

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Physics Paper 1F

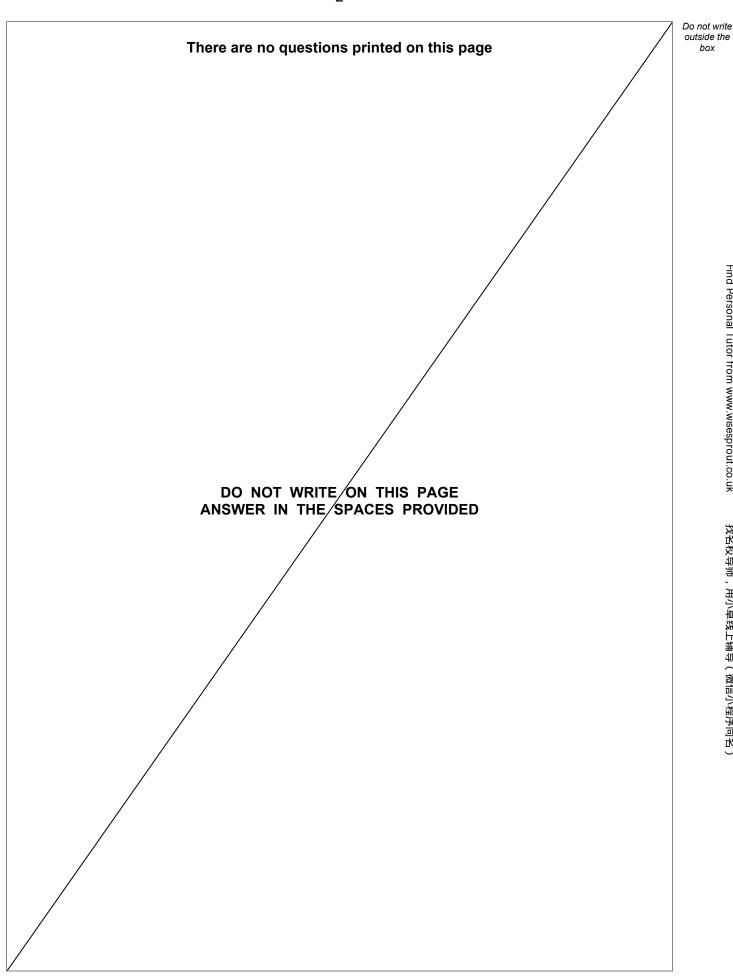
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions


- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
TOTAL		

0 1

A student investigated the density of different types of rock.

Figure 1 shows a piece of limestone.

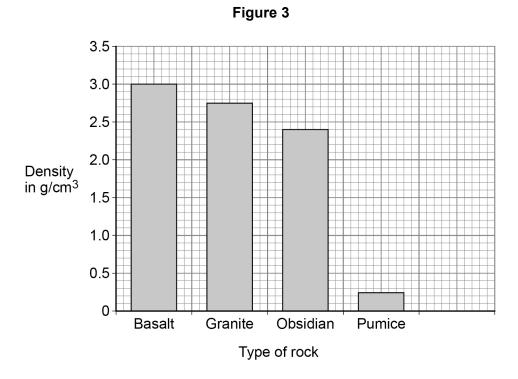
Figure 1

0 1.1	The student was not able to calculate the volume of the piece of limestone using measurements taken with a ruler.		
	What is the reason?	F4	
	Tick (✓) one box.	[1 mark]	
	A ruler is not very accurate.		
	The piece of limestone has an irregular shape.		
	There is a large uncertainty when using a ruler.		

