

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	

GCSE CHEMISTRY

H

Higher Tier Paper 1

Monday 22 May 2023 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

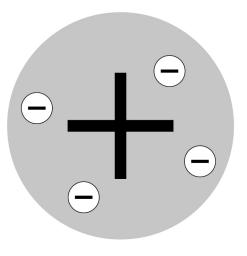
Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9	_	
10		
TOTAL		



- 0 1 Discoveries in chemistry led to a better understanding of atomic structure.
- 0 1 . 1 Atoms were originally thought to be tiny spheres that could not be divided.

The plum pudding model of the atom was then developed.

Figure 1 represents the plum pudding model of the atom.

Figure 1

Describe the plum pudding model of the atom.	[2 marks]
Atoms contain electrons, neutrons and protons. Write these three particles in order of their discovery.	
Earliest	[1 mark]
Latest	

0 1 .

	Very few atoms of the element tennessine (Ts) have ever been identified.
	The atomic number of tennessine is 117
0 1.3	Predict the number of outer shell electrons in an atom of tennessine.
	Give one reason for your answer.
	Use the periodic table. [2 marks]
	ןב ווומואסן
	Number of outer shell electrons
	Reason
0 1.4	Tennessine was first identified by a small group of scientists in 2010.
	Suggest one reason why tennessine was not accepted as a new element by other scientists until 2015.
	[1 mark]

Question 1 continues on the next page

找名校导师,用小草线上辅导(微信小程序同名)

9

The discovery of isotopes explained why some relative atomic masses are not whole numbers.

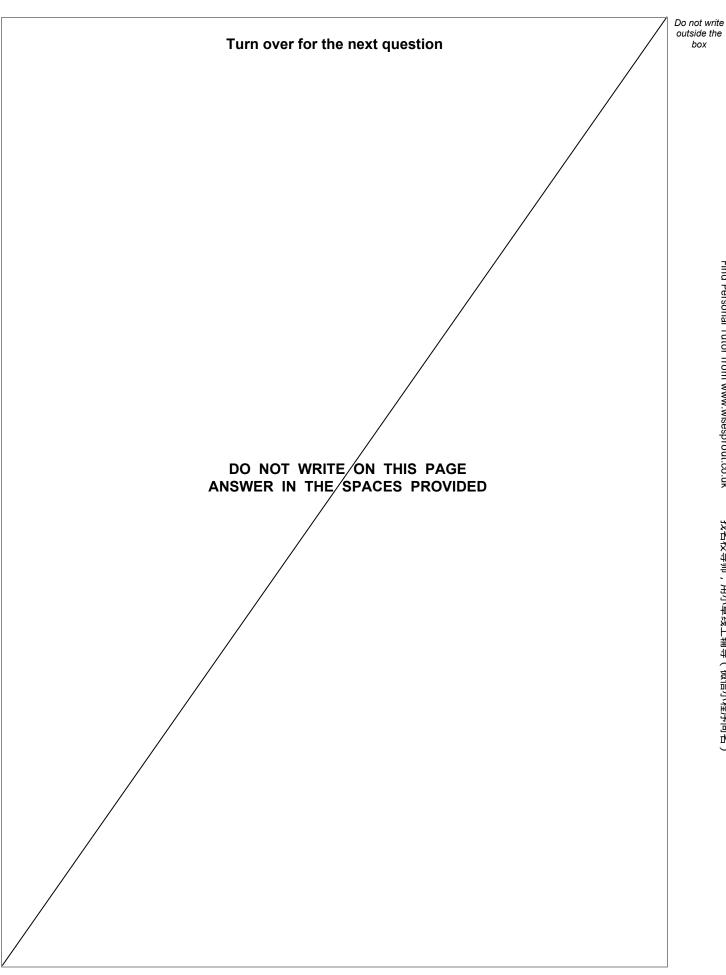
Element **R** has two isotopes.

0 1 . 5

Table 1 shows the mass numbers and percentage abundances of the isotopes of element R.

