

Please write clearly ir	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

A-level **MATHEMATICS**

Paper 1

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
TOTAL		

Answer all questions in the spaces provided.

A curve is defined by the parametric equations 1

$$x = \cos \theta$$
 and $y = \sin \theta$ where $0 \le \theta \le 2\pi$

Which of the options shown below is a Cartesian equation for this curve?

Circle your answer.

[1 mark]

$$\frac{y}{x}$$
 = tan θ

$$x^2 + y^2 = 1$$

$$\frac{y}{x} = \tan \theta$$
 $x^2 + y^2 = 1$ $x^2 - y^2 = 1$ $x^2y^2 = 1$

$$x^2y^2=1$$

A periodic sequence is defined by 2

$$U_n = (-1)^n$$

State the period of the sequence.

Circle your answer.

[1 mark]

2

3 The curve

$$y = \log_4 x$$

is transformed by a stretch, scale factor 2, parallel to the y-axis.

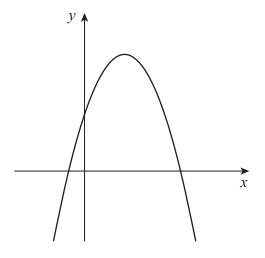
State the equation of the curve after it has been transformed.

Circle your answer.

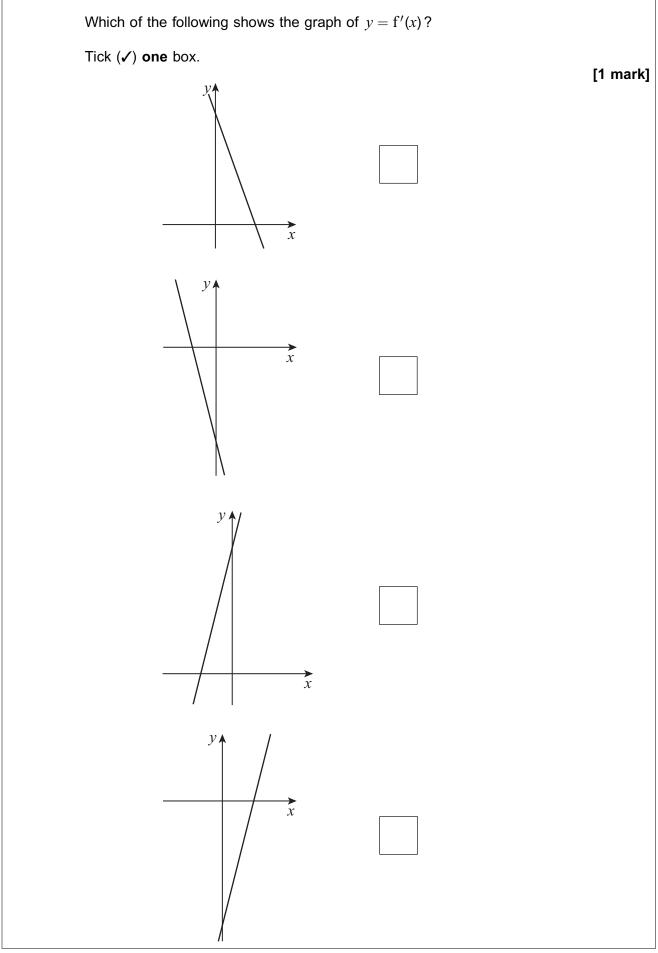
[1 mark]