Question 1 continues on the next page

Do not write outside the

box


4 0 1 . 2 Figure 2 shows some of the equipment given to the student. Figure 2 Measuring cylinders Limestone Displacement can Beaker Describe a method the student could use to determine the volume of the piece of limestone. [4 marks]

0 1.3	The mass of the piece of limestone was 155 g.		
	The volume of the piece of limestone was 62 cm ³ .		
	Calculate the density of the piece of limestone.		
	Use the equation:		
	$density = \frac{mass}{volume}$ [2 marks]		
	Density = g/cm ³		
0 1.4	Density can be measured in g/cm ³ .		
	What is another unit for density? [1 mark]		
	Tick (✓) one box.		
	cm/g³		
	kg/m ³		
	kg³/m		
	kg³/cm		
	Question 1 continues on the next page		

Figure 3 gives the density of some other types of rock.

The student has a sample of an unknown type of rock.

The density of this rock is 2.4 g/cm³.

0 1.5 Draw a bar on **Figure 3** to show the density of the unknown type of rock.

[1 mark]

0 1 6 Complete the sentence.

Choose the answer from the box.

[1 mark]

basalt	granite	obsidian	pumice
--------	---------	----------	--------

The data in Figure 3 suggests that the unknown type of

rock is

0 1.7	The student cannot be certain that rock in Figure 3 .	at the unknown type of rock is o	ne of the types of
	Give a reason why.		[1 mark]
	Pumice is a type of rock that has h	noles in it. The holes contain ai	r.
0 1.8	Which diagram shows the arrange	ement of particles in air?	[1 mark]
	Tick (✓) one box.		[1 IIIaik]
	0 0 0 0 0		0000
		0.000	
		69600000	
0 1 9	Complete the sentence.		
	Choose the answer from the box.		
			[1 mark]
	less than	the same as	more than
	The holes containing air cause the		types of reek
	be	the density of other	types of fock.

In a sport called far-leaping, an athlete uses a long pole to cross a river.

Figure 4 shows an athlete far-leaping.

Figure 4

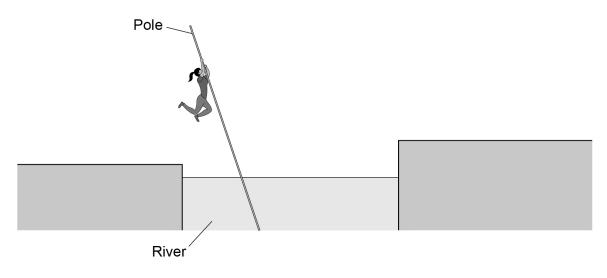
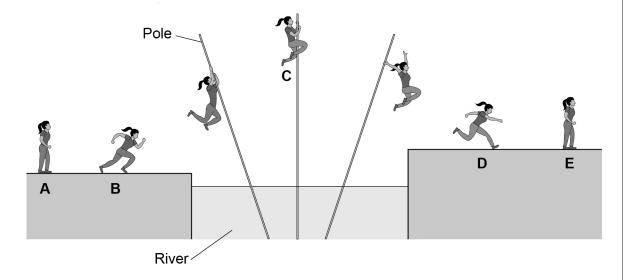



Figure 5 shows the athlete in different stages of far-leaping.

Figure 5

0 2 . 1	Complete the sentence.		
	Choose answers from the box.		[2 marka]
			[2 marks]
	chemical nuc	lear	kinetic
	elastic potential	gravitational	potential
	Between positions A and B the athlete spee	eds up. There is	
	an increase in the athlete's		_ energy and
	a decrease in the athlete's		_store of energy.
0 2 . 2	Between positions B and C the athlete jump	os to the pole and climbs	s up it.
	Which statement describes a change in the positions B and C ?	athlete's energy between	
	Tick (✓) one box.		[1 mark]
	Elastic potential energy decreases.		
	Elastic potential energy increases.		
	Gravitational potential energy decreases.		
	Gravitational potential energy increases.		
	Question 2 continues on th	ne next page	

0 2 . 3	The pole falls over from position ${\bf C}$. The athlete lets go of the pole and lands at position ${\bf D}$.
	The change in height of the athlete between positions C and D is 3.0 m.
	mass of athlete = 50 kg
	gravitational field strength = 9.8 N/kg
	Calculate the change in gravitational potential energy of the athlete between positions C and D .
	Use the equation:
	change in gravitational potential energy = mass × gravitational field strength × change in height
	[2 marks]
	Change in gravitational potential energy =J