Table 1

Mass number	Percentage abundance (%)
6	7.6
7	92.4


Calculate the relative atomic mass (A_r) of element **R**.

Relative atomic mass (1 decimal place) =

Give your answer to 1 decimal place

olvo your anower to 1 document place.	[3 marks]

0 2

This question is about temperature changes.

A student investigated the change in temperature of a solution when different masses of ammonium nitrate were dissolved in water.

This is the method used.

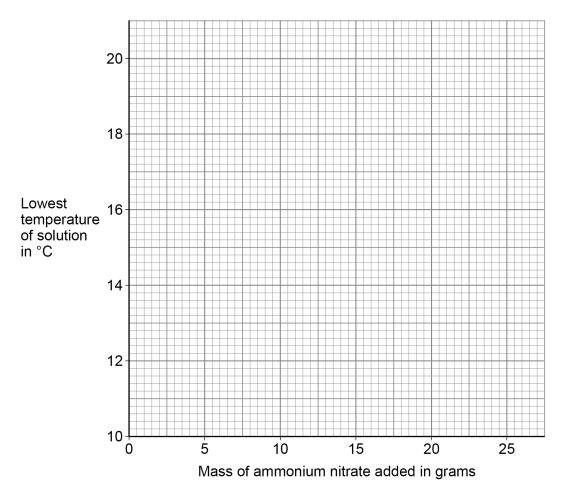
- 1. Measure 200 cm³ of water into a polystyrene cup.
- 2. Measure the temperature of the water.
- 3. Add 4.0 g of ammonium nitrate to the water.
- 4. Stir the solution until all the ammonium nitrate has dissolved.
- 5. Measure the lowest temperature reached by the solution.
- 6. Repeat steps 1 to 5 with different masses of ammonium nitrate.

0 2 . 1 (Give the independent variable and the dependent variable in the investigation.
	[2 marks]
I	ndependent variable
[Dependent variable

Table 2 shows the results.

Table 2

Mass of ammonium nitrate added in grams	Lowest temperature of solution in °C
4.0	18.2
8.0	16.2
12.0	15.2
16.0	13.6
20.0	12.4
24.0	10.6



0 2.2 Plot the data from Table 2 on Figure 2.

Draw a line of best fit.

[3 marks]

Figure 2

0 2 . 3 Determine the initial temperature of the water.

You should extend your line of best fit on Figure 2.

[2 marks]

Initial temperature of the water = °C

| Mow do the results show that dissolving ammonium nitrate in water is endothermic?

The student repeated the experiment three more times.

Table 3 shows the results for 8.0 g of ammonium nitrate.

Table 3

	Trial 1	Trial 2	Trial 3	Trial 4	Mean
Lowest temperature of solution in °C	16.2	16.6	16.8	16.4	16.5

0 2 . 5	The student recorded the mean lowest temperature of the solution for 8.0 g of ammonium nitrate as 16.5 \pm 0.3 °C.	
	Explain why the student included ± 0.3 °C after the mean lowest temperature. [2 marks]	
0 2.6	What type of error is shown by the results in Table 3 ? [1 mark] Tick (✓) one box.	
	Random error	
	Systematic error	
	Zero error	

0 3	This question is about making a soluble salt.	out
0 3.1	Plan a method to make pure, dry crystals of zinc chloride from zinc carbonate and a dilute acid.	
	[6 marks]
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
0 3 . 2	Name two other substances that can each be reacted with a dilute acid to make zinc chloride.	
	Do not refer to zinc carbonate in your answer. [2 marks] _
	1	- [-
	2	_

0 4

This question is about hydrogen and compounds of hydrogen.

Figure 3 shows the displayed formulae for the reaction between hydrogen and chlorine.

Figure 3

$$H-H + Cl-Cl \longrightarrow 2H-Cl$$

Table 4 shows the bond energies.

Table 4

Bond	$H\!-\!H$	Cl — Cl	H—Cl
Bond energy in kJ/mol	436	346	432

in **Figure** :

Which expression shows how to calculate the overall energy change for the reaction in **Figure 3**?