$$y = \frac{1}{2}\log_4 x$$
 $y = 2\log_4 x$ $y = \log_4 2x$ $y = \log_8 x$

4 The graph of


$$y = f(x)$$

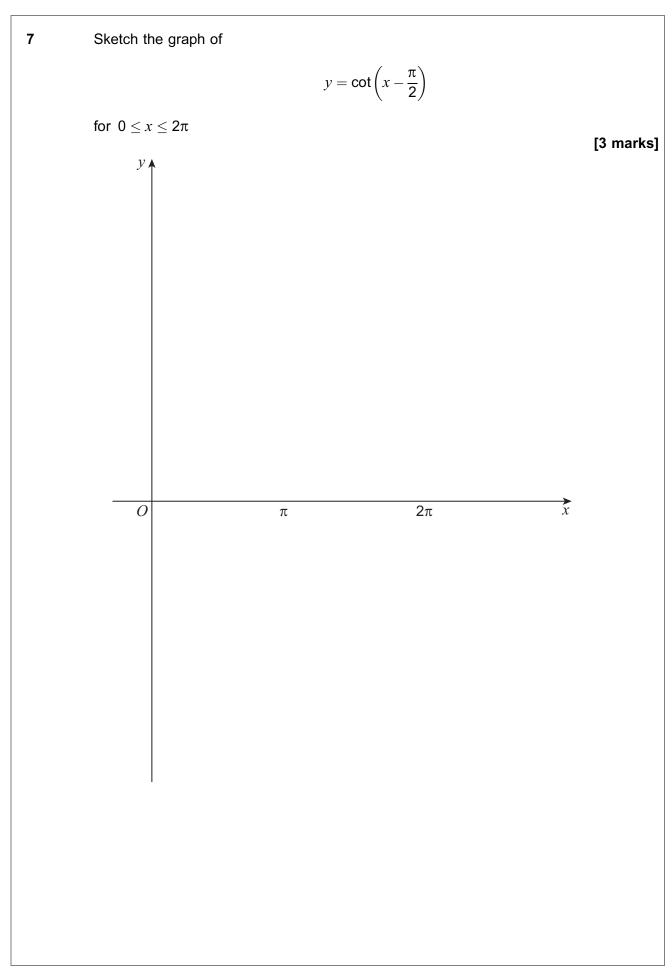
where


$$f(x) = ax^2 + bx + c$$

is shown in Figure 1.

Figure 1

П
Ξ:
ದ
U
₽
တ
0
⋾
<u>ಹ</u>
_
_'
드
0
_
⇉
ਨ
rom
\rightarrow
≶
≩
>
?
≤
⊇.
æ
S
ö
÷
2
_
₽
8
두
ᆽ

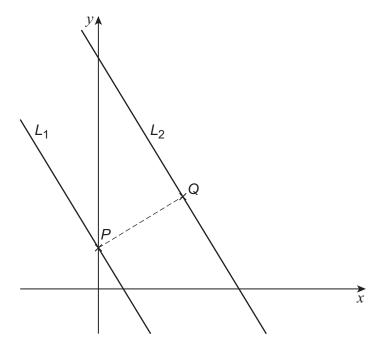

找名校导师,用小草线上辅导(微信小程序同名)

		O			
5	Find an equation of the tangent	Find an equation of the tangent to the curve			
		$y = (x - 2)^4$			
	at the point where $x = 0$		[2 morko]		
			[3 marks]		

6 (a)	Find the first two terms, in ascending powers of x , of the binomial expansion of	of
	$\left(1-\frac{x}{2}\right)^{\frac{1}{2}}$	2 marks]
6 (b)	Hence, for small values of x , show that	
	$\sin 4x + \sqrt{\cos x} \approx A + Bx + Cx^2$	
	where A , B and C are constants to be found.	4 marks]

8 The lines L_1 and L_2 are parallel.

 L_1 has equation


$$5x + 3y = 15$$

and L_2 has equation

$$5x + 3y = 83$$

 L_1 intersects the *y*-axis at the point *P*.

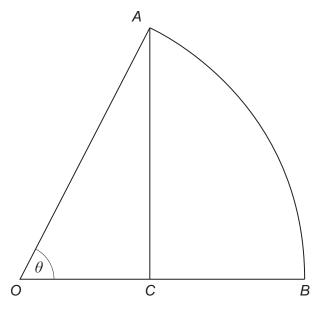
The point Q is the point on L_2 closest to P, as shown in the diagram.

8	(a) (i) Find th	ne coordinates o	f Q.

[5 marks]

8 (a) (ii) Hence show that $PQ = k\sqrt{34}$, where k is an integer to be found.			
[2 marks]			
[2 marks]	0 (-) (!!)	Here we have that $\mathbf{DO} = 1/\overline{\mathbf{O}}$ where 1 is an interest to found	
	8 (a) (II)	Hence show that $PQ = \kappa \sqrt{34}$, where κ is an integer to be found.	
			[2 marks]

8 (b)	A circle, C , has centre $(a, -17)$.	
	L_1 and L_2 are both tangents to C .	
8 (b) (i)	Find a.	70
		[2 marks]
8 (b) (ii)	Find the equation of C.	
- (-)(-)		[2 marks]


9	The first three terms of an arithmetic sequence are given by				
		2 <i>x</i> + 5	5 <i>x</i> + 1	6x + 7	
9 (a)	Show that $x = 5$ is the second seco	the only value w	hich gives an a	arithmetic sequence.	[3 marks]
9 (b) (i)	Write down the value	e of the first tern	n of the seque	nce.	[1 mark]
9 (b) (ii)	Find the value of the	e common differe	ence of the sec	quence.	[1 mark]

9 (c)	The sum of the first N terms of the arithmetic sequence is \mathcal{S}_N where		
	$S_N < 100000$		
	$S_{N+1} > 100000$		
	$S_{N+1} > 100000$		
	Find the value of N .	[4 manka]	
		[4 marks]	

10 The diagram shows a sector of a circle *OAB*.

The point C lies on OB such that AC is perpendicular to OB.

