]	
	END OF QUESTIONS		
		-	

Do not write outside the

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