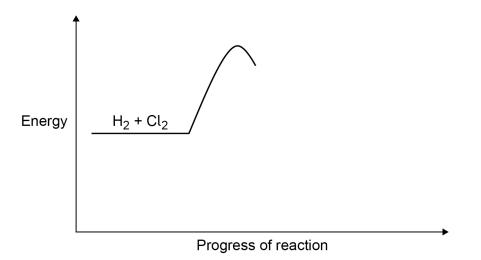
Use Table 4.

[1 mark]

Tick (✓) one box.

	The reaction between hydrogen and chlorine is exothermic.
0 4.2	Explain why this reaction releases energy to the surroundings. [2 marks]

O 4.3 Figure 4 shows part of a reaction profile for the reaction between hydrogen and chlorine.


Complete the reaction profile in Figure 4.

You should:

- label the activation energy
- label the overall energy change.

[3 marks]

Figure 4

Question 4 continues on the next page

Do not write outside the box

	12	
0 4.4	Draw a dot and cross diagram for a molecule of hydrogen chloride (HCl).	
	Show the outer shell electrons only.	[2 marks]

找名校导师,用<u>小草线上辅</u>导(微信小程序同名)

0 4.5 Figure 5 represents molecules of methane and of poly(ethene).

Figure 5

Methane

Poly(ethene)

$$\begin{pmatrix}
H & H \\
-C & C \\
- & | \\
H & H
\end{pmatrix}$$

Methane is a gas at room temperature but poly(ethene) is a solid at room temperature.

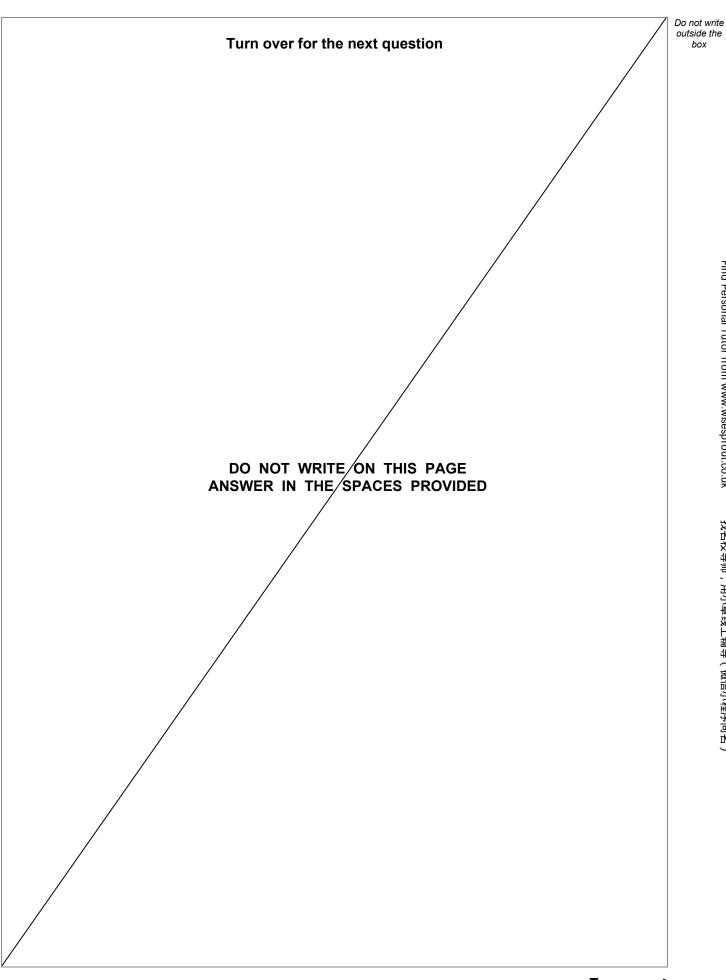
Explain why methane and poly(ethene) exist in different sta	ates at room temperature.
---	---------------------------

[4 marks]