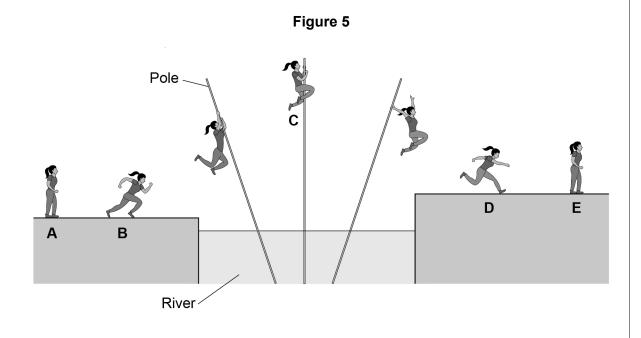
ersonal
Tutor
from
www.
rsonal Tutor from www.wisesprout.co.uk
找名校导师,用小草线上辅导(
,用小
草线上辅导
(微信
(微信小程序同名)

The kinetic energy of the athlete at position \mathbf{D} is 1600 J.

mass of athlete = 50 kg

Calculate the speed of the athlete at position \mathbf{D} .

Use the equation: $speed = \sqrt{\frac{2 \times kinetic\ energy}{mass}}$ Choose the unit from the box.


[3 marks]

r	m/s	J/kg	J/s
	Spe	eed =	Unit

Question 2 continues on the next page

Figure 5 is repeated below.

0 2 . 5	At positions A and E , the athlete is standing still.		
	Why does the athlete have less energy in position E than in position A ?		[1 mark]
	Tick (✓) one box.		[1 mark]
	Energy has been transferred from the athlete to the air.		
	The air temperature has decreased.		
	The height of the athlete above the water has increased.		

0 2 6	Athletes have a large power output when they are far-leaping.	Do not write outside the box		
	What is meant by the power of an athlete?			
	Tick (✓) one box.			
	The rate at which the athlete transfers energy.			
	The size of the maximum force exerted by the athlete.			
	The total energy transferred by the athlete.	Find Pers		
		Find Personal Tutor from www.wisesprout.co.uk		
0 2 . 7	A second athlete crossed the same river by far-leaping.	from ww		
	The second athlete had less power than the first athlete when running between position A and position B .			
	Complete the sentences.	it.co.uk		
	Choose answers from the box.	54		
	Each answer may be used once, more than once or not at all. [2 marks]	找名 校导师,用小卓		
	less than the same as more than	用小单线上辅		
	Two factors that could explain why the second athlete had less power than the first athlete are:			
	The time taken by the second athlete to run between position A and position B			
	was the first athlete.			
	The work done by the second athlete was			
	the first athlete.	12		



0 3	A filament lamp breaks if the electric current in the filament becomes too big.	
0 3.1	What is the correct symbol for a filament lamp? Tick (✓) one box.	[1 mark]
0 3.2	What is meant by an electric current? Tick (✓) one box. The energy carried by each unit of charge	[1 mark]
	The flow of electrical charge The number of electrons in a circuit The speed at which charge moves	

0 3. 3 Figure 6 shows the symbols for an ammeter, a battery and a variable resistor.

Figure 6

The manufacturer connected an ammeter, battery, filament lamp and variable resistor in series.

Draw a circuit diagram to show the manufacturer's circuit.