Angle AOB is θ radians.

10 (a) Given the area of the triangle OAC is half the area of the sector OAB, show that

$$\theta = \sin 2\theta$$

[4 marks]

10 (b)	Use a suitable change of sign to show that a solution to the equation				
	$ heta=\sin 2 heta$				
	lies in the interval given by $\theta \in \left[\frac{\pi}{5}, \frac{2\pi}{5}\right]$	[2 marks]			

Question 10 continues on the next page

wisesprout.co.uk
找名校导师,用小
,用小草线上辅导
(微信小程序同名)

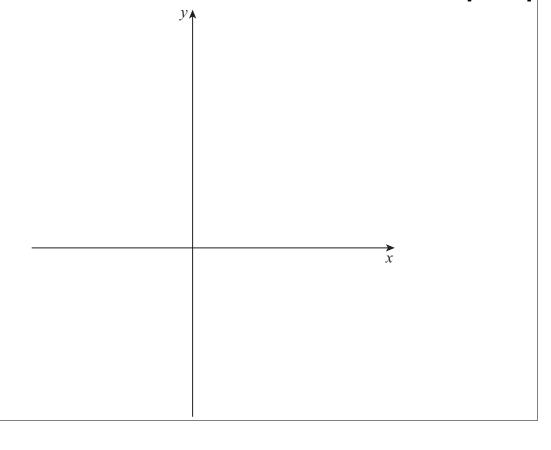
10 (c)	The Newton-Raphson method is used to find an approximate solution to the equation $\theta = \sin 2\theta$
10 (c) (i)	Using $\theta_1=\frac{\pi}{5}$ as a first approximation for θ apply the Newton-Raphson method twice to find the value of θ_3
	Give your answer to three decimal places. [3 marks]
10 (c) (ii)	Explain how a more accurate approximation for θ can be found using the Newton-Raphson method. $ \mbox{ [1 mark]} $

10 (c) (iii)	Explain why using $\theta_1 = \frac{\pi}{6}$ as a first approximation in the Newton-Raphson method				
	does not lead to a solution for θ . [2 marks]				

Turn over for the next question

The polynomial p(x) is given by

$$p(x) = x^3 + (b+2)x^2 + 2(b+2)x + 8$$


where b is a constant.

11 (a) Use the factor theorem to prove that (x + 2) is a factor of p(x) for all values of b.

[3 marks]

- **11 (b)** The graph of y = p(x) meets the x-axis at exactly two points.
- **11 (b) (i)** Sketch a possible graph of y = p(x)

[3 marks]

11 (b) (ii)	Given $p(x)$ can be written as		
		$p(x) = (x+2)(x^2 + bx + 4)$	
	find the value of b .		
	Fully justify your answer.	[4 mor	ıkol
		[4 mar	ĸSJ

Turn over for the next question

12 (a)	A geometric sequence has first term 1 and common ratio $\frac{1}{2}$					
12 (a) (i)	Find the sum to infinity of the sequence	[2 marks]				
12 (a) (ii)	Hence, or otherwise, evaluate	$\sum_{n=1}^{\infty} (\sin 30^{\circ})^n$				
		n=1	[2 marks]			

12 (b)	Find the smallest positive exact value of θ , in radians , which satisfies the equation	1
	$\sum_{n=0}^{\infty} (\cos \theta)^n = 2 - \sqrt{2}$	
	//=0 [4 ma	rks]

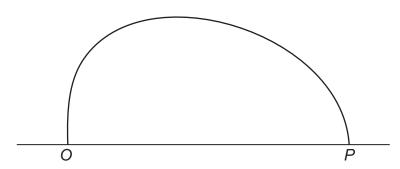

Turn over for the next question

Figure 2 shows the approximate shape of the vertical cross section of the entrance to a cave. The cave has a horizontal floor.

The entrance to the cave joins the floor at the points O and P.