3		
3		

Turn over for the next question

0 5	This question is about acids and alkalis.
0 5 . 1	Ethanoic acid is a weak acid.
	What is meant by 'weak acid'?
	Answer in terms of ionisation. [1 mark]
0 5 . 2	The concentration of an acid can be measured in mol/dm ³ .
	Which combination of changes increases the concentration of an acid? [1 mark]
	Tick (✓) one box.
	The mass of acid dissolved is halved and the volume of the solution is halved.
	The mass of acid dissolved is halved and the volume of the solution is doubled.
	The mass of acid dissolved is doubled and the volume of the solution is halved.
	The mass of acid dissolved is doubled and the volume of the solution is doubled.
0 5.3	The concentration of an acid can be determined by titration. An indicator is added to an alkali in a flask.
	All indicator is added to air aireair in a hask.
	Name an indicator that can be used in this titration.
	Give the colour change of the indicator when acid from a burette is added to the alkali in the flask.
	[2 marks]
	Name of indicator
	Colour change from to

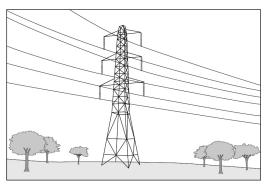

	Concentration (3 significant figures) =	mol/dm ³
		[5 marks]
	• the concentration of the nitric acid in mol/dm ³ .	
	• the number of moles of nitric acid in 23.6 cm³ of the nitric acid	
	 the number of moles of sodium carbonate in 25.0 cm³ of the solution 	
	You should calculate:	
	Calculate the concentration of the nitric acid. Give your answer to 3 significant figures.	
	23.6 cm ³ of nitric acid.	
	25.0 cm ³ of 0.124 mol/dm ³ sodium carbonate solution is neutralised by	
	$Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + CO_2 + H_2O$	
	The equation for the reaction is:	
0 5 . 5	A student does a titration using sodium carbonate solution and nitric acid.	
		[1 mark]
	Give the formula of the ion that makes a solution alkaline.	
0 5 . 4	Sodium carbonate dissolves in water to produce an alkaline solution.	

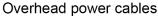
12

	When hydrochloric acid dissolves in water, hydrogen ions (H ⁺) and chloride ions (Cl ⁻) are produced.	
0 5.6	A solution of hydrochloric acid with pH 4.5 has a concentration of H^+ ions of $3.16 \times 10^{-5} \text{ mol/dm}^3$.	
	What is the concentration of H ⁺ ions in a solution of hydrochloric acid with pH 2.5? [1 mark]	
	Concentration of H ⁺ ions =mol/dm ³	
0 5.7	Which element has atoms that have the same electronic structure as the chloride ion?	
	Use the periodic table. [1 mark]	

Do not write outside the

0 6


This question is about uses of metals in electrical wires.


Electrical wires can be made from:

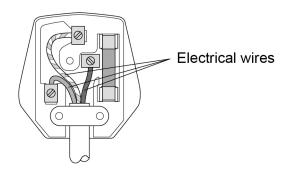
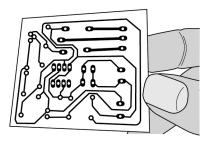

- aluminium
- copper
- silver.

Figure 6 shows three uses of electrical wires.


Figure 6

Wiring in homes

Printed circuit boards

Table 5 shows information about the metals.

The higher the value for electrical conductivity, the better the metal is at conducting electricity.

Table 5

	Aluminium	Copper	Silver
Electrical conductivity in arbitrary units	37.7	59.6	63.0
Density in g/cm³	2.7	9.0	10.5
Cost of metal per kg in £	1.50	7.00	640.00

4
74
ΠŊ
->i
X
细
找名校导师
ᅫ
-
世
щ
4m1
110
Ж.
⊢
444
===
/草线上辅导
_:
微信/
=
\neg
갋
-
W
野同
序同名
小程序同名
(路回名)

0 6.1	Evaluate the use of aluminium, copper and silver for the types of electrical wires shown in Figure 6 .		
	Use Table 5 .	[4 marks]	
0 6 . 2	Describe how metals conduct electricity.		
	, and the second	[3 marks]	
	Question 6 continues on the next page		

		1
0 6.3	Electrical wires are usually made of pure metals and not alloys. This is because pure metals are better electrical conductors.	Do not write outside the box
	Suggest why alloys do not conduct electricity as well as pure metals.	
	Answer in terms of structure and bonding. [2 marks]	
		9
	· ·	1 0

This question is about electrolysis.