Include the symbol for a filament lamp from Question 03.1

[1 mark]

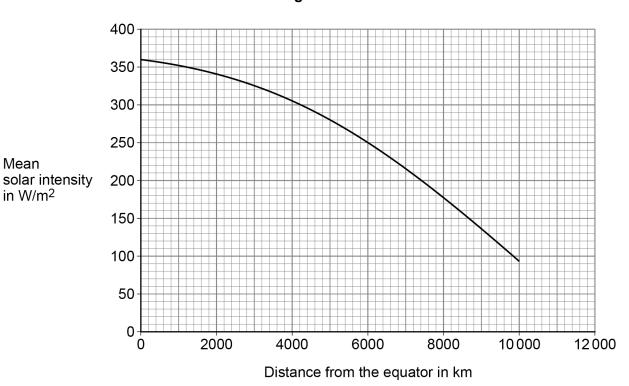
0 3 . 4	How could the manufacturer increase the current in to Tick (✓) one box.	•	[1 mark]
	Add an extra ammeter to the circuit.		
	Decrease the resistance of the variable resistor.		
	Use a battery with a smaller potential difference.		

4
74
找名校导师
챃
411
뽀
∄
-
用小草线上辅导
宁
中
in
λη.
İΤ
誰
加
714
$\overline{}$
寳
资
微信小
微信小
微信小程
微信小程序
微信小程序同
微信小程序同分
微信小程序同名
微信小程序同名)

0 3.5	When the potential difference across a filament lamp was 0.75 V, the current in the filament lamp was 0.16 A.		
	Calculate the power of the filament lamp.		
	Use the equation:		
	power = potential difference × current [2 marks]		
	Power = W		
0 3.6	Write down the equation which links charge flow (Q), current (I) and time (t). [1 mark]		
0 3.7	The manufacturer increased the current in the filament lamp to 200 mA.		
	Calculate the charge flow through the filament lamp in 15 s. [3 marks]		
	Charge flow =C		

找名校导师,用小草线上辅导(微信小程序同名)

0 3.8	The manufacturer increased the current in the filament lamp from 200 mA.		
	The filament in the lamp broke when the current reached 320 mA.		
	How many times greater than 200 mA was the current at which the filament broke? [1 mark]		
	times greater		
0 3.9	The manufacturer tested lots of filament lamps. The current at which the filament lamps broke was 320 ± 60 mA.		
	What is the range of currents at which the filament lamps broke? [1 mark] Tick (✓) one box.		
	60 mA to 320 mA		
	260 mA to 320 mA		
	320 mA to 380 mA	ıГ	
	260 mA to 380 mA		
	Turn over for the next question		



0 4

Solar intensity is a measure of the radiation received from the Sun at the surface of the Earth.

Figure 7 shows how the mean solar intensity changes with the distance from the equator.

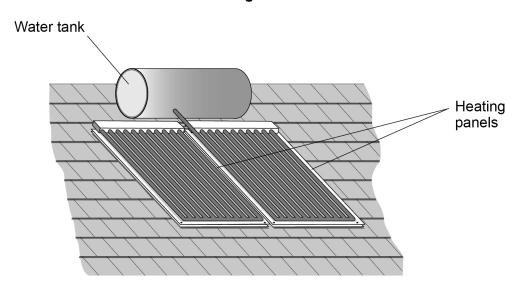
Figure 7

0 4 . **1** The city of Athens is 4200 km from the equator.

What is the mean solar intensity in Athens?

[1 mark]

Mean solar intensity = W/m²



Solar water heaters use radiation from the Sun to heat water.

The heated water is stored in a water tank.

Figure 8 shows a solar water heater on the roof of a building.

Figure 8

0 4 . 2	Cities closer to the equator have many more buildings with solar water heaters than
	cities further away from the equator.

Suggest why.

[1 mark]

1 The use of solar water heaters may reduce the need to burn fossil fuels.

Complete the sentence.

Choose the answer from the box.

[1 mark]

carbon dioxide	nitrogen	oxygen
----------------	----------	--------

Burning fossil fuels contributes to global warming because there is an increase in the amount of _____ in the atmosphere.