Figure 2

Garry models the shape of the cross section of the entrance to the cave using the equation

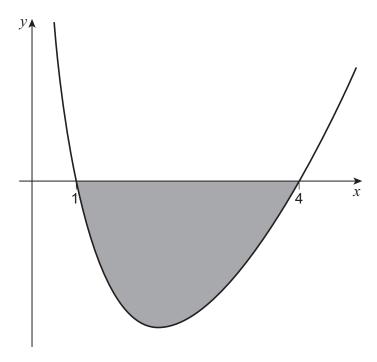
$$x^2 + y^2 = a\sqrt{x} - y$$

where a is a constant, and x and y are the horizontal and vertical distances respectively, in metres, measured from O.

13 (a) The distance *OP* is 16 metres.

Find the value of	f a that	Garry	should	use in	the model.
-------------------	----------	-------	--------	--------	------------

		[Z IIIdIKS


13 (b)	Show that the maximum height of the cave above <i>OP</i> is approximately 1	0.5 metres. [6 marks]
13 (c)	Suggest one limitation of the model Garry has used.	[1 mark]

14 The region bounded by the curve

$$y = (2x - 8) \ln x$$

and the x-axis is shaded in the diagram below.

14 (a) Use the trapezium rule with 5 ordinates to find an estimate for the area of the shaded region.

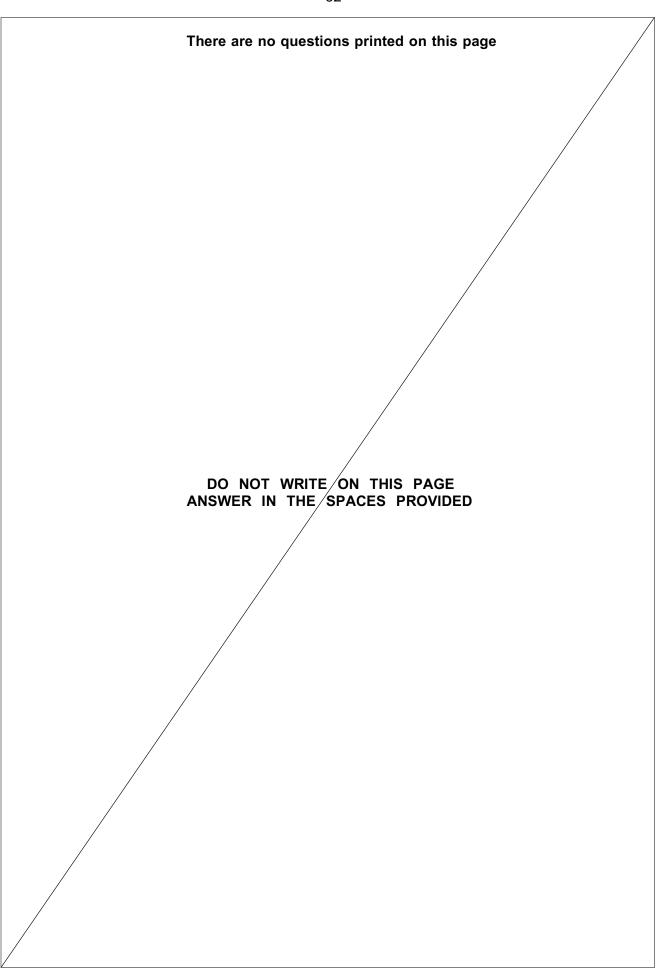
Give	vour	answer	correct	to	three	significant	figures
OIVC	your	answei	COLLCCE	w	uncc	Significant	ngui co.

[3 marks

b)	Show that the exact area is given by	
	$32 \ln 2 - \frac{33}{2}$	
	2	
	Fully justify your answer.	I6 mai
		[6 mai

15 (a)	Given that	_	
		$y = \operatorname{cosec} \theta$	
15 (a) (i)	Express y in terms of $\sin \theta$.		[1 mark]
15 (a) (ii)	Hence, prove that	1	
		$\frac{\mathrm{d}y}{\mathrm{d}\theta} = -\csc\theta\cot\theta$	[3 marks]

15 (a) (iii)	Show that			
		$\frac{\sqrt{y^2 - 1}}{y} = \cos \theta$	for $0 < \theta < \frac{\pi}{2}$	
		У	2	[3 marks]



15 (b) (i)	Use the substitution	
	$x = 2 \operatorname{cosec} u$	
	to show that	
	$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x \qquad \text{for } x > 2$	
	can be written as	
	$k\int \sin u \;\mathrm{d}u$	
	where k is a constant to be found. [6 m	narks]

15 (b) (ii)	Hence, show		
	$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x = \frac{\sqrt{x^2 - 4}}{4x} + c$	for $x > 2$	
	where c is a constant.		[3 marks]
	END OF QUESTIONS		

Question	Additional page if required
number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

O "	Additional mana if naminad
Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