Aluminium is manufactured by electrolysing a molten mixture of aluminium oxide (Al_2O_3) and cryolite (Na_3AlF_6).

0 7 . 1

Complete the half equation for the reaction occurring at the negative electrode.

[1 mark]

$$Al^{3+} \ + \underline{\hspace{1cm}} e^{-} \ \rightarrow \ Al$$

Suggest **one** reason why sodium is **not** a product of the electrolysis.

[1 mark]

Question 7 continues on the next page

Do not write outside the

A student investigated the electrolysis of an aqueous solution of a different compound.

Figure 7 shows the apparatus.

Test tubes

Aqueous solution

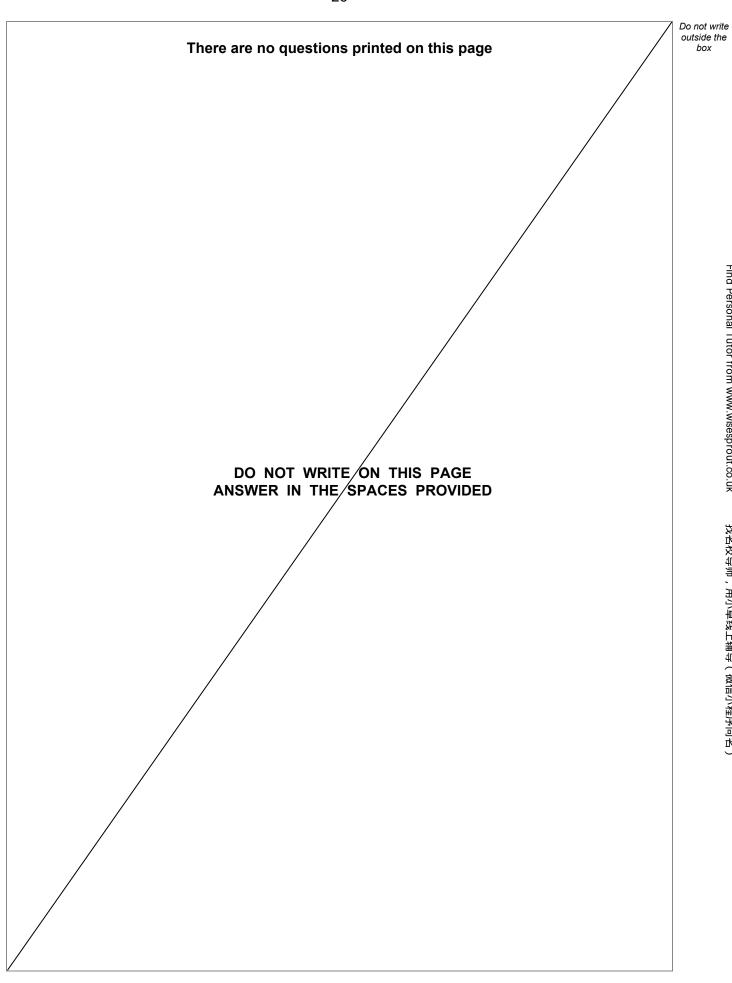
Stopper

Electrodes

Power supply

	Hydrogen was produced at the negative electrode and oxygen was produced at the positive electrode.	Do no outsic bo
0 7.3	Explain how oxygen was produced from water during the electrolysis of this aqueous solution.	
	[4 marks]	
0 7.4	The student compared the volumes of the two gases collected.	
	How can the student change the apparatus in Figure 7 to compare the volumes of the two gases produced more accurately?	
	Give one reason for your answer.	
	[2 marks] Change	
	Reason	
0 7 . 5	The overall equation for the reaction is:	
	$2 H_2 O(I) \rightarrow 2 H_2(g) + O_2(g)$	
	What is the volume of oxygen produced when 20 cm ³ of hydrogen has been produced?	
	[1 mark] Tick (✓) one box.	
	10 cm ³ 20 cm ³ 40 cm ³	9