0 4 . 4	The efficiency of the solar water heater is 0.61	
	Calculate the useful power output when the total power input to the solar water he is 1100 W.	eater
	Use the equation:	
	useful power output = efficiency × total power input [2 m	arks]
	Useful power output =	_ W
0 4 . 5	Different solar water heaters have different sized heating panels.	
	Suggest how the size of the heating panels affects the input power to a solar water heater. [1 n	nark]
0 4 . 6	Water has a high specific heat capacity.	
	What is meant by the specific heat capacity of water? Tick (✓) one box.	nark]
	The energy required to change the state of 1 kg of water from liquid to gas.	
	The energy required to increase the temperature of 1 kg of water by 1 °C.	
	The power required to change the state of 1 kg of water from liquid to gas.	
	The power required to increase the temperature of 1 kg of water by 1 °C.	

The water tank contained 80 kg of water.
The change in thermal energy of the water was 8 400 000 J.
specific heat capacity of water = 4200 J/kg °C
Calculate the temperature change of the water.
Use the Physics Equations Sheet. [3 marks]
Temperature change =°C
Tomporatare origings
The water tank is thermally insulated.
The water tank is thermally insulated. How does thermal insulation affect the rate of energy transfer from the water in
How does thermal insulation affect the rate of energy transfer from the water in the tank?
How does thermal insulation affect the rate of energy transfer from the water in
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark]
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer. Thermal insulation does not change the rate of energy transfer.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer. Thermal insulation does not change the rate of energy transfer.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer. Thermal insulation does not change the rate of energy transfer. Thermal insulation increases the rate of energy transfer.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer. Thermal insulation does not change the rate of energy transfer.
How does thermal insulation affect the rate of energy transfer from the water in the tank? [1 mark] Tick (✓) one box. Thermal insulation decreases the rate of energy transfer. Thermal insulation does not change the rate of energy transfer. Thermal insulation increases the rate of energy transfer.

找名校导师,用小草线上辅导(微信小程序同名)

0 4 .

9

Table 1 shows information about different materials.

Table 1

Material	Thermal conductivity in arbitrary units
Α	3
В	2
С	8
D	4

Which material in **Table 1** is the best thermal insulator?

[1 mark]

Tick (✓) one box.

Α

В

С

12

0 5

Figure 9 shows a mobile phone with its battery removed.

Figure 9

A student measured the potential difference across the battery and then put the battery into the phone.

0 5 . 1 What is the equation linking current (*I*), potential difference (*V*) and resistance (*R*)? [1 mark]

Tick (✓) one box.

$$I = VR$$

$$R = I V$$

$$V = IR$$

$$V = I^2 R$$

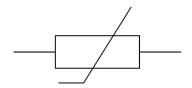
Question 5 continues on the next page

找名校导师,	
,用小草线上辅导	
(微信小程序同名)	

0 5.2	The current in the electronic circuit in the mobile phone was 0.12 A. The potential difference across the battery was 3.9 V.	
	Calculate the resistance of the electronic circuit in the mobile phone.	[3 marks]
	Resistance =	Ω

0 5.3	Write down the equation which links energy (E) , power (P) and time (t) .	[1 mark]
0 5 . 4	The battery was fully charged when it was put into the mobile phone.	
	The battery discharged when the mobile phone was switched on.	
	The average power output of the battery as it discharged was 0.46 watts.	
	The time taken to fully discharge the battery was 2500 minutes.	
	Calculate the energy transferred by the battery.	[3 marks]
	Energy transferred =	J

Question 5 continues on the next page



找名校导师,用小草线上辅导(微信小程序同名)

The mobile phone includes a sensor to monitor the temperature of the battery.

Figure 10 shows the circuit symbol for a component used in the sensor.

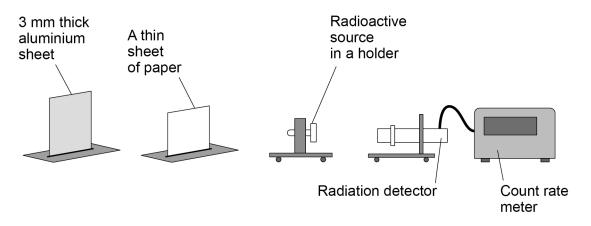
Figure 10

0 5 . 5	What component does the circuit symbol shown in Figure 10 represent?	[1 mark]
0 5 . 6	The temperature of the component in Figure 10 increases.	
	The potential difference across the component remains constant.	
	Explain what happens to the current in the component.	[2 marks]

0 6	A radioactive source emits alpha, beta and gamma radiation.
0 6.1	An alpha particle is the same as a helium nucleus.
	How many times bigger is the radius of a helium atom than the radius of an alpha particle? [1 mark]
	Tick (✓) one box.
	Less than 100 times bigger
	Exactly 5000 times bigger
	More than 10 000 times bigger
0 6.2	Alpha particles can ionise atoms in the air.
	What happens to an atom when it is ionised by an alpha particle? [2 marks]
	Tick (✓) two boxes.
	A neutron in the atom becomes a proton.
	The atom becomes a positive ion.
	The atom gains a neutron.
	The atom gains a proton.
	The atom loses an electron.
	Question 6 continues on the next page

0 6.3	A spark detector is a device that can be used to detect alpha radiation.	Do not write outside the box
	A spark detector works by alpha particles ionising atoms in the air near a wire mesh.	
	A large potential difference creates a spark when the air near the wire mesh is ionised.	
	Suggest why a spark detector cannot detect beta radiation. [1 mark]	
		Find Pe

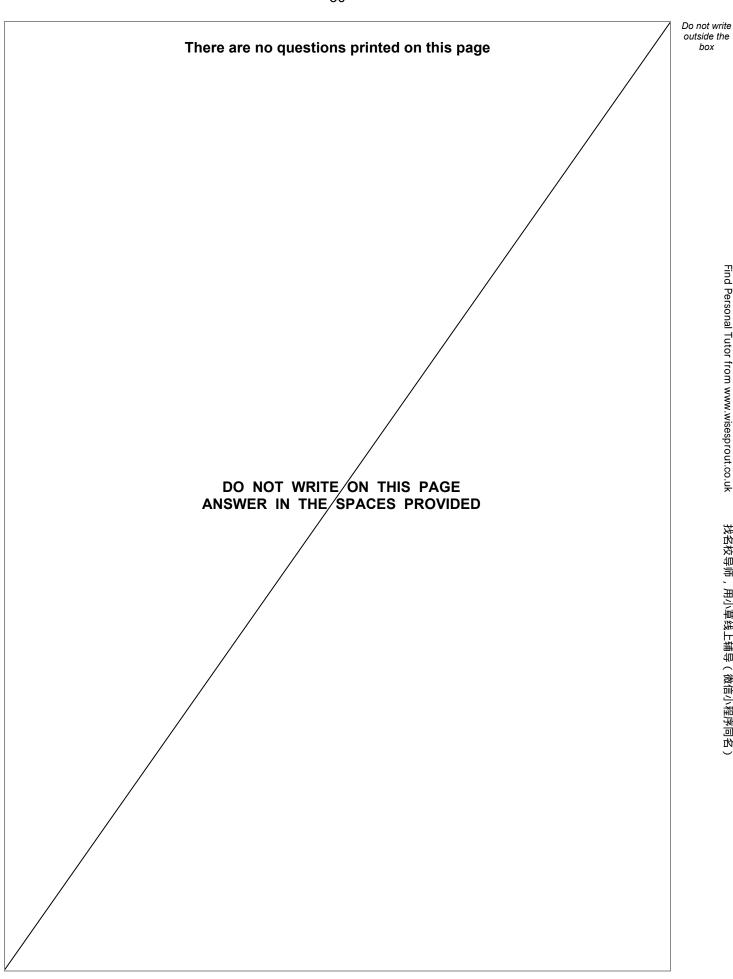
Do not write outside the


box

10

0 6.4 A teacher wants to demonstrate that the radioactive source emits alpha, beta and gamma radiation.

Figure 11 shows the equipment the teacher has.


Figure 11

Describe a method the teacher could use.	[6 marks]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