0 8	This question is about elements in the periodic table.
0 8.1	Argon has the atomic number 18
	Explain why argon does not form compounds.
	Answer in terms of electrons.
	[2 marks]
0 8 . 2	Phosphorus (P) is the element below nitrogen in the periodic table.
	Predict the formula of the compound formed between phosphorus and hydrogen. [1 mark]
	Formula =
0 8 . 3	Tellurium is the element with atomic number 52
	Predict whether tellurium reacts with metals.
	Explain your answer.
	Answer in terms of the position of tellurium in the periodic table.
	[2 marks]



\neg
_
_
_
0
_
_
ι
1
v
S
$\overline{}$
\simeq
$\overline{}$
ш
_
$\overline{}$
=
=
U
_
_
$\overline{}$
\sim
=
=
_
<
<
ė
~
2
~
<
<
77
U.
Œ
70
J.
C
=
_
U
_
_
:
ö
3
00
.00
.co.u
.co.uk
Find Personal Lutor from www.wisesprout.co.uk
.CO.UK

or from www.wisesprout.co.uk
找名校导师,
用小草线上辅导
(微信小程序同名)

	Barium (Ba) is an element in Group 2 of the periodic table. Barium reacts with hydrochloric acid.	C
0 8.4	Suggest two observations that could be made when barium reacts with hydrochloric acid. [2 marks]	
	2	
0 8 . 5	Write a balanced symbol equation for the reaction between barium and hydrochloric acid. [3 marks]	Г
	+++	

Turn over for the next question

0 9 This question is about displacement reactions. Iron is extracted from iron oxide by a displacement reaction with carbon. The equation for the reaction is: $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ 0 9 Which substance in the equation is reduced? Give **one** reason for your answer. Answer in terms of oxygen. [2 marks] Substance reduced Reason 0 9 Which expression shows how to calculate the mass of carbon needed to produce 1 mole of iron from iron oxide? Relative atomic mass (A_r) : C = 12[1 mark] Tick (✓) one box. $\frac{1}{3}$ × 12 g $\frac{3}{2}$ × 12 g 1 × 12 g $3 \times 12 g$ Question 9 continues on the next page

A student investigated displacement reactions of four different metals represented by $\bf A$, $\bf B$, $\bf C$ and $\bf D$.

A, B, C and D are **not** the actual chemical symbols for the metals.

The student:

- added each metal to aqueous solutions of the metal nitrates
- observed whether a reaction took place.

Table 6 shows information about three of the reaction mixtures.

Table 6

Reaction	Metal	Metal nitrate solution	Equation	
1	Α	BNO ₃	$A + 2BNO_3 \rightarrow 2B + A(NO_3)_2$	
2	С	A (NO ₃) ₂	$2C + 3A(NO_3)_2 \rightarrow 3A + 2C(NO_3)_3$	
3	С	D (NO ₃) ₂	no reaction	

is	Reaction	uation for	The ionic ed	. 3	9 .	0
ĺ	Reaction	uation for	The ionic ed	. 3	9 .	U

$$A + 2B^+ \rightarrow 2B + A^{2+}$$

Why is this a redox reaction?

[1 mark]

Tick (✓) one box.

A gains electrons and B ⁺ loses electrons.	
--	--

0 9 . 4	Which of the four metals has the greatest tendency to form positive ions? Use Table 6 . Tick (✓) one box.	[1 mark]	Do not writ outside the box
0 9.5	The nitrate ion has the formula NO ₃ ⁻ Which of the four metals could be aluminium? Explain your answer. Use Table 6 . Metal	[3 marks]	
	Question 9 continues on the next page		

Metal ${\bf X}$ is extracted from an oxide of metal ${\bf X}$ by reaction with hydrogen. The equation for the reaction is: ${\bf X}O_3 \ + \ 3\,{\bf H}_2 \ \to \ {\bf X} \ + \ 3\,{\bf H}_2 O$ The percentage atom economy for obtaining metal ${\bf X}$ by this method is 77.3%. Calculate the relative atomic mass (A_r) of metal ${\bf X}$. Relative atomic masses (A_r) : ${\bf H}={\bf 1}$ ${\bf O}={\bf 16}$ [4 marks]

Relative atomic mass (A_r) =

Do not write outside the box

	2
	1
	Suggest two reasons why. [2 marks]
	Nanoparticles of titanium dioxide are used instead of fine particles of titanium dioxide for coating self-cleaning windows.
	attracts water, so dirt is washed away by rain.
	Titanium dioxide: • helps sunlight break down dirt particles
1 0.1	Self-cleaning windows are coated with a layer of nanoparticles of titanium dioxide.
1 0	This question is about titanium dioxide (TiO ₂).

Question 10 continues on the next page

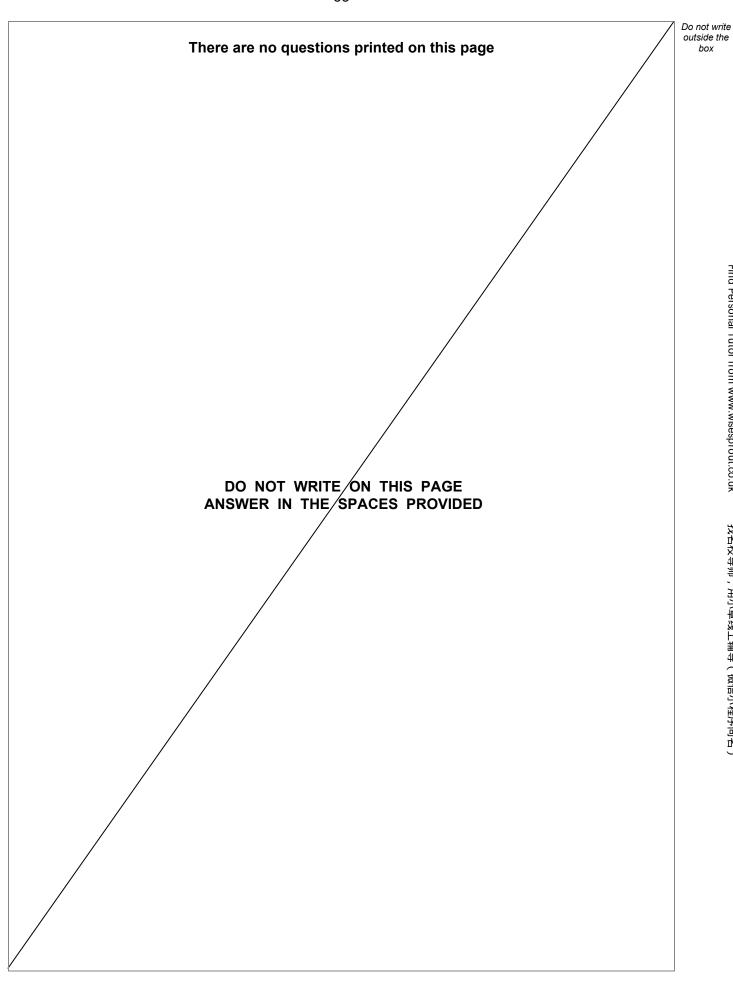
[6 marks]

1 0 . 2	Titanium is extracted from titanium dioxide in a two-stage process.
	The equation for the first stage in the process is:

$$TiO_2 + 2Cl_2 + 2C \rightarrow TiCl_4 + 2CO$$

Calculate the volume of chlorine gas needed to react completely with 100 kg of titanium dioxide.

Relative atomic masses (A_r): O = 16 Ti = 48


The volume of one mole of gas = 24 dm^3

	_	-

Volume = dm³

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

